Estado del arte sobre métodos de monitoreo de salud estructural

dc.contributor.advisorMena Serna, Milton
dc.contributor.authorHende Barajas, Santiago Andrés
dc.date.accessioned2025-05-27T18:10:47Z
dc.date.available2025-05-27T18:10:47Z
dc.date.created2025-05-14
dc.descriptionEl monitoreo de la salud estructural (SHM) se ha vuelto una herramienta esencial en la ingeniería civil para garantizar la seguridad y el desempeño de las infraestructuras, especialmente ante el envejecimiento de las estructuras y la ocurrencia de eventos extremos como terremotos o huracanes. El tema central de este trabajo es analizar y clasificar los métodos de SHM más adecuados según las características de las estructuras, abordando tanto técnicas tradicionales como innovaciones recientes como sensores inalámbricos e inteligencia artificial. La justificación de este estudio radica en la creciente complejidad y antigüedad de las infraestructuras civiles, lo que exige sistemas de monitoreo eficientes que permitan detectar daños y planificar mantenimientos adecuados. Además, el trabajo busca proporcionar a ingenieros, tecnólogos y responsables de políticas un marco comprensivo para tomar decisiones informadas sobre la implementación de sistemas SHM, optimizando recursos y mejorando la seguridad pública.
dc.description.abstractStructural health monitoring (SHM) has become an essential tool in civil engineering to ensure the safety and performance of infrastructure, especially in the face of aging structures and the occurrence of extreme events such as earthquakes or hurricanes. The central theme of this work is to analyze and classify the most appropriate SHM methods according to structural characteristics, addressing both traditional techniques and recent innovations such as wireless sensors and artificial intelligence. The justification for this study lies in the increasing complexity and age of civil infrastructure, which requires efficient monitoring systems that can detect damage and plan appropriate maintenance. Furthermore, the work seeks to provide engineers, technologists, and policymakers with a comprehensive framework for making informed decisions about the implementation of SHM systems, optimizing resources and improving public safety.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/95726
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesFarrar, C. R., & Worden, K. 2007. An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 303-315. https://doi.org/10.1098/rsta.2006.1928
dc.relation.referencesSohn, H., Farrar, C. R., Hemez, F. M., Shunk, D. D., Stinemates, D. W., Nadler, B. R., & Czarnecki, J. J. 2004. A Review of Structural Health Monitoring Literature: 1996-2001 (Report No. LA-13976- MS). Los Alamos National Laboratory. https://doi.org/10.2172/15000241
dc.relation.referencesRytter, A. 1993. Vibrational Based Inspection of Civil Engineering Structures (Doctoral dissertation). Aalborg University, Denmark.
dc.relation.referencesDewesoft. 2023. Structural Health Monitoring Techniques and Challenges. Recuperado de https://dewesoft.com/structural-health-monitoring-techniques-and-challenges
dc.relation.referencesUniversity of Washington Structural Research Laboratory. 1949. History of the Tacoma Narrows Bridge. Recuperado d e https://lib.uw.edu/specialcollections/collections/exhibits/tnb/
dc.relation.referencesHousner, George William (1941) An Investigation of the Effects of Earthquakes on Buildings. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/CTJR-HD62. https://resolver.caltech.edu/CaltechETD:etd-05092003-152001
dc.relation.referencesOposinet. (2023). Ensayos no destructivos: Finalidad y técnicas operativas. Recuperado de https://www.oposinet.com/temario-de-fabricacion-mecanica-secundaria/temario-2- fabricacion-mecanica/tema-10-ensayos-no-destructivos-finalidad-fundamentacin-tcnicasoperativas-e-interpretacin-de-los-resultados-de-los-distintos-ensayos-tipos-inspeccin-visualli-2/
dc.relation.referencesZhang, X., & Chen, X. (2019). The role of big data in structural health monitoring: A review. Journal of Civil Engineering and Management, 25(5), 485-498.
dc.relation.referencesChaverri, Oscar & Conejo-Solís, Mario. (2017). Radiografía Industrial: comparación entre el método tradicional y digital empleando rayos X. Revista Tecnología en Marcha. 30. 119. 10.18845/tm.v30i3.3278
dc.relation.referencesAlHamaydeh, M., & Aswad, A. (2022). Structural health monitoring systems for civil infrastructure: A review of current technologies and future trends. Journal of Civil Engineering and Management, 28(5), 387-401.
dc.relation.referencesCoppolino, R., & Rubin, M. (1980). Structural health monitoring of offshore platforms: A case study. Journal of Offshore Mechanics and Arctic Engineering, 102(4), 245-250.
dc.relation.referencesHou, S., Zeng, C., Zhang, H., & Ou, J. (2018). Monitoring interstory drift in buildings under seismic loading using MEMS inclinometers. Construction and Building Materials, 185, 453–467. https://doi.org/10.1016/J.CONBUILDMAT.2018.07.087
dc.relation.referencesGabriel Álvarez González. (2013). Implementación y validación numérica y experimental de un método para el análisis modal experimental operacional de estructuras. Universidad de Las Palmas de Gran Canaria. http://mmc.siani.es/files/documents/PFC/TFCGabrielAlvarezGonzalez.pdf
dc.relation.referencesSukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory Fenves, Steven Glaser, and Martin Turon. 2007. Health monitoring of civil infrastructures using wireless sensor networks. In Proceedings of the 6th international conference on Information processing in sensor networks (IPSN '07). Association for Computing Machinery, New York, NY, USA, 254–263. https://doi.org/10.1145/1236360.1236395
dc.relation.referencesKenley, R. M., & Dodds, C. J. (1980). West Sole WE Platform: Detection Of Damage By Structural Response Measurements. Proceedings of the Annual Offshore Technology Conference, 1980-May, 111–118. https://doi.org/10.4043/3866-MS
dc.relation.referencesBrownjohn, J. M. W. (2007). Structural health monitoring of civil infrastructure. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 589–622. https://doi.org/10.1098/rsta.2006.1925
dc.relation.referencesSalvaneschi, P., Cadei, M., & Lazzari, M. (1996). Applying AI to Structural Safety Monitoring and Evaluation. IEEE Intelligent Systems, 11(04), 24–34. https://doi.org/10.1109/64.511774
dc.relation.referencesQuintero Parra, Andres & Villamizar, Rodolfo. (2010). Estado del arte en monitorización de salud estructural: Un enfoque basado en agentes inteligentes. Ciencia e Ingeniería Neogranadina. 20. 117. 10.18359/rcin.281
dc.relation.referencesAlHamaydeh, M., & Aswad, A. (2022). Structural health monitoring systems for civil infrastructure: A review of current technologies and future trends. Journal of Civil Engineering and Management, 28(5), 387-401.
dc.relation.referencesIkuma, M. (2002). Maintenance of the undersea section of the Seikan Tunnel. Tunnelling and Underground Space Technology, 20(2), 143–149. https://doi.org/10.1016/J.TUST.2003.10.001
dc.relation.referencesTeng, Fei, Luo, Jianlin, Gao, Yibo, Zhou, Xiaoyang, Zhang, Jigang, Gao, Song and Sun, Shengwei. "Piezoresistive/piezoelectric intrinsic sensing properties of carbon nanotube cement-based smart composite and its electromechanical sensing mechanisms: A review" Nanotechnology Reviews, vol. 10, no. 1, 2021, pp. 1873-1894.
dc.relation.referencesOlivera López, J.J.; Vergara Reyes, L.; Oyarzo Vera, C. Structural health assessment of a R/C building in the coastal area of Concepcion, Chile. Procedia Eng. 2017, 199, 2214–2219. https://doi.org/10.1016/j.proeng.2017.09.185
dc.relation.referencesRoghaei, M.; Zabihollah, A. An Efficient and Reliable Structural Health Monitoring System for Buildings after Earthquake. APCBEE Procedia 2014, 9, 309–316. https://doi.org/10.1016/j.apcbee.2014.01.055
dc.relation.referencesZhou, C.; Chase, J.G.; Rodgers, G.W.; Huang, B.; Xu, C. Effective Stiffness Identification for Structural Health Monitoring of Reinforced Concrete Building using Hysteresis Loop Analysis. Procedia Eng. 2017, 199, 1074–1079. https://doi.org/10.1016/j.proeng.2017.09.072
dc.relation.referencesPierdicca, A.; Clementi, F.; Mezzapelle, P.; Fortunati, A.; Lenci, S. One-year monitoring of a reinforced concrete school building: Evolution of dynamic behavior during retrofitting works. Procedia Eng. 2017, 199, 2238-2243. https://doi.org/10.1016/j.proeng.2017.09.206
dc.relation.referencesDemetriou, M.A. On-Line Damage Detection, Assessment and Accommodation in Civil Infrastructure Systems. IFAC Process. 2000, 33, 759–764. http://doi.org/10.1016/S1474-6670(17)37452-9
dc.relation.referencesDong, Y.; Li, M.; Lai, M. Structural damage detection using empirical-mode decomposition and vector autoregressive moving average model. Soil Dyn. Earthq. Eng. 2010, 30, 133–145.. http://doi.org/10.1016/j.soildyn.2009.10.002
dc.relation.referencesYang, Z.; Dutta, U.; Xiong, F.; Biswas, N.; Benz, H. Seasonal frost effects on the dynamic behavior of a twenty-story office building.Cold Reg. Sci. Technol. 2008, 51, 76–84.. http://doi.org/10.1016/j.coldregions.2007.05.001
dc.relation.referencesAntunes, P.; Lima, H.; Varum, P.; André, P. Optical fiber sensors for static and dynamic health monitoring of civil engineering infrastructures: Abode wall case study. Measurement 2021, 45, 1695–1705.. http://doi.org/10.1016/j.measurement.2012.04.018
dc.relation.referencesHison, C.; Ausanio, G.; Barone, A.C.; Iannotti, V.; Pepe, E.; Lanotte, L. Magnetoelastic sensor for real-time monitoring of elastic deformation and fracture alarm. Sens. Actuators A Phys. 2005, 125, 10–14. https://doi.org/10.1016/j.sna.2005.05.019
dc.relation.referencesMahjoubi, S.; Barhemat, R.; Bao, Y. Optimal placement of triaxial accelerometers using hypotrochoid spiral optimization algorithm for automated monitoring of high-rise buildings. Autom. Constr. 2019, 118, 103273. https://doi.org/10.1016/j.autcon.2020.103273
dc.relation.referencesSajedi, S.O.; Liang, X. A data-driven framework for near real-time and robust damage diagnosis of building structures. Struct. Control Health Monit. 2020, 27, e2488. https://doi.org/10.1002/stc.2488
dc.relation.referencesSoltaninejad, M.; Soroushian, S.; Livani, H. Application of short-time matrix pencil method for high-frequency damage detection in structural system. Struct. Control Health Monit. 2020, 27, e2589.. https://doi.org/10.1002/stc.2589
dc.relation.referencesGarcía-Macías, E.; Ubertini, F. Automated operational modal analysis and ambient noise deconvolution interferometry for the full structural identification of historic towers: A case study of the Sciri Tower in Perugia, Italy. Eng. Struct. 2020, 215, 110615.. https://doi.org/10.1016/j.engstruct.2020.110615
dc.relation.referencesSun, H.; Al-Qazweeni, J.; Parol, J.; Kamal, H.; Chen, Y.; Büyüköztürk, O. Computational modeling of a unique tower in Kuwait for structural health monitoring: Numerical investigations. Struct. Control Health Monit. 2019, 26, e2317. https://doi.org/10.1002/stc.2317
dc.relation.referencesChellini, G.; De Roeck, L.; Nardini, W. Salvatore, Damage detection of a steel–concrete composite frame by a multilevel approach: Experimental measurements and modal identification. Earthq. Eng. Struct. Dyn. 2008, 37, 1763–1783. . https://doi.org/10.1002/eqe.835
dc.relation.referencesMorales-Valdez, J.; Alvarez-Icaza, L.; Escobar, J.A. Damage Localization in a Building Structure during Seismic Excitation. Shock Vib. 2020, 2020, 8859527. https://doi.org/10.1155/2020/8859527
dc.relation.referencesPachón, P.; Infantes, M.; Camara, M.; Compan, V.; Garcia-Macias, E.; Friswell, M.I.; Castro-Triguero, R. Evaluation of optimal sensor placement algorithms for the Structural Health Monitoring of architectural heritage. Application to the Monastery of San Jerónimo de Buenavista (Seville, Spain). Eng. Struct. 2019, 202, 109843. https://doi.org/10.1016/j.engstruct.2019.109843
dc.relation.referencesFrigui, F.; Faye, J.P.; Martin, C.; Dalverny, O.; Peres, F.; Judenherc, S. Global methodology for damage detection and localization in civil engineering structures. Eng. Struct. 2018, 171, 686–695. http://doi.org/10.1016/j.engstruct.2018.06.026
dc.relation.referencesGarcía-Macías, E.; Ubertini, F. MOVA/MOSS: Two integrated software solutions for comprehensive Structural Health Monitoring of structures. Mech. Syst. Signal Process. 2020, 143, 106830.. https://doi.org/10.1016/j.ymssp.2020.106830
dc.relation.referencesLi, Q.; He, Y.; Zhou, K.; Han, X.; He, Y.; Shu, Z. Structural health monitoring for a 600 m high skyscraper. Struct. Des. Tall Spec. Build. 2018, 27, e1490. https://doi.org/10.1002/tal.1490
dc.relation.referencesZhang, F.-L.; Yang, Y.P.; Xiong, H.B.; Yang, J.-H.; Yu, Z. Structural health monitoring of a 250-m super-tall building and operational modal analysis using the fast Bayesian FFT method. Struct. Control Health Monit. 2019, 26, e2383. https://doi.org/10.1002/stc.2383
dc.relation.referencesModena, C.; Lorenzoni, F.; Caldon, M.; da Porto, F. Structural health monitoring: A tool for managing risks in sub-standard conditions. J. Civ. Struct. Health Monit. 2016, 6, 365–375. http://doi.org/10.1007/s13349-016-0176-5
dc.relation.referencesAguilar, R.; Zonno, G.; Lozano, G.; Boroschek, R.; Lourenço, P.B. Vibration-Based Damage Detection in Historical Adobe Structures: Laboratory and Field Applications. Int. J. Archit. Herit. 2019, 13, 1005–1028. https://doi.org/10.1080/15583058.2019.1632974
dc.relation.referencesColetta, G.; Miraglia, G.; Pecorelli, M.; Ceravolo, R.; Cross, E.; Surace, C.; Worden, K. Use of the cointegration strategies to remove environmental effects from data acquired on historical buildings. Eng. Struct. 2019, 183, 1014–1026. http://doi.org/10.1016/j.engstruct.2018.12.044
dc.relation.referencesLam, H.F.; Zhang, F.L.; Ni, Y.C.; Hu, J. Operational modal identification of a boat-shaped building by a Bayesian approach. Eng. Struct. 2017, 138, 381–393.. https://doi.org/10.1016/j.engstruct.2017.02.003
dc.relation.referencesLorenzoni, F.; Caldon, M.; da Porto, F.; Modena, C.; Aoki, T. Post-earthquake controls and damage detection through structural health monitoring: Applications in l’Aquila. J. Civ. Struct. Health Monit. 2018, 8, 217–236. http://doi.org/10.1007/s13349-018-0270-y
dc.relation.referencesKaya, Y.; Safak, E. Real-time analysis and interpretation of continuous data from structural health monitoring (SHM) systems. Bull. Earthq. Eng. 2015, 13, 917–934. http://doi.org/10.1007/s10518-014-9642-9
dc.relation.referencesCheng, J.J.; Guo, H.Y.; Wang, Y.S. Structural Nonlinear Damage Detection Method Using AR/ARCH Model. Int. J. Struct. Stab. Dyn. 2017, 17, 1750083. https://doi.org/10.1142/S0219455417500833
dc.relation.referencesRahmani, M.; Ebrahimian, M.; Todorovska, M.I. Time-wave velocity analysis for early earthquake damage detection in buildings: Application to a damaged full-scale RC building. Earthq. Eng. Struct. Dyn. 2014, 44, e.2539. http://doi.org/10.1002/eqe.2539
dc.relation.referencesMusafere, F.; Sadhu, A.; Liu, K. Towards damage detection using blind source separation integrated with time-varying autoregressive modeling. Smart Mater. Struct. 2015, 25, 15013. http://doi.org/10.1088/0964-1726/25/1/015013
dc.relation.referencesBehnia, A.; Chai, H.K.; Shiotani, T. Advanced structural health monitoring of concrete structures with the aid of acoustic emission. Constr. Build. Mater. 2014, 65, 282–302. https://doi.org/10.1016/j.conbuildmat.2014.04.103
dc.relation.referencesIerimonti, L.; Venanzi, I.; Cavalagli, N.; Comodini, F.; Ubertini, F. An innovative continuous Bayesian model updating method for base-isolated RC buildings using vibration monitoring data. Mech. Syst. Signal Process. 2020, 139, 106600. https://doi.org/10.1016/j.ymssp.2019.106600
dc.relation.referencesCarden, E.P.; Brownjohn, J.M.W. ARMA modelled time-series classification for structural health monitoring of civil infrastructure. Mech. Syst. Signal Process. 2008, 22, 295–314. https://doi.org/10.1016/j.ymssp.2007.07.003
dc.relation.referencesWang, J.F.; Lin, C.C.; Yen, S.M. A story damage index of seismically-excited buildings based on modal frequency and mode shape. Eng. Struct. 2007, 29, 2143–2157. http://doi.org/10.1016/j.engstruct.2006.10.018
dc.relation.referencesKao, C.Z.; Hung, S.-L. Detection of structural damage via free vibration responses generated by approximating artificial neural networks. Comput. Struct. 2003, 81, 2631–2644. http://doi.org/10.1016/S0045-7949(03)00323-7
dc.relation.referencesRamos, L.F.; Aguilar, R.; Lourenço, P.B.; Moreira, S. Dynamic structural health monitoring of Saint Torcato church. Mech. Syst. Signal Process. 2013, 35, 1–15.. http://doi.org/10.1016/j.ymssp.2012.09.007
dc.relation.referencesMejri, O.; Palomo Del Barrio, E.; Ghrab-Morcos, N. Energy performance assessment of occupied buildings using model identification techniques. Energy Build. 2011, 43, 285–299. . http://doi.org/10.1016/j.enbuild.2010.09.010
dc.relation.referencesBhalla, S.; Soh, C.K. High frequency piezoelectric signatures for diagnosis of seismic/blast induced structural damages. NDT E Int. 2004, 37, 23–33.. http://doi.org/10.1016/j.ndteint.2003.07.001
dc.relation.referencesPesci, A.; Casula, G.; Boschi, E. Laser scanning the Garisenda and Asinelli towers in Bologna (Italy): Detailed deformation patterns of two ancient leaning buildings. J. Cult. Herit. 2011, 12, 117–127. http://doi.org/10.1016/j.culher.2011.01.002
dc.relation.referencesXu, C.; Chase, J.G.; Rodgers, G.W. Physical parameter identification of nonlinear base-isolated buildings using seismic response data. Comput. Struct. 2014, 145, 47–57.. http://doi.org/10.1016/j.compstruc.2014.08.006
dc.relation.referencesSaisi, A.; Gentile, C.; Ruccolo, A. Pre-diagnostic prompt investigation and static monitoring of a historic bell-tower. Constr. Build. Mater. 2016, 122, 833–844. http://doi.org/10.1016/j.conbuildmat.2016.04.016
dc.relation.referencesButt, F.; Omenzetter, P. Seismic response trends evaluation and finite element model calibration of an instrumented RC building considering soil-structure interaction and non-structural components. Eng. Struct. 2014, 65, 111–123. http://doi.org/10.1016/j.engstruct.2014.01.045
dc.relation.referencesBulaji´c, B.; Todorovska, M.I.; Mani´c, M.D. Trifunac, Structural health monitoring study of the ZOIL building using earthquake records. Soil Dyn. Earthq. Eng. 2020, 133, 106105.. http://doi.org/10.1016/j.soildyn.2020.106105
dc.relation.referencesIvanovi´c, S.S.; Trifunac, M.D.; Novikova, E.I.; Gladkov, A.A.; Todorovska, M.I. Ambient vibration tests of a seven-story reinforced concrete building in Van Nuys, California, damaged by the 1994 north ridge earthquake. Soil Dyn. Earthq. Eng. 2000, 19, 391 411. http://doi.org/10.1016/S0267-7261(00)00025-7
dc.relation.referencesChang, C.M.; Lin, T.K.; Chang, C.W. Applications of neural network models for structural health monitoring based on derived modal properties. Measurement 2018, 129, 457–470. http://doi.org/10.1016/j.measurement.2018.07.051
dc.relation.referencesKyriacou, A.; Michaelides, M.P.; Eliades, D.G.; Panayiotou, C.G.; Polycarpou, M.M. COMOB: A MATLAB toolbox for sensor placement and contaminant event monitoring in multi-zone buildings. Build. Environ. 2018, 154, 348–361.. http://doi.org/10.1016/j.buildenv.2019.02.013
dc.relation.referencesJin, S.S.; Cho, S.; Jung, H.J. Adaptive reference updating for vibration-based structural health monitoring under varying environmental conditions. Comput. Struct. 2015, 158, 211–224.. http://doi.org/10.1016/j.compstruc.2015.06.001
dc.relation.referencesTodorovska, M.I.; Trifunac, M.D. Earthquake damage detection in the Imperial County Services Building I: The data and time-frequency analysis. Soil Dyn. Earthq. Eng. 2007, 27, 564–576. http://doi.org/10.1016/j.soildyn.2006.10.005
dc.relation.referencesOh, B.K.; Kim, K.J.; Kim, Y.; Park, H.S.; Adeli, H. Evolutionary learning based sustainable strain sensing model for structural health monitoring of high-rise buildings. Appl. Soft. Comput. 2017, 58, 576–585. http://doi.org/10.1016/j.asoc.2017.05.029
dc.relation.referencesÇelebi, M. GPS in dynamic monitoring of long-period structures. Soil Dyn. Earthq. Eng. 2000, 20, 477–483. http://doi.org/10.1016/S0267-7261(00)00094-4
dc.relation.referencesChen, B.; Xu, Y.L. Integrated vibration control and health monitoring of building structures using semi-active friction dampers: Part II—Numerical investigation. Eng. Struct. 2008, 30, 573–587. http://doi.org/10.1016/j.engstruct.2007.03.006
dc.relation.referencesPingue, F.; Petrazzuoli, S.M.; Obrizzo, F.; Tammaro, U.; De Martino, P.; Zuccaro, G. Monitoring system of buildings with high vulnerability in presence of slow ground deformations (The Campi Flegrei, Italy, case). Measurement 2011, 44, 1628-1644.. http://doi.org/10.1016/j.measurement.2011.06.015
dc.relation.referencesMa, P.; Lin, H.; Lan, H.; Chen, F. Multi-dimensional SAR tomography for monitoring the deformation of newly built concrete buildings. ISPRS J. Photogramm. Remote Sens. 2015, 106, 118–128. http://doi.org/10.1016/j.isprsjprs.2015.04.012
dc.relation.referencesZapico, J.L.; González, M.P. Numerical simulation of a method for seismic damage identification in buildings. Eng. Struct. 2006, 28, 255–263. http://doi.org/10.1016/j.engstruct.2005.08.005
dc.relation.referencesPark, H.S.; Oh, B.K. Real-time structural health monitoring of a supertall building under construction based on visual modal identification strategy. Autom. Constr. 2017, 85, 273–289.. http://doi.org/10.1016/j.autcon.2017.10.025
dc.relation.referencesHe, J.; Xu, Y.L.; Zhan, S.; Huang, Q. Structural control and health monitoring of building structures with unknown ground excitations: Experimental investigation. J. Sound Vib. 2017, 390, 23–38. http://doi.org/10.1016/j.jsv.2016.11.035
dc.relation.referencesGao, F.; Zhou, H.; Liang, H.; Weng, S.; Zhu, H. Structural deformation monitoring and numerical simulation of a supertall building during construction stage. Eng. Struct. 2020, 209, 110033. http://doi.org/10.1016/j.engstruct.2019.110033
dc.relation.referencesMasciotta, M.G.; Ramos, L.F.; Lourenço, P.B. The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: A case study in Portugal. J. Cult. Herit. 2017, 27, 36–47. http://doi.org/10.1016/j.culher.2017.04.003
dc.relation.referencesKarapetrou, S.; Manakou, M.; Bindi, D.; Petrovic, B.; Pitilakis, K. Time-building specific’ seismic vulnerability assessment of a hospital RC building using field monitoring data. Eng. Struct. 2016, 112, 114–132.. http://doi.org/10.1016/j.engstruct.2016.01.009
dc.relation.referencesLorenzoni, F.; Casarin, F.; Caldon, M.; Islami, K.; Modena, C. Uncertainty quantification in structural health monitoring: Applications on cultural heritage buildings. Mech. Syst. Signal Process. 2016, 66–67, 268–281. http://doi.org/10.1016/j.ymssp.2015.04.032
dc.relation.referencesFan, G.; Li, J.; Hao, H. Vibration signal denoising for structural health monitoring by residual convolutional neural networks.Measurement 2020, 157, 107651.. http://doi.org/10.1016/j.measurement.2020.107651
dc.relation.referencesTrifunac, M.D.; Ivanovi´c, S.S.; Todorovska, M.I. Wave propagation in a seven-story reinforced concrete building. III. Damage detection via changes in wavenumbers. Soil Dyn. Earthq. Eng. 2003, 23, 65–75. http://doi.org/10.1016/S0267-7261(02)00093-3
dc.relation.referencesCabboi, A.; Gentile, C.; Saisi, A. From continuous vibration monitoring to FEM-based damage assessment: Application on a stone-masonry tower. Constr. Build. Mater. 2017, 156, 252–265.. http://doi.org/10.1016/j.conbuildmat.2017.08.160
dc.relation.referencesIsidori, E.D.C.; Cristalli, C.; Soria, L.; Lenci, S. Proof of concept of the structural health monitoring of framed structures by a novel combined experimental and theoretical approach. Struct. Control Health Monit. 2016, 23, 802–824. http://doi.org/10.1002/stc.1811
dc.relation.referencesKaneko, Y.; Mita, A.; Mihashi, H. Quantitative approach for damage detection of reinforced concrete frames. Earthq. Eng. Eng. Vib. 2003, 2, 147–158.. http://doi.org/10.1007/BF02857547
dc.relation.referencesRahmani, M.; Todorovska, M.I. 1D system identification of buildings during earthquakes by seismic interferometry with waveform inversion of impulse responses-method and application to Millikan library. Soil Dyn. Earthq. Eng. 2013, 47, 157-174.. http://doi.org/10.1016/j.soildyn.2012.09.014
dc.relation.referencesYuen, K.V.; Kuok, S.C. Ambient interference in long-term monitoring of buildings. Eng. Struct. 2013, 32, 2379–2386.. http://doi.org/10.1016/j.engstruct.2010.04.012
dc.relation.referencesUnzu, R.; Nazabal, J.A.; Vargas, G.; Hernandez, R.J.; Fernandez-Valdivielso, C.; Urriza, N.; Galarza, M.; Lopez-Amo, M. Fiber optic and KNX sensors network for remote monitoring a new building cladding system. Autom. Constr. 2013, 30, 9–14. http://doi.org/10.1016/j.autcon.2012.11.005
dc.relation.referencesXu, Y.L.; Huang, Q.; Zhan, S.; Su, Z.Q.; Liu, H.J. FRF-based structural damage detection of controlled buildings with podium structures: Experimental investigation. J. Sound Vib. 2014, 333, 2762–2775. . http://doi.org/10.1016/j.jsv.2014.02.010
dc.relation.referencesSu, W.C.; Huang, C.S.; Hung, S.L.; Chen, L.J.; Lin, W.J. Locating damaged storeys in a shear building based on its sub structural natural frequencies. Eng. Struct. 2012, 39, 126–138. http://doi.org/10.1016/j.engstruct.2012.02.002
dc.relation.referencesGrinzato, E.; Bison, P.G.; Marinetti, S. Monitoring of ancient buildings by the thermal method. J. Cult. Herit. 2002, 3, 21–29.. http://doi.org/10.1016/S1296-2074(02)01159-7
dc.relation.referencesMadan, A. Vibration control of building structures using self-organizing and self-learning neural networks. J. Sound Vib. 2005, 287, 759–784. http://doi.org/10.1016/j.jsv.2004.11.031
dc.relation.referencesBoutet, M.L.; Hernández, A.L.; Jacobo, G.J. Thermo–lighting optimization proposal for school buildings in subtropical hot— Humid climates: Monitoring and computer simulation on autumn period. Energy Build. 2016, 128, 785–797. . http://doi.org/10.1016/j.enbuild.2016.07.028
dc.relation.referencesiang, S.F.; Zhang, C.M.; Zhang, S. Two-stage structural damage detection using fuzzy neural networks and data fusion techniques. Expert Syst. Appl. 2011, 38, 511–519. http://doi.org/10.1016/j.eswa.2010.06.093
dc.relation.referencesKim, Y.; Park, J.S.; Oh, B.K.; Cho, T.; Kim, J.M.; Kim, S.H.; Park, H.S. Practical wireless safety monitoring system of long-span girders subjected to construction loading a building under construction. Measurement 2019, 146, 524–536. http://doi.org/10.1016/j.measurement.2019.05.110
dc.relation.referencesHajdukiewicz, M.; Byrne, D.; Keane, M.M.; Goggins, J. Real-time monitoring framework to investigate the environmental and structural performance of buildings. Build. Environ. 2015, 86, 1–16. http://doi.org/10.1016/j.buildenv.2014.12.012
dc.relation.referencesHagiwara, H.; Mita, A. Structural Health Monitoring System Using Support Vector Machine. Adv. Build. Technol. 2002, 1, 8. https://doi.org/10.1016/B978-008044100-9/50062-0
dc.relation.referencesNa, C.; Kim, S.P.; Kwak, H.G. Structural damage evaluation using genetic algorithm. J. Sound Vib. 2011, 330, 2772–2783. http://doi.org/10.1016/j.jsv.2011.01.007
dc.relation.referencesKopsaftopoulos, F.P.; Fassois, S.D. Vibration based health monitoring for a lightweight truss structure: Experimental assessment of several statistical time series methods. Mech. Syst. Signal Process. 2010, 24, 1977–1997.. http://doi.org/10.1016/j.ymssp.2010.05.013
dc.relation.referencesFawad, M., Salamak, M., Poprawa, G. et al. Automation of structural health monitoring (SHM) system of a bridge using BIMification approach and BIM-based finite element model development. Sci Rep 13, 13215 (2023). https://doi.org/10.1038/s41598-023-40355-7
dc.relation.referencesXiang, W.; Wei, J.; Zhang, F. Structural Health Monitoring Design and Performance Evaluation of a Middle-Span Bridge. Sensors 2023, 23, 8702. https://doi.org/10.3390/s23218702
dc.relation.referencesShahawy, M.A.; Arockiasamy, M. Field Instrumentation to study the time-dependent behavior in Sunshine Skyway Bridge. J. Bridge Eng. 1996, 1, 76–86. . https://doi.org/10.1061/(ASCE)1084-0702(1996)1:2(76)
dc.relation.referencesMarulanda A., J., Thomson, P., & Marulanda C., J. (2000). Monitoreo de Salud Estructural. Ingeniería Y Competitividad, 2(2), 40–46.. https://doi.org/10.25100/iyc.v2i2.2342
dc.relation.referencesOspina Dávila, Y. (2009). Monitoreo de salud estructural empleando filtros Kalman.. https://repositorio.unal.edu.co/handle/unal/69962
dc.relation.referencesGonzález Marín, Faber Daniel (2019). Herramienta Digital de Captura y Manejo de Información para el Monitoreo Estructural de Viviendas en el Sector Altos de la Estancia. http://hdl.handle.net/11349/16184
dc.relation.referencesTobón López, S. (2008). Identificación de los parámetros modales, a partir de registros de aceleración, por medio de la metodología NEXT/ERA. . http://hdl.handle.net/1992/20614
dc.relation.referencesVelásquez Roncancio, J. (2017). Diseño e implementación de un sistema para el monitoreo de elasticidad en edificaciones adyacentes a vías. Universidad de los Andes.. http://hdl.handle.net/1992/39654
dc.relation.referencesZabala Mejía, A. (2008). Determinación de la degradación estructural debido a la presencia de rotulas plásticas en estructuras espaciales aporticadas, a partir de registros de aceleración, por medio de la metodología NExT/ERA. http://hdl.handle.net/1992/11286
dc.relation.referencesÁlvarez, M. C. & Olarte, S. A. (2015). Detección de daño estructural en vigas de concreto reforzado utilizando modelos estadísticos sobre la respuesta dinámica. https://doi.org/10.11144/Javeriana.10554.17075
dc.relation.referencesM. E. & Morales, A. (2021). Estimador de oscilaciones para monitoreo de salud estructural implementando visión por computador. http://hdl.handle.net/10554/62070
dc.relation.referencesSantos Rodriguez, Wencel Fabian. (2017). "Aplicación de sistemas MEMS integrados en smartphones para la detección y análisis de vibraciones mecánicas de baja frecuencia de estructuras civiles". http://hdl.handle.net/11349/5206
dc.relation.referencesMohammad Siahkouhi, Ghani Razaqpur, N.A. Hoult, Mohammad Hajmohammadian Baghban, Guoqing Jing, Utilization of carbon nanotubes (CNTs) in concrete for structural health monitoring (SHM) purposes: A review, Construction and Building Materials,Volume 309,2021,125137,ISSN 0950-0618,. https://doi.org/10.1016/j.conbuildmat.2021.125137
dc.relation.referencesAnas, M., Nasir, M.A., Asfar, Z. et al. Structural health monitoring of GFRP laminates using graphene-based smart strain gauges. J Braz. Soc. Mech. Sci. Eng. 40, 397 (2018).. https://doi.org/10.1007/s40430-018-1320-4
dc.relation.referencesYunyang Wang. Liqing Zhang, Development of self-sensing cementitious composite incorporating hybrid graphene nanoplates and carbon nanotubes for structural health monitoring, Sensors and Actuators A: Physical, Volume 336, 2022, 113367, ISSN 0924-4247. https://doi.org/10.1016/j.sna.2022.113367
dc.relation.referencesYehai Li. Yaozhong Liao, Zhongqing Su, Graphene-functionalized polymer composites for self-sensing of ultrasonic waves: An initiative towards “sensor-free” structural health monitoring, Composites Science and Technology, Volume 168, 2018, Pages 203-213, ISSN 0266-3538,. https://doi.org/10.1016/j.compscitech.2018.09.021
dc.relation.referencesDebadatta Sethy, Krishnan Balasubramanian, "Piezoresistive type graphene nano platelet sensor for SHM application in structural components," Proc. SPIE 10970, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019, 109702H (27 March 2019);. https://doi.org/10.1117/12.2515171
dc.relation.referencesLi Y, Wang K, Wang Q, et al. Acousto-ultrasonics-based health monitoring for nano-engineered composites using a dispersive graphene networked sensing system. Structural Health Monitoring. 2021;20(1):240-254.. https://doi.org/10.1177/1475921720929749
dc.relation.referencesEnrique García-Macías, Rafael Castro-Triguero, Andrés Sáez, Filippo Ubertini, 3D mixed micromechanics-FEM modeling of piezoresistive carbon nanotube smart concrete, Computer Methods in Applied Mechanics and Engineering, Volume 340, 2018, Pages 396-423, ISSN 0045-7825.
dc.relation.referencesCastañeda Saldarriaga, Diego Leon & Alvarez-Montoya, J. & Martínez, Vladimir & Sierra-Perez, Julian. (2021). Toward Structural Health Monitoring of Civil Structures Based on Self-Sensing Concrete Nanocomposites: A Validation in a Reinforced-Concrete Beam. International Journal of Concrete Structures and Materials. 15. 10.1186/s40069-020-00451-8.
dc.relation.referencesA. Dinesh, S.T. Sudharsan, S. Haribala, Self-sensing cement-based sensor with carbon nanotube: Fabrication and properties – A review, Materials Today: Proceedings, Volume 46, Part 12, 2021, Pages 5801-5807
dc.relation.referencesD'Alessandro, Antonella & Ubertini, Filippo & Materazzi, A. & Laflamme, Simon & Porfiri, Maurizio. (2014). Electromechanical modelling of a new class of nanocomposite cement-based sensors for structural health monitoring. Structural Health Monitoring. 14. 10.1177/1475921714560071.
dc.relation.referencesTeng, Fei, Luo, Jianlin, Gao, Yibo, Zhou, Xiaoyang, Zhang, Jigang, Gao, Song and Sun, Shengwei. "Piezoresistive/piezoelectric intrinsic sensing properties of carbon nanotube cement-based smart composite and its electromechanical sensing mechanisms: A review" Nanotechnology Reviews, vol. 10, no. 1, 2021, pp. 1873-1894.
dc.relation.referencesSivasuriyan, A.; Vijayan, D.S.; Górski, W.; Wodzy ´nski, Ł.; Vaverková, M.D.; Koda, E. Practical Implementation of Structural Health Monitoring in Multi-Story Buildings. Buildings 2021, 11, 263. https://doi.org/10.3390/buildings11060263
dc.relation.referencesINVIAS. GUIA PARA LA INSTRUMENTACIÓN Y MONITOREO DE PUENTES. 2022. https://www.invias.gov.co/index.php/archivo-y-documentos/proyectos-de-norma/14383-guia-shm-sigp-protocolo-v2-pa/file
dc.relation.referencesDEVELOPMENT, S. (2007). Monitoring Instrumentation and Techniques Background document D5.1. https://www.academia.edu/124071994/Monitoring_Instrumentation_and_Techniques_Sustainable_Bridges_Background_document_D5_1
dc.relation.referencesDong, Y., Song, R., & Liu, H. (2010). Synthesis of knowledge and technology: Final report prepared for Alaska University Transportation Center, Alaska Department of Transportation and Public Facilities (Report No. 309036). University of Alaska Fairbanks, Department of Civil and Environmental Engineering. https://scholarworks.alaska.edu/bitstream/handle/11122/7476/Y.Dong-et-al_Bridge-SHM-Deterioration-Detection_Final-Dec2010.pdf
dc.relation.referencesDeVoe; D.L.; Pisano, A.P.: “Surface micromachined piezoelectric accelerometers (PiXLs)”. Journal of Microelectromechanical Systems, vol. 10, no. 2, June 2001, pp. 180-186).
dc.relation.referencesGrivas, D. A. and Garlock, M. Sensing systems for bridges: an assessment of the state-of-the-art. In: Mahmoud, K. M. (Ed) Proceedings of the Second New York City Bridge Conference. New York, NY, USA: A.A. Balkema. 2003. 269-284.
dc.relation.referencesAnsari F (1997), ‘State-of-the-art in the Applications of Fiber Optic Sensors to Cementitious Composites’, Cement & Concrete Composites, 19 (1), 3-19.
dc.relation.referencesHitech. (n.d.). NORIA – the Fiber Bragg Grating manufacturing solution
dc.relation.referencesHuang M, Jiang L, Liaw P K, Brooks C R, Seeley R and Klarstrom D L (1998), ‘Using Acoustic Emission in Fatigue and Fracture Materials Research’, JOM-e, Member Journal of TMS, 50 (11)
dc.relation.referencesPCE Instruments. (n.d.). Anemómetro. PCE Instruments. https://www.pce-instruments.com/colombia/instrumento-medida/medidor/anemometro-kat_70015.htm
dc.relation.referencesSefram Instruments. (n.d.). Sefram 7902 – Anemometro hilo caliente. DirectIndustry. https://www.directindustry.es/prod/sefram-instruments/product-7902-2277957.html
dc.relation.referencesPCE Instruments. (n.d.). Anemómetro de rueda alada PCE-007. PCE Instruments. https://www.pce-instruments.com/colombia/instrumento-medida/medidor/anemometro-pce-instruments-anem_metro-de-rueda-alada-pce-007-det_6179524.htm
dc.relation.referencesKintech Engineering. (n.d.). Anemómetro ultrasónico 3D. Kintech Engineering. https://www.kintech-engineering.com/es/catalogue/sensores-ultrasonicos/thies-3d/
dc.relation.referencesSisgeo. (n.d.). Clinómetro digital 360 - Clinómetros digitales con tecnología MEMS. Sisgeo. https://sisgeo.com/es/productos/clinometros/360-tiltmeter-clinometros-digitales-con-tecnologia-mems/
dc.relation.referencesSINGER. (n.d.). Singer’s DUAL AXIS inclinometers.
dc.relation.referencesAndrea Aranda Centro de Biotecnología, UTEC. (n.d.). El grafeno en la nanotecnología. https://centrobio.utec.edu.pe/el-grafeno-en-la-nanotecnologia/
dc.relation.referencesAndrade Guel, Marlene Lariza, López López, Lluvia Itzel, & Sáenz Galindo, Aidé. (2012). Nanotubos de carbono: funcionalización y aplicaciones biológicas. Revista mexicana de ciencias farmacéuticas, 43(3), 9-18. Recuperado en 11 de enero de 2025, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952012000300002&lng=es&tlng=es.
dc.relation.referencesShahzad Ashraf, Suliman Khan, Vipin Kumar Oad, Microcracking monitoring and damage detection of graphene nanoplatelets-cement composites based on acoustic emission technology, Case Studies in Construction Materials, Volume 18, 2023, e01844, ISSN 2214-5095, https://doi.org/10.1016/j.cscm.2023.e01844
dc.relation.referencesEnrique García-Macías, Rafael Castro-Triguero, Andrés Sáez, Filippo Ubertini, 3D mixed micromechanics-FEM modeling of piezoresistive carbon nanotube smart concrete, Computer Methods in Applied Mechanics and Engineering, Volume 340, 2018, Pages 396-423, ISSN 0045-7825, https://doi.org/10.1016/j.cma.2018.05.037.
dc.relation.referencesTeng, F., Luo, J., Gao, Y., Zhou, X., Zhang, J., Gao, S. & Sun, S. (2021). Piezoresistive/piezoelectric intrinsic sensing properties of carbon nanotube cement-based smart composite and its electromechanical sensing mechanisms: A review. Nanotechnology Reviews, 10(1), 1873-1894. https://doi.org/10.1515/ntrev-2021-0112
dc.relation.referencesLienhart, W., Schill, F., & Moser, T. (2023). Dynamic Bridge Monitoring with Remote Sensing Techniques. 10.12783/shm2023/36736.
dc.relation.referencesLe Cam, V., Lemarchand, L., Bouche, A., Pallier, D., & Illien, F. (2023). An Original Smart Data Sampling for Wireless Sensor: Application to Bridge Cable Monitoring. 10.12783/shm2023/36843.
dc.relation.referencesMarinho, N. R., Loendersloot, R., Grooteman, F., Wiegman, J. W., & Tinga, T. (2023). A comparison of optical sensing systems with piezo-electric sensors for impact identification of composite plates. 10.12783/shm2023/36852.
dc.relation.referencesBoinipalli, C. R., Reddy, V. V., Polepally, G., Kalapatapu, P., & Pasupuleti, V. D. K. (2023). Sensor location optimization for efficient structural health monitoring through intelligent design. 10.12783/shm2023/36836.
dc.relation.referencesMahmoud, H. A., Nesser, H., Wagih, A., & Lubineau, G. (año). High-Sensitivity Wireless Strain Sensor for SHM Applications. 10.12783/shm2023/36847.
dc.relation.referencesLiokumovitch, E., Glasser, Z., Bank, S., Kressel, I., Ben-Simon, U., Shoham, S., & Sternklar, S. (2023). High-velocity impact detection and localization enabled by 10 MSa/s sample-rate FBG interrogation. 10.12783/shm2023/36846.
dc.relation.referencesXu, C., Daly, M., Heifetz, A., Kultgen, D., & Ozevin, D. (2023). Computational modeling of high-temperature MEMS sensor array for ultrasonics and acoustic emission in structural health monitoring of high temperature advanced reactor pipes. 10.12783/shm2023/36853.
dc.relation.referencesHussain, A., Yu, T., & Zou, F. (2023). Development of nanocarbon black-enabled self-strain sensing ultra-high-performance cementitious composites. 10.12783/shm2023/36749.
dc.relation.referencesMikami, A. (2023). Fundamental study on damage detection of civil structures modeled as MDOF system based on machine learning. 10.12783/shm2023/36896.
dc.relation.referencesBayane, I., Nyman, J., Häggström, J., & Leander, J. (2023). Real-time crack detection in bridges using monitoring and machine learning-Verified with an actual damage case. 10.12783/shm2023/36918.
dc.relation.referencesPlevris, V.; Papazafeiropoulos, G. (2024). AI in Structural Health Monitoring for Infrastructure Maintenance and Safety. Infrastructures 2024, 9,225.https://doi.org/10.3390/infrastructures9120225
dc.relation.referencesMelvin Shibu, Kukatlapalli Pradeep Kumar, Vinay Jha Pillai, Hari Murthy, Sarath Chandra. (2024). Structural health monitoring using AI and ML based multimodal sensors data. https://doi.org/10.1016/j.measen.2023.100762.
dc.relation.referencesParol, J., Al Qazweeni, J., Kalkan, E., & Kamal, H. (año). AI-driven structural health monitoring for the tallest curved concrete skyscraper. 10.12783/shm2023/36741.
dc.relation.referencesPsulkowski, S., Rodriguez, B., Noman, A., Torino, S., & Dickens, T. (2023). Intelligent manufacturing principles for structural health monitoring in advance composite structures: A machine learning-based driven placement approach. 10.12783/shm2023/36816
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectMonitoreo de salud estructural
dc.subjectNanomateriales de carbono
dc.subjectInteligencia artificial
dc.subjectAprendizaje automatico
dc.subjectIngeniería civil
dc.subject.keywordStructural health monitoring
dc.subject.keywordCarbon nanomaterials
dc.subject.keywordArtificial intelligence
dc.subject.keywordMachine learning
dc.subject.keywordCivil Engineering
dc.subject.lembTecnología en Construcciones Civiles -- Tesis y disertaciones académicas
dc.subject.lembIngeniería civil -- Estructuras
dc.subject.lembSensores remotos
dc.subject.lembInteligencia artificial
dc.titleEstado del arte sobre métodos de monitoreo de salud estructural
dc.title.titleenglishState of the art on structural health monitoring methods
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeMonografía
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
SantiagoAndresHendeBarajas2025.pdf
Tamaño:
2.62 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicacion.pdf
Tamaño:
138.53 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: