Modelado y estrategia de control para obtener la máxima producción de energía eléctrica en un sistema de generación a partir de residuos sólidos orgánicos

dc.contributor.advisorJaramillo Matta, Adolfo Andrés
dc.contributor.authorHarker Sánchez, Orlando
dc.contributor.orcidJaramillo Matta,Adolfo Andrés [ 0000-0002-9743-5638 ]
dc.contributor.otherGarcía Barreto, Germán Alberto (Catalogador)
dc.date.accessioned2025-04-25T15:09:04Z
dc.date.available2025-04-25T15:09:04Z
dc.date.created2024-12-11
dc.descriptionEl detrimento medioambiental y la necesidad de fuentes alternativas de energía hoy y a futuro, hacen que las energías renovables empiecen a ser parte fundamental de la matriz energética a nivel mundial, por ello, la generación de energía eléctrica a partir de residuos sólidos orgánicos se está posicionando como una de las principales alternativas en el panorama energético mundial. El desarrollo de estrategias de control que lleven al mejoramiento de la eficiencia de la producción de energía a partir de residuos sólidos orgánicos juega un papel importante en el avance hacia la implementación de esta tecnología. Este proceso se desarrolla mediante dos grandes etapas, digestión anaerobia y generación de energía a partir de biogás. Esta Tesis se desarrolla con el objetivo de mejorar los índices de producción de energía eléctrica generada desde Residuos Sólidos Orgánicos (RSO); inicia con la determinación del modelo de la Digestión Anaerobia sobre la base del modelo Anaerobic Model 2 (AM2), posteriormente se plantea el modelo de generación de energía eléctrica a partir de metano, se diseña e implementa el reactor para pruebas de validación y se establecen las condiciones requeridas para la producción máxima de energía. Posteriormente, se diseña y valida una estrategia de control para la variable tasa de dilución, que permite mantener estable el proceso mediante control lineal. El compensador diseñado se valida comparando las respuestas del modelo linealizado con las respuestas del modelo teórico no lineal en torno a su punto de operación, mediante simulación en MATLAB. Finalmente, se diseña e implementa una estrategia de control PI-difuso y otra estrategia de control LQR para la concentración estequiométrica de metano, la cual se valida mediante simulación en MATLAB y mediante implementación en los componentes a nivel de laboratorio. Dentro de los resultados más relevantes de esta Tesis se encuentran, método para determinación de los parámetros del modelo del proceso de Digestión Anaerobia (DA) AM2, observador para la tasa de dilución, D, método para calcular D*, estrategia de control lineal de la tasa de dilución para mantener estable el proceso de biodigestión y estrategia que mejora la producción de energía eléctrica mediante el control de concentración estequiométrica de metano. Estos resultados permiten mejorar la eficiencia de producción de energía eléctrica a partir de residuos sólidos orgánicos y pueden ser implementados en sistemas que ya estén funcionando, Planta de Tratamiento de Aguas Residuales (PTAR) Salitre, al igual que en sistemas que se diseñan con la solución incorporada.
dc.description.abstractThe environmental detriment and the need for alternative sources of energy today and in the future mean that renewable energies are beginning to be a fundamental part of the energy matrix worldwide, therefore, the generation of electrical energy from organic solid waste is positioning itself as one of the main alternatives in the global energy panorama. The development of control strategies that lead to the improvement of the efficiency of energy production from organic solid waste plays an important role in the progress towards the implementation of this technology. This process is developed through two major stages, anaerobic digestion and the generation of energy from biogas. This Thesis is developed with the objective of improving the production rates of electrical energy generated from RSO; It begins with the determination of the Anaerobic Digestion model based on the AM2 model, subsequently the model for generating electrical energy from methane is proposed, the reactor is designed and implemented for validation tests and the conditions required for the maximum energy production. Subsequently, a control strategy for the variable dilution rate is designed and validated, which allows the process to be kept stable through linear control. The designed compensator is validated by comparing the responses of the linearized model with the responses of the nonlinear theoretical model around its operating point, through simulation in MATLAB. Finally, a PID-fuzzy control strategy for the stoichiometric concentration of methane is designed and implemented, which is validated through simulation in MATLAB and through implementation in the components at the laboratory level. Among the most relevant results of this Thesis are: • A method for determining the parameters of the DA AM2 process model, • A method for to calculate an observer for the dilution rate, D. • A method for to design a linear control strategy for the dilution rate to keep the biodigestion process stable, and • A method for to design a strategy that improves the production of electrical energy by controlling the stoichiometric concentration of methane. These results allow improving the efficiency of electrical energy production from organic solid waste and can be implemented in systems that are already operating, Salitre PTAR, as well as in systems that are designed with the solution incorporated.
dc.description.sponsorshipSistema General de Regalias (SGR), con gestión de MINCIENCIAS a través de prestamo condonable.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/95062
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAbdelhani, Chaabna, and Semcheddine Samia. 2022. “Identification of the AM2HN Model Parameters in the Context of Organic Matter Recycling.” 2022 1Sth IEEE International Multi- Conference on Systems, Signals and Devices, SSD 2022 367–72. doi: 10.1106/SSD54632.2022.6655622.
dc.relation.referencesAbushammala, Mohammed F. M., Wajeeha A. Qazi, Mohammed Hasham Azam, Umais A. Mehmood, Ghithaa A. Al-Mufragi, and Noor Alhuda Alrawahi. 2016. “Generation of Electricity from Biogas in Oman.” 201c 3rd MEC International Conference on Big Data and Smart City, ICBDSC 201c (76):241–43. doi: 10.1106/ICBDSC.2016.7460374.
dc.relation.referencesAceves-Lara, C. A., E. Aguilar-Garnica, V. Alcaraz-González, O. González-Reynoso, J. P. Steyer, J. L. Dominguez-Beltran, and Victor González-Álvarez. 2005. “Kinetic Parameters Estimation in an Anaerobic Digestion Process Using Successive Quadratic Programming.” Water Science and Technology 52(1–2):416–26. doi: 10.2166/wst.2005.0548.
dc.relation.referencesAl, Eun-Shin Ban. et. 2022. “Options for Methane Fuel Processing in PEMFC System with Potential Maritime Applications.” Energies, MDPI 15, 8604.
dc.relation.referencesAnand, Kundan, Alok Prakash Mittal, and Bhavnesh Kumar. 2021. “Modelling and Simulation of Dual Heating of Substrate with Centralized Temperature Control for Anaerobic Digestion Process.” Journal of Cleaner Production 325(April):126235. doi: 10.1016/j.jclepro.2021.126235.
dc.relation.referencesDe Andrade, Gustavo A., Daniel J. Pagano, Jose Luis Guzman, Manuel Berenguel, Ignacio Fernandez, and Francisco Gabriel Acien. 2016. “Distributed Sliding Mode Control of PH in Tubular Photobioreactors.” IEEE Transactions on Control Systems Technology 24(4):1160–73. doi: 10.1106/TCST.2015.2480840.
dc.relation.referencesAntonio, Wilman, and Orozco Lozan. 2010. “Diseño de Un Mezclador Aire – Biogás Para Un Motor Diesel Turboalimentado Desing of a Mixer Air-Biogas for a Diesel Turbocharged Engine.” 8(2):37–43.
dc.relation.referencesAttar, Shadi, and Finn Aakre Haugen. 2018. “Simulation of a Model-Based Predictive Control System to Optimize the Methane Production of a Biogas Reactor.” 2017 Asian Control Conference, ASCC 2017 2018-Janua(3601):1560–65. doi: 10.1106/ASCC.2017.8287411.
dc.relation.referencesBarbu, Marian, George Ifrim, and Emil Ceanga. 2016. “Input Concentration Estimation for an Anaerobic Digestion Process Using EKF and SM Observers . A Comparative Study.” 201c 20th International Conference on System Theory, Control and Computing (ICSTCC) (1):186–61. doi: 10.1106/ICSTCC.2016.7760663.
dc.relation.referencesBaruch, I. S., E. E. Saldierna, and R. Galvan-Guerra. 2011. “Centralized Anaerobic Digestion Bioprocess Plant Identification and Direct I-Term Neural Control Using Second Order Learning.” CCE 2011 - 2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control, Program and Abstract Book 1–7. doi: 10.1106/ICEEE.2011.6106671.
dc.relation.referencesBastin, G., and D. Dochain. 1661. “On-Line Estimation and Adaptive Control of Bioreactors.” Analytica Chimica Acta 243:324. doi: 10.1016/s0003-2670(00)82585-4.
dc.relation.referencesBenattia, S. E., S. Tebbani, D. Dumur, and D. Selisteanu. 2014. “Robust Nonlinear Model Predictive Controller Based on Sensitivity Analysis-Application to a Continuous Photobioreactor.” 2014 IEEE Conference on Control Applications, CCA. Part of 2014 IEEE Multi-Conference on Systems and Control, MSC 2014 1705–10. doi: 10.1106/CCA.2014.6681558.
dc.relation.referencesBenattia, S., S. Tebbani, and D. Dumur. 2014. “Nonlinear Model Predictive Control for Regulation of Microalgae Culture in a Continuous Photobioreactor.” 2014 22nd Mediterranean Conference on Control and Automation, MED 2014 466–74. doi: 10.1106/MED.2014.6661417.
dc.relation.referencesBernard, Olivier, Zakaria Hadj-Sadok, Denis Dochain, Antoine Genovesi, and Jean Philippe Steyer. 2001. “Dynamical Model Development and Parameter Identification for an Anaerobic Wastewater Treatment Process.” Biotechnology and Bioengineering 75(4):424–38. doi: 10.1002/bit.10036.
dc.relation.referencesBharathiraja, B., T. Sudharsana, J. Jayamuthunagai, R. Praveenkumar, S. Chozhavendhan, and J. Iyyappan. 2018. “Retraction Notice to ‘Biogas Production -A Review on Composition, Fuel Properties, Feed Stock and Principles of Anaerobic Digestion’ (Renewable and Sustainable Energy Reviews (2018) 60 (570–582), (S1364032118301604) (10.1016/j.Rser.2018.03.063)).”
dc.relation.referencesBogaerts, Philippe, and Alain Vande Wouwer. 2022. Special Issue: Mathematical Modeling and Control of Bioprocesses. Vol. 10.
dc.relation.referencesBolzonella, David, Davide Bertasini, Riccardo Lo Coco, Miriam Menini, Fabio Rizzioli, Anna Zuliani, Federico Battista, Nicola Frison, Aleksandra Jelic, and Giovanna Pesante. 2023. “Toward the Transition of Agricultural Anaerobic Digesters into Multiproduct Biorefineries.” Processes 11(2). doi: 10.3360/pr11020415.
dc.relation.referencesBudnik, Krzysztof, Jan Szymenderski, and Grzegorz Walowski. 2018. “Control and Supervision System for Micro Biogas Plant.” Proceedings of 2018 1Sth International Conference Computational Problems of Electrical Engineering, CPEE 2018 1–4. doi: 10.1106/CPEE.2018.8506664.
dc.relation.referencesCondrachi, Larisa, Emil Ceanga, Lucian Puiu Georgescu, Gabriel Murariu, Ramon Vilanova, and Marian Barbu. 2018. “Model-Based Optimization of an Anaerobic Digestion Process.” 2018 22nd International Conference on System Theory, Control and Computing, ICSTCC 2018 - Proceedings 231–36. doi: 10.1106/ICSTCC.2018.8540673.
dc.relation.referencesCurry, Nathan, and Pragasen Pillay. 2014. “Electric Generators for Biomass Waste to Energy Systems.” IEEE Power and Energy Society General Meeting 2014- Octob(October):1–4. doi: 10.1106/PESGM.2014.6636268.
dc.relation.referencesDekhici, Benaissa, Boumediene Benyahia, Brahim Cherki, Benaissa Dekhici, Boumediene Benyahia, Brahim Cherki, and Dynamic Mode. 2022. “Dynamic Mode Decomposition with Control for Data-Driven Modeling of Anaerobic Digestion Process To Cite This Version : HAL Id : Hal- 03666038 Dynamic Mode Decomposition with Control for Data-Driven Modeling Of.”
dc.relation.referencesDíaz, A. E., C. Hernández, and J. P. A. Fajardo. 2011. “Adaptive Fuzzy Control Applied to a Fermentation System of Continuous Alcohol Flow | Control Difuso Adaptativo Aplicado a Un Sistema de Fermentación de Flujo Continuo de Alcohol.” Revista Facultad de Ingenieria (58):105–13.
dc.relation.referencesDiniz, Pedro, Lucas da Costa, Jarbas da Silveira, Giovanni Barroso, and William Barcellos. 2021. “Performance Evaluation of Controllers Applied to Power Generator Set Operating with Wastewater Biogas.” Electrical Engineering 103(1):753–68. doi: 10.1007/s00202-020-01113- 4.
dc.relation.referencesDittmer, Celina, Johannes Krümpel, and Andreas Lemmer. 2021. “Modeling and Simulation of Biogas Production in Full Scale with Time Series Analysis.” Microorganisms 6(2):1– 10. doi: 10.3360/microorganisms6020324.
dc.relation.referencesDraa, K. Chaib, H. Voos, M. Alma, A. Zemouche, and M. Darouach. 2018. “LMI-Based Trajectory Tracking for a Class of Nonlinear Systems with Application to an Anaerobic Digestion Process.” Proceedings of the American Control Conference 2018-June:4363–67. doi: 10.23616/ACC.2018.8431487.
dc.relation.referencesDraa, Khadidja Chaib, and Holger Voos. 2016. “Invariant Observer Applied to Anaerobic Digestion Model.” 201c IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA) 2(I):1–4. doi: 10.1106/ETFA.2016.7733706.
dc.relation.referencesDraa, Khadidja Chaib, Holger Voos, Marouane Alma, and Mohamed Darouach. 2015a. “Adaptive Control of the Methane Flow Rate in Biogas Plants.” 3rd International Conference on Control, Engineering and Information Technology, CEIT 2015 (1):1–6. doi: 10.1106/CEIT.2015.7233155.
dc.relation.referencesDraa, Khadidja Chaib, Holger Voos, Marouane Alma, and Mohamed Darouach. 2015b. “Linearizing Control of Biogas Flow Rate and Quality.” IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2015-Octob(3):1–4. doi: 10.1106/ETFA.2015.7301556.
dc.relation.referencesDraa, Khadidja Chaib, Holger Voos, Marouane Alma, Ali Zemouche, Khadidja Chaib Draa, Holger Voos, Marouane Alma, Ali Zemouche, and Mohamed Darouach Lmi-based. 2018. “LMI-Based H _ ∞ Nonlinear State Observer Design for Anaerobic Digestion Model Mohamed Darouach To Cite This Version : HAL Id : Hal-01567357 LMI-Based H ∞ Nonlinear State Observer Design for Anaerobic Digestion Model.”
dc.relation.referencesDraa, Khadidja Chaib, Holger Voos, Mohamed Darouach, and Marouane Alma. 2016. “A Formal Modeling Framework for Anaerobic Digestion Systems.” Proceedings - UKSim-AMSS 17th International Conference on Computer Modelling and Simulation, UKSim 2015 (2):426–31. doi: 10.1106/UKSim.2015.68.
dc.relation.referencesEmebu, Samuel, Jiří Pecha, and Dagmar Janáčová. 2022. “Review on Anaerobic Digestion Models: Model Classification s Elaboration of Process Phenomena.” Renewable and Sustainable Energy Reviews 160(March). doi: 10.1016/j.rser.2022.112288.
dc.relation.referencesGarcía, Lucas Elordi. 2017. “Diseño de Un Digestor Para Una Planta de Biogás Agroindustrial.” Proyecto de Grado, 2017 140.
dc.relation.referencesGarcia, Ramon G., Febus Reidj G. Cruz, Iana Patricia C. Bernardo, Allana Nicole G. Jandoc, Keith Jules C. Mendoza, and Lalaine Ann G. Reola. 2016. “Monitoring of Methane Biogas Extraction System from Cow Manure with Iron Oxide as Catalyst.” 201S IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 201S 20–23. doi: 10.1106/HNICEM48265.2016.6073381.
dc.relation.referencesGómez, X., M. J. Cuetos, J. Cara, A. Morán, and A. I. García. 2006. “Anaerobic Co-Digestion of Primary Sludge and the Fruit and Vegetable Fraction of the Municipal Solid Wastes. Conditions for Mixing and Evaluation of the Organic Loading Rate.” Renewable Energy 31(12):2017–24. doi: 10.1016/j.renene.2005.06.026.
dc.relation.referencesGonzález, Lisbet Mailin López, Mildre Zayas González, Fabiany de Jesús Morgado León, and Julio Pedraza Garciga. 2022. “Cinética De La Producción De Metano a Partir Del Residuo Del Secado De Arroz Con Estiércol Vacuno Y Porcino.” Revista Centro Azúcar 46(1):65–106.
dc.relation.referencesGupta, Priyank, Caneon Kurien, and Mayank Mittal. 2023. “Biogas (a Promising Bioenergy Source): A Critical Review on the Potential of Biogas as a Sustainable Energy Source for Gaseous Fuelled Spark Ignition Engines.” International Journal of Hydrogen Energy 48(21):7747–66. doi: 10.1016/j.ijhydene.2022.11.165.
dc.relation.referencesGurubel, Kelly J., Edgar N. Sanchez, Alberto Coronado, Virgilio Zúñga, and Belkis Sulbaran. 2018. “Optimal Neural Control of A Two Stages Anaerobic Digestion Model for Biofuels Production.” Proceedings of the International Joint Conference on Neural Networks 2018-July. doi: 10.1106/IJCNN.2018.8486186.
dc.relation.referencesHaidar, I., J. P. Barbot, A. Rapaport, and M. Ghanes. 2018. “Observability Singularity of Batch Bioreactors: A Solution Based on High Order Sliding Mode Differentiator Approach.” 2017 Asian Control Conference, ASCC 2017 2018-Janua(1):336–38. doi: 10.1106/ASCC.2017.8287160.
dc.relation.referencesHarker, Orlando, Adolfo A. Jaramillo, Dulce María Arias. 2024. “Method to Obtain Parameters K2, K3 for Dilution Rate Observer in AM2 Model of the Anaerobic Digestion Process in a Batch Reactor AM2 Model of the Anaerobic Digestion Process in a Batch Reactor.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 46(1):3110–23. DOI: 10.1080/15567036.2024.2311326
dc.relation.referencesHarker, Orlando, Adolfo Andrés Jaramillo s Patrick U. Okoye (2024) “Linear control strategy of the dilution rate for stability in the anaerobic digestion process”, Systems Science & Control Engineering, 12:1, 2367665, DOI: 10.1080/21642583.2024.2367665
dc.relation.referencesHe, Dingxin, Haoping Wang, Yang Tian, Nicolai Christov, and Ivan Simeonov. 2023. “Trajectory Tracking of Two-Stage Anaerobic Digestion Process: A Predictive Control with Guaranteed Performance and Saturated Input, Based on Ultra-Local Model.” Journal of Process Control 126:103036. doi: 10.1016/j.jprocont.2023.103036.
dc.relation.referencesHeaven, Sonia, Sigrid Kusch-brandt, and Charles Banks. 2023. New Frontiers in Anaerobic Digestion ( AD ) Processes.
dc.relation.referencesHmissi, Maha, Jérôme Harmand, Victor Alcaraz-Gonzalez, and Hedi Shayeb. 2018. “Evaluation of Alkalinity Spatial Distribution in an Up-Flow Fixed Bed Anaerobic Digester.” Water Science and Technology 77(4):648–56. doi: 10.2166/wst.2017.612.
dc.relation.referencesHuang, Shih Hua, Yen Jie Huang, and Hsiang Chen Chui. 2018. “Fiber-Optic-Based Methane Detection Using Mid-Infrared Light Emitting Diode.” IEEE Sensors Journal 18(15):6166–74. doi: 10.1106/JSEN.2018.2845443.
dc.relation.referencesIancu, Eugen, and Emil Petre. 2017. “Control Strategy Based on Sensitivity Analysis. Application for Anaerobic Digestion Bioprocess.” Proceedings - 2017 21st International Conference on Control Systems and Computer, CSCS 2017 3(5):84– 86. doi: 10.1106/CSCS.2017.18.
dc.relation.referencesJamilis, Martin, Sebastian Nunnez, Fabricio Garelli, and Hernan De Battista. 2018. “Detectability and Observability Analysis of the Anaerobic Digestion Process.” 2018 Argentine Conference on Automatic Control, AADECA 2018. doi: 10.23616/AADECA.2018.8577321.
dc.relation.referencesJang, Hyun Min, Yong Keun Choi, and Eunsung Kan. 2018. “Effects of Dairy Manure-Derived Biochar on Psychrophilic, Mesophilic and Thermophilic Anaerobic Digestions of Dairy Manure.” Bioresource Technology 250(October 2017):927–31. doi: 10.1016/j.biortech.2017.11.074.
dc.relation.referencesKalyuzhnyi, S. V., D. J. Batstone, V. A. Vavilin, S. G. Pavlostathis, H. Siegrist, W. T. M. Sanders, A. Rozzi, I. Angelidaki, and J. Keller. 2002. “The IWA Anaerobic Digestion Model No 1 (ADM1).” Water Science and Technology 45(10):65–73. doi: 10.2166/wst.2002.0292.
dc.relation.referencesKapadia, Apoorva, Nitendra Nath, Timothy C. Burg, and Darren M. Dawson. 2010. “Lyapunov- Based Continuous-Stirred Tank Bioreactor Control to Maximize Biomass Production Using the Haldane and Monod Specific Growth Models.” Proceedings of the 2010 American Control Conference, ACC 2010 6734–39. doi: 10.1109/acc.2010.5531387.
dc.relation.referencesKaraca, Ali Erdogan, Ibrahim Dincer, and Michael Nitefor. 2023. “A Unique Biomass Based Integrated Energy System for Cleaner Production of Multiple Energy Outputs for Sustainable Communities.” Sustainable Cities and Society 89(September 2022):104330. doi: 10.1016/j.scs.2022.104330.
dc.relation.referencesKhedim, Zeyneb, Boumediene Benyahia, Brahim Cherki, Jean Philippe Steyer, and Jerome Harmand. 2018. “Feedback Linearisation Control of the Anaerobic Digestion Plants: Towards the Enhancement of Biogas Production.” 2018 International Conference on Control, Automation and Diagnosis, ICCAD 2018 2–7. doi: 10.1109/CADIAG.2018.8751467.
dc.relation.referencesKhedim, Zeyneb, Boumediène Benyahia, Francis Mairet, Jean Philippe Steyer, and Jérôme Harmand. 2017. “Reduction of a Complex Biotechnological Process Model Using State-Variable Association Method-Application to the Anaerobic Digestion of Micro-Algae.” 2017 International Conference on Control, Automation and Diagnosis, ICCAD 2017 135–40. doi: 10.1109/CADIAG.2017.8075645.
dc.relation.referencesKumar, M. Krishna, T. Sreejith Kailas, K. Ilango, and Manjula G. Nair. 2018. “Fuzzy Control Based Biogas IC Engine Generator System in a Residential Building.” Proceedings of 2017 IEEE International Conference on Technological Advancements in Power and Energy: Exploring Energy Solutions for an Intelligent Power Grid, TAP Energy 2017 1–5. doi: 10.1109/TAPENERGY.2017.8397357.
dc.relation.referencesLara-Cisneros, Gerardo, and Denis Dochain. 2018. “On-Line Estimation of the VFA Concentration in Anaerobic Digestion Processes Based on a Super-Twisting Observer.” 2018 5th International Conference on Control, Decision and Information Technologies, CoDIT 2018 545–49. doi: 10.1109/CoDIT.2018.8394870.
dc.relation.referencesLi, Hongxuan, Yang Tian, and Haoping Wang. 2023. “Two-Stage Anaerobic Digestion Process Optimal Control Study Based on Extremum-Seeking Control and Self-Optimizing Control.” Proceedings of 2023 IEEE 12th Data Driven Control and Learning Systems Conference, DDCLS 2023 739–44. doi: 10.1109/DDCLS58216.2023.10166439.
dc.relation.referencesLi, Meijie. 2015. “Adaptive Predictive Control by Open-Loop- Feedback-Optimal Controller for Cultivation Processes Doctor of Philosophy in Biochemical Engineering.” Hochschule Bremen, University of Applied Sciencies, Jacobs University 78.
dc.relation.referencesLing, Shi, Rang Guowei, Huang Zhaobo, and Zhang Rukun. 2011. “Refitting Design of Miniature Biogas Generating System.” 2011 International Conference on Consumer Electronics, Communications and Networks, CECNet 2011 - Proceedings 1544–47. doi: 10.1109/CECNET.2011.5769269.
dc.relation.referencesLiu, Xiaojun, Arnaud Coutu, Stéphane Mottelet, André Pauss, and Thierry Ribeiro. 2023. “Overview of Numerical Simulation of Solid-State Anaerobic Digestion Considering Hydrodynamic Behaviors, Phenomena of Transfer, Biochemical Kinetics and Statistical Approaches.” Energies 16(3). doi: 10.3390/en16031108.
dc.relation.referencesMaakoul, Othmane, Ruth Beaulanda, Aziza Abid, Elhassane Essabri, and Hamid El Omari. 2020. “Dimensioning and Modeling of a Biogas Valorization System by Cogeneration.” 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology, IRASET 2020 1–6. doi: 10.1109/IRASET48871.2020.9092189.
dc.relation.referencesManabe, Yusuke, Ryoichi Hara, Hiroyuki Kita, Katsuyuki Takitani, Takayuki Tanabe, Shiho Ishikawa, and Takahiro Oomura. 2013. “Cooperation of Energy Storage Systems and Biogas Generator for Stabilization of Renewable Energy Power Plants.” 2013 4th IEEE/PES Innovative Smart Grid Technologies Europe, ISGT Europe 2013 1–5. doi: 10.1109/ISGTEurope.2013.6695297.
dc.relation.referencesManjusha, C., and B. Sajeena Beevi. 2016. “Mathematical Modeling and Simulation of Anaerobic Digestion of Solid Waste.” Procedia Technology 24:654–60. doi: 10.1016/j.protcy.2016.05.174.
dc.relation.referencesMarin, Constantin, Dan Selisteanu, Dan Popescu, and Monica Roman. 2015. “Adaptive Optimal Control of a Continuous Stirred Tank Bioreactor.” 2015 19th International Conference on System Theory, Control and Computing, ICSTCC 2015 - Joint Conference SINTES 19, SACCS 15, SIMSIS 19 49–54. doi: 10.1109/ICSTCC.2015.7321268.
dc.relation.referencesMeloni, Eugenio, Giuseppina Iervolino, Concetta Ruocco, Simona Renda, Giovanni Festa, Marco Martino, and Vincenzo Palma. 2022. “Electrified Hydrogen Production from Methane for PEM Fuel Cells Feeding: A Review.” Energies 15(10). doi: 10.3390/en15103588.
dc.relation.referencesMicolucci, Federico, and Hinrich Uellendhal. 2018. “Two-Stage Dry Anaerobic Digestion Process Control of Biowaste for Hydrolysis and Biogas Optimization.” Chemical Engineering and Technology 41(4):717–26. doi: 10.1002/ceat.201700467.
dc.relation.referencesMoideen, Siti Nur Fatihah, Santhana Krishnan, Yu You Li, Mimi Haryani Hassim, Hesam Kamyab, Mohd Nasrullah, Mohd Fadhil Md Din, Khairunnisa Abdul Halim, and Sumate Chaiprapat. 2023. “Performance Evaluation and Energy Potential Analysis of Anaerobic Membrane Bioreactor (AnMBR) in the Treatment of Simulated Milk Wastewater.” Chemosphere 317(October 2022):137923. doi: 10.1016/j.chemosphere.2023.137923.
dc.relation.referencesMoure Abelenda, Alejandro, Abdikhani Ali, Kirk T. Semple, and Farid Aiouache. 2023. “Aspen Plus® Process Simulation Model of the Biomass Ash-Based Treatment of Anaerobic Digestate for Production of Fertilizer and Upgradation of Biogas.” Energies 16(7). doi: 10.3390/en16073039.
dc.relation.referencesMudzanani, Khuthadzo E., Terence T. Phadi, Sunny E. Iyuke, and Michael O. Daramola. 2023. “Enhancing Methane Production through Anaerobic Co-Digestion of Sewage Sludge: A Modified ADM1 Model Approach.” Fermentation 9(9):833. doi: 10.3390/fermentation9090833.
dc.relation.referencesMuhssen, Hassan Sadah, and Kamil Abdulhussein Khalaf. 2022. “Thermal Investigation of Gas-Air Mixture inside the Compound of Mixer and Shell Heating Method Using CFD: Effect of Counter Flow between Air-CNG Mixture and Hot Water on the Air-CNG Mixture Temperature at the Outlet of Mixer That Integrated with Heating S.” 2022 IEEE 1st International Conference on Cognitive Mobility, CogMob 2022 37–46. doi: 10.1109/CogMob55547.2022.10117822.
dc.relation.referencesMuslimov, Tagir, and Rustem Munasypov. 2022. “Fuzzy Model Reference Adaptive Control of Consensus-Based Helical UAV Formations.” 196–201.
dc.relation.referencesNerkar, S., Patre, B. M. 2023. “DESIGN OF INERTIAL DELAY OBSERVER BASED MODEL FOLLOWING DYNAMIC SLIDING MODE CONTROL.” TR&A 1(1):65–86.
dc.relation.referencesNeto, João Girardi, and Joel Dias Da Silva. 2015. “Mass Balance Calculations of the Organic Solid Wastes Treatment in Anaerobic Reactor.” Proceedings - 2015 9th International Conference on Complex, Intelligent, and Software Intensive Systems, CISIS 2015 (Figure 1):386–91. doi: 10.1109/CISIS.2015.91.
dc.relation.referencesNguyen, Quang Trung, and Minh Duc Le. 2022. “Effects of Compression Ratios on Combustion and Emission Characteristics of SI Engine Fueled with Hydrogen-Enriched Biogas Mixture.” Energies 15(16). doi: 10.3390/en15165975.
dc.relation.referencesNkosi, S’busiso M., Inikile Lupuleza, Siyanda N. Sithole, Zenzile R. Zelda, and Anthony N. Matheri. 2021. “Renewable Energy Potential of Anaerobic Mono-and Co-Digestion of Chicken Manure, Goat Manure, Potato Peels and Maize Pap in South Africa.” South African Journal of Science 117(11–12):49–57. doi: 10.17159/SAJS.2021/10362.
dc.relation.referencesOgbonna, Emmanuel C., Rajnish K. Calay, and Mohamad Y. Mustafa. 2016. “Nonlinear Black-Box Model for Mesophilic Anaerobic Digestion.” 2016 International Symposium on Small-Scale Intelligent Manufacturing Systems, SIMS 2016 (June):83–88. doi: 10.1109/SIMS.2016.7802904.
dc.relation.referencesOlatunji, Kehinde O., Daniel M. Madyira, and Oluwatobi Adeleke. 2023. “Optimizing Anaerobic Co- Digestion of Xyris Capensis and Duck Waste Using Neuro-Fuzzy Model and Response Surface Methodology.” Fuel 354(June):129334. doi: 10.1016/j.fuel.2023.129334.
dc.relation.referencesParra, Brayan., Patricia. Torres, Luis. Marmolejo, Lina. Cárdenas, Carlos. Vásquez, Wilmar. Torres, and José. Ordoñez. 2015. “Efecto de La Relación Sustrato-Inóculo Sobre El Potencial Bioquímico de Metano de Biorresiduos de Origen Municipal Effect of Substrate-Inoculum Ratio on the Biochemical Methane Potential of Municipal Biowastes.” Ingeniería Investigación y Tecnología XVI(número 4):515–26.
dc.relation.referencesPereira, Reinalda Blanco, Rodrigo Salvador, Gabriel Fernandes Sales, Jonatas Santana Obal, Cassiano Moro Piekarski, and Antonio Carlos de Francisco. 2022. “Energy from Livestock Waste: Using Circular Economy and Territorial Intelligence to Build Sustainable Businesses.” Energy and Environment. doi: 10.1177/0958305X221108495.
dc.relation.referencesPetre, E., D. Selisteanu, and D. Sendrescu. 2010. “An Indirect Adaptive Control Strategy for a Lactic Fermentation Bioprocess.” 2010 IEEE International Conference on Automation, Quality and Testing, Robotics, AQTR 2010 - Proceedings 1:175–80. doi: 10.1109/AQTR.2010.5520893.
dc.relation.referencesPetre, Emil, and Dan Selisteanu. 2013. “Adaptive and Robust-Adaptive Control Schemes for an Anaerobic Bioprocess with Biogas Production.” 2013 17th International Conference on System Theory, Control and Computing, ICSTCC 2013; Joint Conference of SINTES 2013, SACCS 2013, SIMSIS 2013 - Proceedings 404–9. doi: 10.1109/ICSTCC.2013.6688992.
dc.relation.referencesPetre, Emil, Dan Selişteanu, Dorin Şendrescu, Marian Barbu, and Sergiu Caraman. 2017. “An Adaptive Control Structure for an Anaerobic Digestion Process with Unknown Inputs.” 2017 18th International Carpathian Control Conference, ICCC 2017 58–63. doi: 10.1109/CarpathianCC.2017.7970371.
dc.relation.referencesPrecup, Radu Emil, Claudia Adina Bojan-Dragos, Marian Barbu, and Sergiu Caraman. 2015. “Fuzzy Control of an Anaerobic Digestion Process.” 2015 19th International Conference on System Theory, Control and Computing, ICSTCC 2015 - Joint Conference SINTES 19, SACCS 15, SIMSIS 19 69–74. doi: 10.1109/ICSTCC.2015.7321271.
dc.relation.referencesPulgarin Muñoz, Carlos Esteven, Julio César Saldarriaga Molina, and Mauricio Andres Correa Ochoa. 2022. “Análisis y Perspectivas Del Tratamiento Anaerobio y El Aprovechamiento de Lodos Biológicos En América Latina.” Revista EIA 19(38):1–6. doi: 10.24050/reia.v19i38.1516.
dc.relation.referencesQu, Zhihua. 2003. “Adaptive and Robust Controls of Uncertain Systems with Nonlinear Parameterization.” IEEE Transactions on Automatic Control 48(10):1817–23. doi: 10.1109/TAC.2003.817931.
dc.relation.referencesRavilevna, Ivanova Viliya, Denisova Alina Renatovna, and Ivanov Igor Yurevich. 2020. “Automation and Control of the Main Elements of the Electrotechnical System of Biogas Equipment.” Proceedings - ICOECS 2020: 2020 International Conference on Electrotechnical Complexes and Systems. doi: 10.1109/ICOECS50468.2020.9278470.
dc.relation.referencesRigatos, Gerasimos, Pierluigi Siano, Sul Ademi, and Patrice Wira. 2017. “A Nonlinear Optimal Control Method for Bioreactors and Biofuels Production.” Proceedings IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society 2017-Janua(1):8721–26. doi: 10.1109/IECON.2017.8217533.
dc.relation.referencesRodríguez-Jara, Mariana, Alejandra Velasco-Pérez, Jose Vian, Sergio E. Vigueras-Carmona, and Héctor Puebla. 2023. “Robust Control Based on Modeling Error Compensation of Microalgae Anaerobic Digestion.” Fermentation 9(1). doi: 10.3390/fermentation9010034.
dc.relation.referencesRuge Ruge, Ilber Adonayt. 2019. “Prototipo de Biorreactor Aeróbico Para El Monitoreo y Control Del Proceso de Co-Compostaje, a Partir de Lodos de Plantas de Tratamiento de Aguas Residuales y Residuos Sólidos Orgánicos de Plaza de Mercado.” Prospectiva 17(1):17–24. doi: 10.15665/rp.v17i1.1673.
dc.relation.referencesSánchez-Reyes, Claudian, María Eugenia Patiño-Iglesias, José Luis Alcántara-Flores, Yasmi Reyes- Ortega, María Ana Pérez-Cruz, and Esiquio Ortíz-Muñoz. 2016. “Determinación Del Potencial Bioquímico de Metano (PBM) de Residuos de Frutas y Verduras En Hogares.” Revista Internacional de Contaminacion Ambiental 32(2):191–98. doi: 10.20937/RICA.2016.32.02.05.
dc.relation.referencesLo Sciuto, G., G. Susi, G. Cammarata, and G. Capizzi. 2016. “A Spiking Neural Network-Based Model for Anaerobic Digestion Process.” 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2016 996–1003. doi: 10.1109/SPEEDAM.2016.7526003.
dc.relation.referencesShtessel, Yuri, Christopher Edwards, Leonid Fridman, and Arie Levant. 2014a. Sliding Mode Control and Observation.
dc.relation.referencesShtessel, Yuri, Christopher Edwards, Leonid Fridman, and Arie Levant. 2014b. Sliding Mode Control and Observation.
dc.relation.referencesSira, H., R. Marquez, F. Rivas, and O. Llanes. 2011. “Control de Sistemas No Lineales.” Control Automático (September).
dc.relation.referencesSun, Hangyu, Ziyi Yang, Guangqing Liu, Yi Zhang, Yen Wah Tong, and Wen Wang. 2023. “Double- Edged Effect of Tar on Anaerobic Digestion: Equivalent Method and Modeling Investigation.” Energy 277(May):127738. doi: 10.1016/j.energy.2023.127738.
dc.relation.referencesSun, Hangyu, Ziyi Yang, Guangqing Liu, Yi Zhang, Yen Wah Tong, and Wen Wang. 2023. “Double- Edged Effect of Tar on Anaerobic Digestion: Equivalent Method and Modeling Investigation.” Energy 277(May):127738. doi: 10.1016/j.energy.2023.127738.
dc.relation.referencesTan, H. M., J. C. S. Lew, D. Gouwanda, and P. E. Poh. 2017. “Fuzzy Logic Modelling for Thermophilic Anaerobic Digestion of Palm Oil Mill Effluent (POME) Treatment.” 2017 4th International Conference on Industrial Engineering and Applications, ICIEA 2017 265–69. doi: 10.1109/IEA.2017.7939219.
dc.relation.referencesTawai, Atthasit, and Malinee Sriariyanun. 2022. “Nonlinear Optimization-Based Robust Control Approach for a Two-Stage Anaerobic Digestion Process.” Journal of Chemistry 2022. doi: 10.1155/2022/8966350.
dc.relation.referencesTian, Yang, Ning Pan, Maobo Hu, Haoping Wang, Ivan Simeonov, Lyudmila Kabaivanova, and Nicolai Christov. 2023. “Newton-Based Extremum Seeking for Dynamic Systems Using Kalman Filtering: Application to Anaerobic Digestion Process Control.” Mathematics 11(1). doi: 10.3390/math11010251.
dc.relation.referencesTrairat, Panupon, Sakda Somkun, Tanakorn Kaewchum, Tawat Suriwong, Pisit Maneechot, Teerapon Panpho, Wikarn Wansungnern, Sathit Banthuek, Bongkot Prasit, and Tanongkiat Kiatsiriroat. 2023. “Grid Integration of Livestock Biogas Using Self-Excited Induction Generator and Spark- Ignition Engine.” Energies 16(13):4963. doi: 10.3390/en16134963.
dc.relation.referencesWang, Pengya, Jianxiao Wang, Ruiyang Jin, Gengyin Li, Ming Zhou, and Qing Xia. 2022. “Integrating Biogas in Regional Energy Systems to Achieve Near-Zero Carbon Emissions.” Applied Energy 322(March):119515. doi: 10.1016/j.apenergy.2022.119515.
dc.relation.referencesWang, Pengya, Jianxiao Wang, Ruiyang Jin, Gengyin Li, Ming Zhou, and Qing Xia. 2022. “Integrating Biogas in Regional Energy Systems to Achieve Near-Zero Carbon Emissions.” Applied Energy 322(March):119515. doi: 10.1016/j.apenergy.2022.119515. Yadav, D. K., and T. S. Bhatti. 2017. “Voltage and Frequency Control in a Wind-PV-Biogas Based Rural Micro Grid with Limited Grid Operation.” 2016 IEEE 7th Power India International Conference, PIICON 2016. doi: 10.1109/POWERI.2016.8077471.
dc.relation.referencesYandri, and Seno D. Panjaitan. 2013. “Comparative Study of Electric Generator Drive Engine Performance by Various Types of Fuel.” Proceedings - 2013 International Conference on Information Technology and Electrical Engineering: “Intelligent and Green Technologies for Sustainable Development”, ICITEE 2013 4:326–31. doi: 10.1109/ICITEED.2013.6676262.
dc.relation.referencesYang, S., F. Luo, J. Yan, T. Zhang, Z. Xian, W. Huang, H. Zhang, Y. Cao, and L. Huang. 2023. “Biogas Production of Food Waste with In-Situ Sulfide Control under High Organic Loading in Two-Stage Anaerobic Digestion Process: Strategy and Response of Microbial Community.” Bioresource Technology 373. doi: 10.1016/j.biortech.2023.128712.
dc.relation.referencesYumang, Analyn, John Aldreen Arcelao, and Mich Hartell Mendiola. 2021. “Fuzzy-Controlled Based Methane and Electricity Measurement on Anaerobic Digestion of Musa Subspecies’ Peels.” 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2021 1– 6. doi: 10.1109/HNICEM54116.2021.9732018.
dc.relation.referencesZhang, Li Jun, He Ming Jia, and Da Peng Jiang. 2014. “Sliding Mode Prediction Control for 3D Path Following of an Underactuated AUV.” in IFAC Proceedings Volumes (IFAC-PapersOnline).
dc.relation.referencesZhang, Li Jun, He Ming Jia, and Da Peng Jiang. 2014. “Sliding Mode Prediction Control for 3D Path Following of an Underactuated AUV.” in IFAC Proceedings Volumes (IFAC-PapersOnline). Zhou, Xuefei, Yalei Zhang, Xuanjun Zhang, Ming Jiang, and Rao Y. Surampalli. 2009. “Modeling an Anaerobic Reactor with an Outside Recycling Line for Municipal Wastewater Treatment by Modified Anaerobic Digestion Model No. 1 (ADM1).” 3rd International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2009 1(1):1–6. doi: 1
dc.rights.accesoRestringido (Solo Referencia)
dc.rights.accessrightsRestrictedAccess
dc.subjectControl lineal
dc.subjectControl PI-difuso
dc.subjectControl LQR
dc.subjectDigestión Anaerobia
dc.subjectLinealización aproximada
dc.subjectMáxima Generación de Energía
dc.subjectModelo AM2
dc.subjectResiduos Sólidos Orgánicos
dc.subjectSistemas no lineales
dc.subject.keywordLinear control
dc.subject.keywordPI-fuzzy control
dc.subject.keywordAnaerobic Digestion
dc.subject.keywordApproximate linearization
dc.subject.keywordMaximum Energy Generation
dc.subject.keywordAM2 model
dc.subject.keywordTechnology Readiness Level (TRL)
dc.subject.keywordOrganic Solid Waste
dc.subject.keywordNon-linear systems
dc.subject.lembDoctorado en Ingeniería -- Tesis y disertaciones académicas
dc.subject.lembDegradación ambiental
dc.subject.lembGeneración de energía colombiana
dc.subject.lembProducción de energía eléctrica
dc.subject.lembProducción de energía y recursos naturales
dc.titleModelado y estrategia de control para obtener la máxima producción de energía eléctrica en un sistema de generación a partir de residuos sólidos orgánicos
dc.title.titleenglishModeling and control strategy to obtain maximum electrical energy production in a generation system from organic solid waste
dc.typedoctoralThesis
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/doctoralThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
HarkerSanchezOrlando2024.pdf
Tamaño:
4.95 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicacion.pdf
Tamaño:
215.41 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: