Estado del arte sobre métodos de monitoreo de salud estructural
| dc.contributor.advisor | Mena Serna, Milton | |
| dc.contributor.author | Hende Barajas, Santiago Andrés | |
| dc.date.accessioned | 2025-05-27T18:10:47Z | |
| dc.date.available | 2025-05-27T18:10:47Z | |
| dc.date.created | 2025-05-14 | |
| dc.description | El monitoreo de la salud estructural (SHM) se ha vuelto una herramienta esencial en la ingeniería civil para garantizar la seguridad y el desempeño de las infraestructuras, especialmente ante el envejecimiento de las estructuras y la ocurrencia de eventos extremos como terremotos o huracanes. El tema central de este trabajo es analizar y clasificar los métodos de SHM más adecuados según las características de las estructuras, abordando tanto técnicas tradicionales como innovaciones recientes como sensores inalámbricos e inteligencia artificial. La justificación de este estudio radica en la creciente complejidad y antigüedad de las infraestructuras civiles, lo que exige sistemas de monitoreo eficientes que permitan detectar daños y planificar mantenimientos adecuados. Además, el trabajo busca proporcionar a ingenieros, tecnólogos y responsables de políticas un marco comprensivo para tomar decisiones informadas sobre la implementación de sistemas SHM, optimizando recursos y mejorando la seguridad pública. | |
| dc.description.abstract | Structural health monitoring (SHM) has become an essential tool in civil engineering to ensure the safety and performance of infrastructure, especially in the face of aging structures and the occurrence of extreme events such as earthquakes or hurricanes. The central theme of this work is to analyze and classify the most appropriate SHM methods according to structural characteristics, addressing both traditional techniques and recent innovations such as wireless sensors and artificial intelligence. The justification for this study lies in the increasing complexity and age of civil infrastructure, which requires efficient monitoring systems that can detect damage and plan appropriate maintenance. Furthermore, the work seeks to provide engineers, technologists, and policymakers with a comprehensive framework for making informed decisions about the implementation of SHM systems, optimizing resources and improving public safety. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/95726 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Farrar, C. R., & Worden, K. 2007. An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 303-315. https://doi.org/10.1098/rsta.2006.1928 | |
| dc.relation.references | Sohn, H., Farrar, C. R., Hemez, F. M., Shunk, D. D., Stinemates, D. W., Nadler, B. R., & Czarnecki, J. J. 2004. A Review of Structural Health Monitoring Literature: 1996-2001 (Report No. LA-13976- MS). Los Alamos National Laboratory. https://doi.org/10.2172/15000241 | |
| dc.relation.references | Rytter, A. 1993. Vibrational Based Inspection of Civil Engineering Structures (Doctoral dissertation). Aalborg University, Denmark. | |
| dc.relation.references | Dewesoft. 2023. Structural Health Monitoring Techniques and Challenges. Recuperado de https://dewesoft.com/structural-health-monitoring-techniques-and-challenges | |
| dc.relation.references | University of Washington Structural Research Laboratory. 1949. History of the Tacoma Narrows Bridge. Recuperado d e https://lib.uw.edu/specialcollections/collections/exhibits/tnb/ | |
| dc.relation.references | Housner, George William (1941) An Investigation of the Effects of Earthquakes on Buildings. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/CTJR-HD62. https://resolver.caltech.edu/CaltechETD:etd-05092003-152001 | |
| dc.relation.references | Oposinet. (2023). Ensayos no destructivos: Finalidad y técnicas operativas. Recuperado de https://www.oposinet.com/temario-de-fabricacion-mecanica-secundaria/temario-2- fabricacion-mecanica/tema-10-ensayos-no-destructivos-finalidad-fundamentacin-tcnicasoperativas-e-interpretacin-de-los-resultados-de-los-distintos-ensayos-tipos-inspeccin-visualli-2/ | |
| dc.relation.references | Zhang, X., & Chen, X. (2019). The role of big data in structural health monitoring: A review. Journal of Civil Engineering and Management, 25(5), 485-498. | |
| dc.relation.references | Chaverri, Oscar & Conejo-Solís, Mario. (2017). Radiografía Industrial: comparación entre el método tradicional y digital empleando rayos X. Revista Tecnología en Marcha. 30. 119. 10.18845/tm.v30i3.3278 | |
| dc.relation.references | AlHamaydeh, M., & Aswad, A. (2022). Structural health monitoring systems for civil infrastructure: A review of current technologies and future trends. Journal of Civil Engineering and Management, 28(5), 387-401. | |
| dc.relation.references | Coppolino, R., & Rubin, M. (1980). Structural health monitoring of offshore platforms: A case study. Journal of Offshore Mechanics and Arctic Engineering, 102(4), 245-250. | |
| dc.relation.references | Hou, S., Zeng, C., Zhang, H., & Ou, J. (2018). Monitoring interstory drift in buildings under seismic loading using MEMS inclinometers. Construction and Building Materials, 185, 453–467. https://doi.org/10.1016/J.CONBUILDMAT.2018.07.087 | |
| dc.relation.references | Gabriel Álvarez González. (2013). Implementación y validación numérica y experimental de un método para el análisis modal experimental operacional de estructuras. Universidad de Las Palmas de Gran Canaria. http://mmc.siani.es/files/documents/PFC/TFCGabrielAlvarezGonzalez.pdf | |
| dc.relation.references | Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory Fenves, Steven Glaser, and Martin Turon. 2007. Health monitoring of civil infrastructures using wireless sensor networks. In Proceedings of the 6th international conference on Information processing in sensor networks (IPSN '07). Association for Computing Machinery, New York, NY, USA, 254–263. https://doi.org/10.1145/1236360.1236395 | |
| dc.relation.references | Kenley, R. M., & Dodds, C. J. (1980). West Sole WE Platform: Detection Of Damage By Structural Response Measurements. Proceedings of the Annual Offshore Technology Conference, 1980-May, 111–118. https://doi.org/10.4043/3866-MS | |
| dc.relation.references | Brownjohn, J. M. W. (2007). Structural health monitoring of civil infrastructure. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 589–622. https://doi.org/10.1098/rsta.2006.1925 | |
| dc.relation.references | Salvaneschi, P., Cadei, M., & Lazzari, M. (1996). Applying AI to Structural Safety Monitoring and Evaluation. IEEE Intelligent Systems, 11(04), 24–34. https://doi.org/10.1109/64.511774 | |
| dc.relation.references | Quintero Parra, Andres & Villamizar, Rodolfo. (2010). Estado del arte en monitorización de salud estructural: Un enfoque basado en agentes inteligentes. Ciencia e Ingeniería Neogranadina. 20. 117. 10.18359/rcin.281 | |
| dc.relation.references | AlHamaydeh, M., & Aswad, A. (2022). Structural health monitoring systems for civil infrastructure: A review of current technologies and future trends. Journal of Civil Engineering and Management, 28(5), 387-401. | |
| dc.relation.references | Ikuma, M. (2002). Maintenance of the undersea section of the Seikan Tunnel. Tunnelling and Underground Space Technology, 20(2), 143–149. https://doi.org/10.1016/J.TUST.2003.10.001 | |
| dc.relation.references | Teng, Fei, Luo, Jianlin, Gao, Yibo, Zhou, Xiaoyang, Zhang, Jigang, Gao, Song and Sun, Shengwei. "Piezoresistive/piezoelectric intrinsic sensing properties of carbon nanotube cement-based smart composite and its electromechanical sensing mechanisms: A review" Nanotechnology Reviews, vol. 10, no. 1, 2021, pp. 1873-1894. | |
| dc.relation.references | Olivera López, J.J.; Vergara Reyes, L.; Oyarzo Vera, C. Structural health assessment of a R/C building in the coastal area of Concepcion, Chile. Procedia Eng. 2017, 199, 2214–2219. https://doi.org/10.1016/j.proeng.2017.09.185 | |
| dc.relation.references | Roghaei, M.; Zabihollah, A. An Efficient and Reliable Structural Health Monitoring System for Buildings after Earthquake. APCBEE Procedia 2014, 9, 309–316. https://doi.org/10.1016/j.apcbee.2014.01.055 | |
| dc.relation.references | Zhou, C.; Chase, J.G.; Rodgers, G.W.; Huang, B.; Xu, C. Effective Stiffness Identification for Structural Health Monitoring of Reinforced Concrete Building using Hysteresis Loop Analysis. Procedia Eng. 2017, 199, 1074–1079. https://doi.org/10.1016/j.proeng.2017.09.072 | |
| dc.relation.references | Pierdicca, A.; Clementi, F.; Mezzapelle, P.; Fortunati, A.; Lenci, S. One-year monitoring of a reinforced concrete school building: Evolution of dynamic behavior during retrofitting works. Procedia Eng. 2017, 199, 2238-2243. https://doi.org/10.1016/j.proeng.2017.09.206 | |
| dc.relation.references | Demetriou, M.A. On-Line Damage Detection, Assessment and Accommodation in Civil Infrastructure Systems. IFAC Process. 2000, 33, 759–764. http://doi.org/10.1016/S1474-6670(17)37452-9 | |
| dc.relation.references | Dong, Y.; Li, M.; Lai, M. Structural damage detection using empirical-mode decomposition and vector autoregressive moving average model. Soil Dyn. Earthq. Eng. 2010, 30, 133–145.. http://doi.org/10.1016/j.soildyn.2009.10.002 | |
| dc.relation.references | Yang, Z.; Dutta, U.; Xiong, F.; Biswas, N.; Benz, H. Seasonal frost effects on the dynamic behavior of a twenty-story office building.Cold Reg. Sci. Technol. 2008, 51, 76–84.. http://doi.org/10.1016/j.coldregions.2007.05.001 | |
| dc.relation.references | Antunes, P.; Lima, H.; Varum, P.; André, P. Optical fiber sensors for static and dynamic health monitoring of civil engineering infrastructures: Abode wall case study. Measurement 2021, 45, 1695–1705.. http://doi.org/10.1016/j.measurement.2012.04.018 | |
| dc.relation.references | Hison, C.; Ausanio, G.; Barone, A.C.; Iannotti, V.; Pepe, E.; Lanotte, L. Magnetoelastic sensor for real-time monitoring of elastic deformation and fracture alarm. Sens. Actuators A Phys. 2005, 125, 10–14. https://doi.org/10.1016/j.sna.2005.05.019 | |
| dc.relation.references | Mahjoubi, S.; Barhemat, R.; Bao, Y. Optimal placement of triaxial accelerometers using hypotrochoid spiral optimization algorithm for automated monitoring of high-rise buildings. Autom. Constr. 2019, 118, 103273. https://doi.org/10.1016/j.autcon.2020.103273 | |
| dc.relation.references | Sajedi, S.O.; Liang, X. A data-driven framework for near real-time and robust damage diagnosis of building structures. Struct. Control Health Monit. 2020, 27, e2488. https://doi.org/10.1002/stc.2488 | |
| dc.relation.references | Soltaninejad, M.; Soroushian, S.; Livani, H. Application of short-time matrix pencil method for high-frequency damage detection in structural system. Struct. Control Health Monit. 2020, 27, e2589.. https://doi.org/10.1002/stc.2589 | |
| dc.relation.references | García-Macías, E.; Ubertini, F. Automated operational modal analysis and ambient noise deconvolution interferometry for the full structural identification of historic towers: A case study of the Sciri Tower in Perugia, Italy. Eng. Struct. 2020, 215, 110615.. https://doi.org/10.1016/j.engstruct.2020.110615 | |
| dc.relation.references | Sun, H.; Al-Qazweeni, J.; Parol, J.; Kamal, H.; Chen, Y.; Büyüköztürk, O. Computational modeling of a unique tower in Kuwait for structural health monitoring: Numerical investigations. Struct. Control Health Monit. 2019, 26, e2317. https://doi.org/10.1002/stc.2317 | |
| dc.relation.references | Chellini, G.; De Roeck, L.; Nardini, W. Salvatore, Damage detection of a steel–concrete composite frame by a multilevel approach: Experimental measurements and modal identification. Earthq. Eng. Struct. Dyn. 2008, 37, 1763–1783. . https://doi.org/10.1002/eqe.835 | |
| dc.relation.references | Morales-Valdez, J.; Alvarez-Icaza, L.; Escobar, J.A. Damage Localization in a Building Structure during Seismic Excitation. Shock Vib. 2020, 2020, 8859527. https://doi.org/10.1155/2020/8859527 | |
| dc.relation.references | Pachón, P.; Infantes, M.; Camara, M.; Compan, V.; Garcia-Macias, E.; Friswell, M.I.; Castro-Triguero, R. Evaluation of optimal sensor placement algorithms for the Structural Health Monitoring of architectural heritage. Application to the Monastery of San Jerónimo de Buenavista (Seville, Spain). Eng. Struct. 2019, 202, 109843. https://doi.org/10.1016/j.engstruct.2019.109843 | |
| dc.relation.references | Frigui, F.; Faye, J.P.; Martin, C.; Dalverny, O.; Peres, F.; Judenherc, S. Global methodology for damage detection and localization in civil engineering structures. Eng. Struct. 2018, 171, 686–695. http://doi.org/10.1016/j.engstruct.2018.06.026 | |
| dc.relation.references | García-Macías, E.; Ubertini, F. MOVA/MOSS: Two integrated software solutions for comprehensive Structural Health Monitoring of structures. Mech. Syst. Signal Process. 2020, 143, 106830.. https://doi.org/10.1016/j.ymssp.2020.106830 | |
| dc.relation.references | Li, Q.; He, Y.; Zhou, K.; Han, X.; He, Y.; Shu, Z. Structural health monitoring for a 600 m high skyscraper. Struct. Des. Tall Spec. Build. 2018, 27, e1490. https://doi.org/10.1002/tal.1490 | |
| dc.relation.references | Zhang, F.-L.; Yang, Y.P.; Xiong, H.B.; Yang, J.-H.; Yu, Z. Structural health monitoring of a 250-m super-tall building and operational modal analysis using the fast Bayesian FFT method. Struct. Control Health Monit. 2019, 26, e2383. https://doi.org/10.1002/stc.2383 | |
| dc.relation.references | Modena, C.; Lorenzoni, F.; Caldon, M.; da Porto, F. Structural health monitoring: A tool for managing risks in sub-standard conditions. J. Civ. Struct. Health Monit. 2016, 6, 365–375. http://doi.org/10.1007/s13349-016-0176-5 | |
| dc.relation.references | Aguilar, R.; Zonno, G.; Lozano, G.; Boroschek, R.; Lourenço, P.B. Vibration-Based Damage Detection in Historical Adobe Structures: Laboratory and Field Applications. Int. J. Archit. Herit. 2019, 13, 1005–1028. https://doi.org/10.1080/15583058.2019.1632974 | |
| dc.relation.references | Coletta, G.; Miraglia, G.; Pecorelli, M.; Ceravolo, R.; Cross, E.; Surace, C.; Worden, K. Use of the cointegration strategies to remove environmental effects from data acquired on historical buildings. Eng. Struct. 2019, 183, 1014–1026. http://doi.org/10.1016/j.engstruct.2018.12.044 | |
| dc.relation.references | Lam, H.F.; Zhang, F.L.; Ni, Y.C.; Hu, J. Operational modal identification of a boat-shaped building by a Bayesian approach. Eng. Struct. 2017, 138, 381–393.. https://doi.org/10.1016/j.engstruct.2017.02.003 | |
| dc.relation.references | Lorenzoni, F.; Caldon, M.; da Porto, F.; Modena, C.; Aoki, T. Post-earthquake controls and damage detection through structural health monitoring: Applications in l’Aquila. J. Civ. Struct. Health Monit. 2018, 8, 217–236. http://doi.org/10.1007/s13349-018-0270-y | |
| dc.relation.references | Kaya, Y.; Safak, E. Real-time analysis and interpretation of continuous data from structural health monitoring (SHM) systems. Bull. Earthq. Eng. 2015, 13, 917–934. http://doi.org/10.1007/s10518-014-9642-9 | |
| dc.relation.references | Cheng, J.J.; Guo, H.Y.; Wang, Y.S. Structural Nonlinear Damage Detection Method Using AR/ARCH Model. Int. J. Struct. Stab. Dyn. 2017, 17, 1750083. https://doi.org/10.1142/S0219455417500833 | |
| dc.relation.references | Rahmani, M.; Ebrahimian, M.; Todorovska, M.I. Time-wave velocity analysis for early earthquake damage detection in buildings: Application to a damaged full-scale RC building. Earthq. Eng. Struct. Dyn. 2014, 44, e.2539. http://doi.org/10.1002/eqe.2539 | |
| dc.relation.references | Musafere, F.; Sadhu, A.; Liu, K. Towards damage detection using blind source separation integrated with time-varying autoregressive modeling. Smart Mater. Struct. 2015, 25, 15013. http://doi.org/10.1088/0964-1726/25/1/015013 | |
| dc.relation.references | Behnia, A.; Chai, H.K.; Shiotani, T. Advanced structural health monitoring of concrete structures with the aid of acoustic emission. Constr. Build. Mater. 2014, 65, 282–302. https://doi.org/10.1016/j.conbuildmat.2014.04.103 | |
| dc.relation.references | Ierimonti, L.; Venanzi, I.; Cavalagli, N.; Comodini, F.; Ubertini, F. An innovative continuous Bayesian model updating method for base-isolated RC buildings using vibration monitoring data. Mech. Syst. Signal Process. 2020, 139, 106600. https://doi.org/10.1016/j.ymssp.2019.106600 | |
| dc.relation.references | Carden, E.P.; Brownjohn, J.M.W. ARMA modelled time-series classification for structural health monitoring of civil infrastructure. Mech. Syst. Signal Process. 2008, 22, 295–314. https://doi.org/10.1016/j.ymssp.2007.07.003 | |
| dc.relation.references | Wang, J.F.; Lin, C.C.; Yen, S.M. A story damage index of seismically-excited buildings based on modal frequency and mode shape. Eng. Struct. 2007, 29, 2143–2157. http://doi.org/10.1016/j.engstruct.2006.10.018 | |
| dc.relation.references | Kao, C.Z.; Hung, S.-L. Detection of structural damage via free vibration responses generated by approximating artificial neural networks. Comput. Struct. 2003, 81, 2631–2644. http://doi.org/10.1016/S0045-7949(03)00323-7 | |
| dc.relation.references | Ramos, L.F.; Aguilar, R.; Lourenço, P.B.; Moreira, S. Dynamic structural health monitoring of Saint Torcato church. Mech. Syst. Signal Process. 2013, 35, 1–15.. http://doi.org/10.1016/j.ymssp.2012.09.007 | |
| dc.relation.references | Mejri, O.; Palomo Del Barrio, E.; Ghrab-Morcos, N. Energy performance assessment of occupied buildings using model identification techniques. Energy Build. 2011, 43, 285–299. . http://doi.org/10.1016/j.enbuild.2010.09.010 | |
| dc.relation.references | Bhalla, S.; Soh, C.K. High frequency piezoelectric signatures for diagnosis of seismic/blast induced structural damages. NDT E Int. 2004, 37, 23–33.. http://doi.org/10.1016/j.ndteint.2003.07.001 | |
| dc.relation.references | Pesci, A.; Casula, G.; Boschi, E. Laser scanning the Garisenda and Asinelli towers in Bologna (Italy): Detailed deformation patterns of two ancient leaning buildings. J. Cult. Herit. 2011, 12, 117–127. http://doi.org/10.1016/j.culher.2011.01.002 | |
| dc.relation.references | Xu, C.; Chase, J.G.; Rodgers, G.W. Physical parameter identification of nonlinear base-isolated buildings using seismic response data. Comput. Struct. 2014, 145, 47–57.. http://doi.org/10.1016/j.compstruc.2014.08.006 | |
| dc.relation.references | Saisi, A.; Gentile, C.; Ruccolo, A. Pre-diagnostic prompt investigation and static monitoring of a historic bell-tower. Constr. Build. Mater. 2016, 122, 833–844. http://doi.org/10.1016/j.conbuildmat.2016.04.016 | |
| dc.relation.references | Butt, F.; Omenzetter, P. Seismic response trends evaluation and finite element model calibration of an instrumented RC building considering soil-structure interaction and non-structural components. Eng. Struct. 2014, 65, 111–123. http://doi.org/10.1016/j.engstruct.2014.01.045 | |
| dc.relation.references | Bulaji´c, B.; Todorovska, M.I.; Mani´c, M.D. Trifunac, Structural health monitoring study of the ZOIL building using earthquake records. Soil Dyn. Earthq. Eng. 2020, 133, 106105.. http://doi.org/10.1016/j.soildyn.2020.106105 | |
| dc.relation.references | Ivanovi´c, S.S.; Trifunac, M.D.; Novikova, E.I.; Gladkov, A.A.; Todorovska, M.I. Ambient vibration tests of a seven-story reinforced concrete building in Van Nuys, California, damaged by the 1994 north ridge earthquake. Soil Dyn. Earthq. Eng. 2000, 19, 391 411. http://doi.org/10.1016/S0267-7261(00)00025-7 | |
| dc.relation.references | Chang, C.M.; Lin, T.K.; Chang, C.W. Applications of neural network models for structural health monitoring based on derived modal properties. Measurement 2018, 129, 457–470. http://doi.org/10.1016/j.measurement.2018.07.051 | |
| dc.relation.references | Kyriacou, A.; Michaelides, M.P.; Eliades, D.G.; Panayiotou, C.G.; Polycarpou, M.M. COMOB: A MATLAB toolbox for sensor placement and contaminant event monitoring in multi-zone buildings. Build. Environ. 2018, 154, 348–361.. http://doi.org/10.1016/j.buildenv.2019.02.013 | |
| dc.relation.references | Jin, S.S.; Cho, S.; Jung, H.J. Adaptive reference updating for vibration-based structural health monitoring under varying environmental conditions. Comput. Struct. 2015, 158, 211–224.. http://doi.org/10.1016/j.compstruc.2015.06.001 | |
| dc.relation.references | Todorovska, M.I.; Trifunac, M.D. Earthquake damage detection in the Imperial County Services Building I: The data and time-frequency analysis. Soil Dyn. Earthq. Eng. 2007, 27, 564–576. http://doi.org/10.1016/j.soildyn.2006.10.005 | |
| dc.relation.references | Oh, B.K.; Kim, K.J.; Kim, Y.; Park, H.S.; Adeli, H. Evolutionary learning based sustainable strain sensing model for structural health monitoring of high-rise buildings. Appl. Soft. Comput. 2017, 58, 576–585. http://doi.org/10.1016/j.asoc.2017.05.029 | |
| dc.relation.references | Çelebi, M. GPS in dynamic monitoring of long-period structures. Soil Dyn. Earthq. Eng. 2000, 20, 477–483. http://doi.org/10.1016/S0267-7261(00)00094-4 | |
| dc.relation.references | Chen, B.; Xu, Y.L. Integrated vibration control and health monitoring of building structures using semi-active friction dampers: Part II—Numerical investigation. Eng. Struct. 2008, 30, 573–587. http://doi.org/10.1016/j.engstruct.2007.03.006 | |
| dc.relation.references | Pingue, F.; Petrazzuoli, S.M.; Obrizzo, F.; Tammaro, U.; De Martino, P.; Zuccaro, G. Monitoring system of buildings with high vulnerability in presence of slow ground deformations (The Campi Flegrei, Italy, case). Measurement 2011, 44, 1628-1644.. http://doi.org/10.1016/j.measurement.2011.06.015 | |
| dc.relation.references | Ma, P.; Lin, H.; Lan, H.; Chen, F. Multi-dimensional SAR tomography for monitoring the deformation of newly built concrete buildings. ISPRS J. Photogramm. Remote Sens. 2015, 106, 118–128. http://doi.org/10.1016/j.isprsjprs.2015.04.012 | |
| dc.relation.references | Zapico, J.L.; González, M.P. Numerical simulation of a method for seismic damage identification in buildings. Eng. Struct. 2006, 28, 255–263. http://doi.org/10.1016/j.engstruct.2005.08.005 | |
| dc.relation.references | Park, H.S.; Oh, B.K. Real-time structural health monitoring of a supertall building under construction based on visual modal identification strategy. Autom. Constr. 2017, 85, 273–289.. http://doi.org/10.1016/j.autcon.2017.10.025 | |
| dc.relation.references | He, J.; Xu, Y.L.; Zhan, S.; Huang, Q. Structural control and health monitoring of building structures with unknown ground excitations: Experimental investigation. J. Sound Vib. 2017, 390, 23–38. http://doi.org/10.1016/j.jsv.2016.11.035 | |
| dc.relation.references | Gao, F.; Zhou, H.; Liang, H.; Weng, S.; Zhu, H. Structural deformation monitoring and numerical simulation of a supertall building during construction stage. Eng. Struct. 2020, 209, 110033. http://doi.org/10.1016/j.engstruct.2019.110033 | |
| dc.relation.references | Masciotta, M.G.; Ramos, L.F.; Lourenço, P.B. The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: A case study in Portugal. J. Cult. Herit. 2017, 27, 36–47. http://doi.org/10.1016/j.culher.2017.04.003 | |
| dc.relation.references | Karapetrou, S.; Manakou, M.; Bindi, D.; Petrovic, B.; Pitilakis, K. Time-building specific’ seismic vulnerability assessment of a hospital RC building using field monitoring data. Eng. Struct. 2016, 112, 114–132.. http://doi.org/10.1016/j.engstruct.2016.01.009 | |
| dc.relation.references | Lorenzoni, F.; Casarin, F.; Caldon, M.; Islami, K.; Modena, C. Uncertainty quantification in structural health monitoring: Applications on cultural heritage buildings. Mech. Syst. Signal Process. 2016, 66–67, 268–281. http://doi.org/10.1016/j.ymssp.2015.04.032 | |
| dc.relation.references | Fan, G.; Li, J.; Hao, H. Vibration signal denoising for structural health monitoring by residual convolutional neural networks.Measurement 2020, 157, 107651.. http://doi.org/10.1016/j.measurement.2020.107651 | |
| dc.relation.references | Trifunac, M.D.; Ivanovi´c, S.S.; Todorovska, M.I. Wave propagation in a seven-story reinforced concrete building. III. Damage detection via changes in wavenumbers. Soil Dyn. Earthq. Eng. 2003, 23, 65–75. http://doi.org/10.1016/S0267-7261(02)00093-3 | |
| dc.relation.references | Cabboi, A.; Gentile, C.; Saisi, A. From continuous vibration monitoring to FEM-based damage assessment: Application on a stone-masonry tower. Constr. Build. Mater. 2017, 156, 252–265.. http://doi.org/10.1016/j.conbuildmat.2017.08.160 | |
| dc.relation.references | Isidori, E.D.C.; Cristalli, C.; Soria, L.; Lenci, S. Proof of concept of the structural health monitoring of framed structures by a novel combined experimental and theoretical approach. Struct. Control Health Monit. 2016, 23, 802–824. http://doi.org/10.1002/stc.1811 | |
| dc.relation.references | Kaneko, Y.; Mita, A.; Mihashi, H. Quantitative approach for damage detection of reinforced concrete frames. Earthq. Eng. Eng. Vib. 2003, 2, 147–158.. http://doi.org/10.1007/BF02857547 | |
| dc.relation.references | Rahmani, M.; Todorovska, M.I. 1D system identification of buildings during earthquakes by seismic interferometry with waveform inversion of impulse responses-method and application to Millikan library. Soil Dyn. Earthq. Eng. 2013, 47, 157-174.. http://doi.org/10.1016/j.soildyn.2012.09.014 | |
| dc.relation.references | Yuen, K.V.; Kuok, S.C. Ambient interference in long-term monitoring of buildings. Eng. Struct. 2013, 32, 2379–2386.. http://doi.org/10.1016/j.engstruct.2010.04.012 | |
| dc.relation.references | Unzu, R.; Nazabal, J.A.; Vargas, G.; Hernandez, R.J.; Fernandez-Valdivielso, C.; Urriza, N.; Galarza, M.; Lopez-Amo, M. Fiber optic and KNX sensors network for remote monitoring a new building cladding system. Autom. Constr. 2013, 30, 9–14. http://doi.org/10.1016/j.autcon.2012.11.005 | |
| dc.relation.references | Xu, Y.L.; Huang, Q.; Zhan, S.; Su, Z.Q.; Liu, H.J. FRF-based structural damage detection of controlled buildings with podium structures: Experimental investigation. J. Sound Vib. 2014, 333, 2762–2775. . http://doi.org/10.1016/j.jsv.2014.02.010 | |
| dc.relation.references | Su, W.C.; Huang, C.S.; Hung, S.L.; Chen, L.J.; Lin, W.J. Locating damaged storeys in a shear building based on its sub structural natural frequencies. Eng. Struct. 2012, 39, 126–138. http://doi.org/10.1016/j.engstruct.2012.02.002 | |
| dc.relation.references | Grinzato, E.; Bison, P.G.; Marinetti, S. Monitoring of ancient buildings by the thermal method. J. Cult. Herit. 2002, 3, 21–29.. http://doi.org/10.1016/S1296-2074(02)01159-7 | |
| dc.relation.references | Madan, A. Vibration control of building structures using self-organizing and self-learning neural networks. J. Sound Vib. 2005, 287, 759–784. http://doi.org/10.1016/j.jsv.2004.11.031 | |
| dc.relation.references | Boutet, M.L.; Hernández, A.L.; Jacobo, G.J. Thermo–lighting optimization proposal for school buildings in subtropical hot— Humid climates: Monitoring and computer simulation on autumn period. Energy Build. 2016, 128, 785–797. . http://doi.org/10.1016/j.enbuild.2016.07.028 | |
| dc.relation.references | iang, S.F.; Zhang, C.M.; Zhang, S. Two-stage structural damage detection using fuzzy neural networks and data fusion techniques. Expert Syst. Appl. 2011, 38, 511–519. http://doi.org/10.1016/j.eswa.2010.06.093 | |
| dc.relation.references | Kim, Y.; Park, J.S.; Oh, B.K.; Cho, T.; Kim, J.M.; Kim, S.H.; Park, H.S. Practical wireless safety monitoring system of long-span girders subjected to construction loading a building under construction. Measurement 2019, 146, 524–536. http://doi.org/10.1016/j.measurement.2019.05.110 | |
| dc.relation.references | Hajdukiewicz, M.; Byrne, D.; Keane, M.M.; Goggins, J. Real-time monitoring framework to investigate the environmental and structural performance of buildings. Build. Environ. 2015, 86, 1–16. http://doi.org/10.1016/j.buildenv.2014.12.012 | |
| dc.relation.references | Hagiwara, H.; Mita, A. Structural Health Monitoring System Using Support Vector Machine. Adv. Build. Technol. 2002, 1, 8. https://doi.org/10.1016/B978-008044100-9/50062-0 | |
| dc.relation.references | Na, C.; Kim, S.P.; Kwak, H.G. Structural damage evaluation using genetic algorithm. J. Sound Vib. 2011, 330, 2772–2783. http://doi.org/10.1016/j.jsv.2011.01.007 | |
| dc.relation.references | Kopsaftopoulos, F.P.; Fassois, S.D. Vibration based health monitoring for a lightweight truss structure: Experimental assessment of several statistical time series methods. Mech. Syst. Signal Process. 2010, 24, 1977–1997.. http://doi.org/10.1016/j.ymssp.2010.05.013 | |
| dc.relation.references | Fawad, M., Salamak, M., Poprawa, G. et al. Automation of structural health monitoring (SHM) system of a bridge using BIMification approach and BIM-based finite element model development. Sci Rep 13, 13215 (2023). https://doi.org/10.1038/s41598-023-40355-7 | |
| dc.relation.references | Xiang, W.; Wei, J.; Zhang, F. Structural Health Monitoring Design and Performance Evaluation of a Middle-Span Bridge. Sensors 2023, 23, 8702. https://doi.org/10.3390/s23218702 | |
| dc.relation.references | Shahawy, M.A.; Arockiasamy, M. Field Instrumentation to study the time-dependent behavior in Sunshine Skyway Bridge. J. Bridge Eng. 1996, 1, 76–86. . https://doi.org/10.1061/(ASCE)1084-0702(1996)1:2(76) | |
| dc.relation.references | Marulanda A., J., Thomson, P., & Marulanda C., J. (2000). Monitoreo de Salud Estructural. Ingeniería Y Competitividad, 2(2), 40–46.. https://doi.org/10.25100/iyc.v2i2.2342 | |
| dc.relation.references | Ospina Dávila, Y. (2009). Monitoreo de salud estructural empleando filtros Kalman.. https://repositorio.unal.edu.co/handle/unal/69962 | |
| dc.relation.references | González Marín, Faber Daniel (2019). Herramienta Digital de Captura y Manejo de Información para el Monitoreo Estructural de Viviendas en el Sector Altos de la Estancia. http://hdl.handle.net/11349/16184 | |
| dc.relation.references | Tobón López, S. (2008). Identificación de los parámetros modales, a partir de registros de aceleración, por medio de la metodología NEXT/ERA. . http://hdl.handle.net/1992/20614 | |
| dc.relation.references | Velásquez Roncancio, J. (2017). Diseño e implementación de un sistema para el monitoreo de elasticidad en edificaciones adyacentes a vías. Universidad de los Andes.. http://hdl.handle.net/1992/39654 | |
| dc.relation.references | Zabala Mejía, A. (2008). Determinación de la degradación estructural debido a la presencia de rotulas plásticas en estructuras espaciales aporticadas, a partir de registros de aceleración, por medio de la metodología NExT/ERA. http://hdl.handle.net/1992/11286 | |
| dc.relation.references | Álvarez, M. C. & Olarte, S. A. (2015). Detección de daño estructural en vigas de concreto reforzado utilizando modelos estadísticos sobre la respuesta dinámica. https://doi.org/10.11144/Javeriana.10554.17075 | |
| dc.relation.references | M. E. & Morales, A. (2021). Estimador de oscilaciones para monitoreo de salud estructural implementando visión por computador. http://hdl.handle.net/10554/62070 | |
| dc.relation.references | Santos Rodriguez, Wencel Fabian. (2017). "Aplicación de sistemas MEMS integrados en smartphones para la detección y análisis de vibraciones mecánicas de baja frecuencia de estructuras civiles". http://hdl.handle.net/11349/5206 | |
| dc.relation.references | Mohammad Siahkouhi, Ghani Razaqpur, N.A. Hoult, Mohammad Hajmohammadian Baghban, Guoqing Jing, Utilization of carbon nanotubes (CNTs) in concrete for structural health monitoring (SHM) purposes: A review, Construction and Building Materials,Volume 309,2021,125137,ISSN 0950-0618,. https://doi.org/10.1016/j.conbuildmat.2021.125137 | |
| dc.relation.references | Anas, M., Nasir, M.A., Asfar, Z. et al. Structural health monitoring of GFRP laminates using graphene-based smart strain gauges. J Braz. Soc. Mech. Sci. Eng. 40, 397 (2018).. https://doi.org/10.1007/s40430-018-1320-4 | |
| dc.relation.references | Yunyang Wang. Liqing Zhang, Development of self-sensing cementitious composite incorporating hybrid graphene nanoplates and carbon nanotubes for structural health monitoring, Sensors and Actuators A: Physical, Volume 336, 2022, 113367, ISSN 0924-4247. https://doi.org/10.1016/j.sna.2022.113367 | |
| dc.relation.references | Yehai Li. Yaozhong Liao, Zhongqing Su, Graphene-functionalized polymer composites for self-sensing of ultrasonic waves: An initiative towards “sensor-free” structural health monitoring, Composites Science and Technology, Volume 168, 2018, Pages 203-213, ISSN 0266-3538,. https://doi.org/10.1016/j.compscitech.2018.09.021 | |
| dc.relation.references | Debadatta Sethy, Krishnan Balasubramanian, "Piezoresistive type graphene nano platelet sensor for SHM application in structural components," Proc. SPIE 10970, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019, 109702H (27 March 2019);. https://doi.org/10.1117/12.2515171 | |
| dc.relation.references | Li Y, Wang K, Wang Q, et al. Acousto-ultrasonics-based health monitoring for nano-engineered composites using a dispersive graphene networked sensing system. Structural Health Monitoring. 2021;20(1):240-254.. https://doi.org/10.1177/1475921720929749 | |
| dc.relation.references | Enrique García-Macías, Rafael Castro-Triguero, Andrés Sáez, Filippo Ubertini, 3D mixed micromechanics-FEM modeling of piezoresistive carbon nanotube smart concrete, Computer Methods in Applied Mechanics and Engineering, Volume 340, 2018, Pages 396-423, ISSN 0045-7825. | |
| dc.relation.references | Castañeda Saldarriaga, Diego Leon & Alvarez-Montoya, J. & Martínez, Vladimir & Sierra-Perez, Julian. (2021). Toward Structural Health Monitoring of Civil Structures Based on Self-Sensing Concrete Nanocomposites: A Validation in a Reinforced-Concrete Beam. International Journal of Concrete Structures and Materials. 15. 10.1186/s40069-020-00451-8. | |
| dc.relation.references | A. Dinesh, S.T. Sudharsan, S. Haribala, Self-sensing cement-based sensor with carbon nanotube: Fabrication and properties – A review, Materials Today: Proceedings, Volume 46, Part 12, 2021, Pages 5801-5807 | |
| dc.relation.references | D'Alessandro, Antonella & Ubertini, Filippo & Materazzi, A. & Laflamme, Simon & Porfiri, Maurizio. (2014). Electromechanical modelling of a new class of nanocomposite cement-based sensors for structural health monitoring. Structural Health Monitoring. 14. 10.1177/1475921714560071. | |
| dc.relation.references | Teng, Fei, Luo, Jianlin, Gao, Yibo, Zhou, Xiaoyang, Zhang, Jigang, Gao, Song and Sun, Shengwei. "Piezoresistive/piezoelectric intrinsic sensing properties of carbon nanotube cement-based smart composite and its electromechanical sensing mechanisms: A review" Nanotechnology Reviews, vol. 10, no. 1, 2021, pp. 1873-1894. | |
| dc.relation.references | Sivasuriyan, A.; Vijayan, D.S.; Górski, W.; Wodzy ´nski, Ł.; Vaverková, M.D.; Koda, E. Practical Implementation of Structural Health Monitoring in Multi-Story Buildings. Buildings 2021, 11, 263. https://doi.org/10.3390/buildings11060263 | |
| dc.relation.references | INVIAS. GUIA PARA LA INSTRUMENTACIÓN Y MONITOREO DE PUENTES. 2022. https://www.invias.gov.co/index.php/archivo-y-documentos/proyectos-de-norma/14383-guia-shm-sigp-protocolo-v2-pa/file | |
| dc.relation.references | DEVELOPMENT, S. (2007). Monitoring Instrumentation and Techniques Background document D5.1. https://www.academia.edu/124071994/Monitoring_Instrumentation_and_Techniques_Sustainable_Bridges_Background_document_D5_1 | |
| dc.relation.references | Dong, Y., Song, R., & Liu, H. (2010). Synthesis of knowledge and technology: Final report prepared for Alaska University Transportation Center, Alaska Department of Transportation and Public Facilities (Report No. 309036). University of Alaska Fairbanks, Department of Civil and Environmental Engineering. https://scholarworks.alaska.edu/bitstream/handle/11122/7476/Y.Dong-et-al_Bridge-SHM-Deterioration-Detection_Final-Dec2010.pdf | |
| dc.relation.references | DeVoe; D.L.; Pisano, A.P.: “Surface micromachined piezoelectric accelerometers (PiXLs)”. Journal of Microelectromechanical Systems, vol. 10, no. 2, June 2001, pp. 180-186). | |
| dc.relation.references | Grivas, D. A. and Garlock, M. Sensing systems for bridges: an assessment of the state-of-the-art. In: Mahmoud, K. M. (Ed) Proceedings of the Second New York City Bridge Conference. New York, NY, USA: A.A. Balkema. 2003. 269-284. | |
| dc.relation.references | Ansari F (1997), ‘State-of-the-art in the Applications of Fiber Optic Sensors to Cementitious Composites’, Cement & Concrete Composites, 19 (1), 3-19. | |
| dc.relation.references | Hitech. (n.d.). NORIA – the Fiber Bragg Grating manufacturing solution | |
| dc.relation.references | Huang M, Jiang L, Liaw P K, Brooks C R, Seeley R and Klarstrom D L (1998), ‘Using Acoustic Emission in Fatigue and Fracture Materials Research’, JOM-e, Member Journal of TMS, 50 (11) | |
| dc.relation.references | PCE Instruments. (n.d.). Anemómetro. PCE Instruments. https://www.pce-instruments.com/colombia/instrumento-medida/medidor/anemometro-kat_70015.htm | |
| dc.relation.references | Sefram Instruments. (n.d.). Sefram 7902 – Anemometro hilo caliente. DirectIndustry. https://www.directindustry.es/prod/sefram-instruments/product-7902-2277957.html | |
| dc.relation.references | PCE Instruments. (n.d.). Anemómetro de rueda alada PCE-007. PCE Instruments. https://www.pce-instruments.com/colombia/instrumento-medida/medidor/anemometro-pce-instruments-anem_metro-de-rueda-alada-pce-007-det_6179524.htm | |
| dc.relation.references | Kintech Engineering. (n.d.). Anemómetro ultrasónico 3D. Kintech Engineering. https://www.kintech-engineering.com/es/catalogue/sensores-ultrasonicos/thies-3d/ | |
| dc.relation.references | Sisgeo. (n.d.). Clinómetro digital 360 - Clinómetros digitales con tecnología MEMS. Sisgeo. https://sisgeo.com/es/productos/clinometros/360-tiltmeter-clinometros-digitales-con-tecnologia-mems/ | |
| dc.relation.references | SINGER. (n.d.). Singer’s DUAL AXIS inclinometers. | |
| dc.relation.references | Andrea Aranda Centro de Biotecnología, UTEC. (n.d.). El grafeno en la nanotecnología. https://centrobio.utec.edu.pe/el-grafeno-en-la-nanotecnologia/ | |
| dc.relation.references | Andrade Guel, Marlene Lariza, López López, Lluvia Itzel, & Sáenz Galindo, Aidé. (2012). Nanotubos de carbono: funcionalización y aplicaciones biológicas. Revista mexicana de ciencias farmacéuticas, 43(3), 9-18. Recuperado en 11 de enero de 2025, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952012000300002&lng=es&tlng=es. | |
| dc.relation.references | Shahzad Ashraf, Suliman Khan, Vipin Kumar Oad, Microcracking monitoring and damage detection of graphene nanoplatelets-cement composites based on acoustic emission technology, Case Studies in Construction Materials, Volume 18, 2023, e01844, ISSN 2214-5095, https://doi.org/10.1016/j.cscm.2023.e01844 | |
| dc.relation.references | Enrique García-Macías, Rafael Castro-Triguero, Andrés Sáez, Filippo Ubertini, 3D mixed micromechanics-FEM modeling of piezoresistive carbon nanotube smart concrete, Computer Methods in Applied Mechanics and Engineering, Volume 340, 2018, Pages 396-423, ISSN 0045-7825, https://doi.org/10.1016/j.cma.2018.05.037. | |
| dc.relation.references | Teng, F., Luo, J., Gao, Y., Zhou, X., Zhang, J., Gao, S. & Sun, S. (2021). Piezoresistive/piezoelectric intrinsic sensing properties of carbon nanotube cement-based smart composite and its electromechanical sensing mechanisms: A review. Nanotechnology Reviews, 10(1), 1873-1894. https://doi.org/10.1515/ntrev-2021-0112 | |
| dc.relation.references | Lienhart, W., Schill, F., & Moser, T. (2023). Dynamic Bridge Monitoring with Remote Sensing Techniques. 10.12783/shm2023/36736. | |
| dc.relation.references | Le Cam, V., Lemarchand, L., Bouche, A., Pallier, D., & Illien, F. (2023). An Original Smart Data Sampling for Wireless Sensor: Application to Bridge Cable Monitoring. 10.12783/shm2023/36843. | |
| dc.relation.references | Marinho, N. R., Loendersloot, R., Grooteman, F., Wiegman, J. W., & Tinga, T. (2023). A comparison of optical sensing systems with piezo-electric sensors for impact identification of composite plates. 10.12783/shm2023/36852. | |
| dc.relation.references | Boinipalli, C. R., Reddy, V. V., Polepally, G., Kalapatapu, P., & Pasupuleti, V. D. K. (2023). Sensor location optimization for efficient structural health monitoring through intelligent design. 10.12783/shm2023/36836. | |
| dc.relation.references | Mahmoud, H. A., Nesser, H., Wagih, A., & Lubineau, G. (año). High-Sensitivity Wireless Strain Sensor for SHM Applications. 10.12783/shm2023/36847. | |
| dc.relation.references | Liokumovitch, E., Glasser, Z., Bank, S., Kressel, I., Ben-Simon, U., Shoham, S., & Sternklar, S. (2023). High-velocity impact detection and localization enabled by 10 MSa/s sample-rate FBG interrogation. 10.12783/shm2023/36846. | |
| dc.relation.references | Xu, C., Daly, M., Heifetz, A., Kultgen, D., & Ozevin, D. (2023). Computational modeling of high-temperature MEMS sensor array for ultrasonics and acoustic emission in structural health monitoring of high temperature advanced reactor pipes. 10.12783/shm2023/36853. | |
| dc.relation.references | Hussain, A., Yu, T., & Zou, F. (2023). Development of nanocarbon black-enabled self-strain sensing ultra-high-performance cementitious composites. 10.12783/shm2023/36749. | |
| dc.relation.references | Mikami, A. (2023). Fundamental study on damage detection of civil structures modeled as MDOF system based on machine learning. 10.12783/shm2023/36896. | |
| dc.relation.references | Bayane, I., Nyman, J., Häggström, J., & Leander, J. (2023). Real-time crack detection in bridges using monitoring and machine learning-Verified with an actual damage case. 10.12783/shm2023/36918. | |
| dc.relation.references | Plevris, V.; Papazafeiropoulos, G. (2024). AI in Structural Health Monitoring for Infrastructure Maintenance and Safety. Infrastructures 2024, 9,225.https://doi.org/10.3390/infrastructures9120225 | |
| dc.relation.references | Melvin Shibu, Kukatlapalli Pradeep Kumar, Vinay Jha Pillai, Hari Murthy, Sarath Chandra. (2024). Structural health monitoring using AI and ML based multimodal sensors data. https://doi.org/10.1016/j.measen.2023.100762. | |
| dc.relation.references | Parol, J., Al Qazweeni, J., Kalkan, E., & Kamal, H. (año). AI-driven structural health monitoring for the tallest curved concrete skyscraper. 10.12783/shm2023/36741. | |
| dc.relation.references | Psulkowski, S., Rodriguez, B., Noman, A., Torino, S., & Dickens, T. (2023). Intelligent manufacturing principles for structural health monitoring in advance composite structures: A machine learning-based driven placement approach. 10.12783/shm2023/36816 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Monitoreo de salud estructural | |
| dc.subject | Nanomateriales de carbono | |
| dc.subject | Inteligencia artificial | |
| dc.subject | Aprendizaje automatico | |
| dc.subject | Ingeniería civil | |
| dc.subject.keyword | Structural health monitoring | |
| dc.subject.keyword | Carbon nanomaterials | |
| dc.subject.keyword | Artificial intelligence | |
| dc.subject.keyword | Machine learning | |
| dc.subject.keyword | Civil Engineering | |
| dc.subject.lemb | Tecnología en Construcciones Civiles -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Ingeniería civil -- Estructuras | |
| dc.subject.lemb | Sensores remotos | |
| dc.subject.lemb | Inteligencia artificial | |
| dc.title | Estado del arte sobre métodos de monitoreo de salud estructural | |
| dc.title.titleenglish | State of the art on structural health monitoring methods | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Monografía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis | 
Archivos
Bloque de licencias
1 - 1 de 1
 No hay miniatura disponible 
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
