Estrategia de control para la reducción del desbalance de tensión en microredes eléctricas.
| dc.contributor.advisor | Díaz Aldana, Nelson | |
| dc.contributor.advisor | Rojas Cubides, Herbert Enrique | |
| dc.contributor.author | Cañón Rojas, Esmeralda | |
| dc.contributor.orcid | Díaz Aldana, Nelson [0000-0003-0202-0489] | |
| dc.date.accessioned | 2025-05-30T17:59:54Z | |
| dc.date.available | 2025-05-30T17:59:54Z | |
| dc.date.created | 2025-05-07 | |
| dc.description | Este trabajo de tesis de maestría, dirige su estudio a las estrategias de control, que permitan reducir el desbalance de tensión en redes eléctricas, apoyadas en inversores electrónicos. El desbalance de tensión, es uno de los principales problemas que afectan los equipos eléctricos y electrónicos, presentándose como resonancias, pérdidas energéticas, deterioro prematuro y defectos en la operación. Este inconveniente se torna crítico dentro de las microrredes aisladas, porque las fuentes generadoras no tienen conexión a una red principal que las sustente, es por ello que, en este contexto, la regulación de la tensión de la microrred depende del tipo de convertidor de potencia usado y la forma de controlar la regulación de la red eléctrica. Para atacar el problema anteriormente descrito se estudiaron diferentes esquemas de control existentes en la investigación reciente, y se profundiza sobre los problemas generados como consecuencia de los desbalances de tensión. Luego, se procedió con la implementación de dichos modelos de control en simulink®, una vez fueron implementados se generaron diferentes escenarios de prueba para determinar cuál de ellos presentaba mejor desempeño. Con la estrategia que presentaba mejor desempeño se propuso una mejora que permitiera automatizar su operación ante condiciones variables de desbalance garantizando la estabilidad del sistema. Diferentes pruebas realizadas sobre modelos de simulación permitieron validar la operación de la mejora propuesta. | |
| dc.description.abstract | This master's thesis focuses on control strategies that will allow reducing voltage imbalance in electrical networks supported by electronic inverters. Voltage imbalance is one of the main problems affecting electrical and electronic equipment, presenting itself as resonances, energy losses, premature deterioration and operating defects. This problem becomes critical within isolated microgrids, because the generating sources are not connected to a main network that supports them, which is why, in this context, the voltage regulation of the microgrid depends on the type of power converter used and the way of controlling the regulation of the electrical network. To attack the problem described above, different control schemes existing in recent research were studied, and the problems generated as a consequence of voltage imbalances were delved into. Then, we proceeded with the implementation of these control models in simulink®. Once they were implemented, different test scenarios were generated to determine which of them presented the best performance. With the strategy that presented the best performance, an improvement was proposed that would allow its operation to be automated under variable conditions of imbalance, guaranteeing the stability of the system. Different tests carried out on simulation models allowed validating the operation of the proposed improvement. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/95817 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | C. W. Shyu, “Ensuring access to electricity and minimum basic electricity needs as a goal for the post-MDG development agenda after 2015,” Energy Sustain. Dev., vol. 19, no. 1, pp. 29–38, 2014, doi: 10.1016/j.esd.2013.11.005. | |
| dc.relation.references | R. Sabzehgar, “A review of AC/DC microgrid-developments, technologies, and challenges,” 2015 IEEE Green Energy Syst. Conf. IGESC 2015, pp. 11–17, 2015, doi: 10.1109/IGESC.2015.7359384. | |
| dc.relation.references | P. Gaur and S. Singh, “Investigations on Issues in Microgrids,” J. Clean Energy Technol., 2016, doi: 10.18178/jocet.2017.5.1.342. | |
| dc.relation.references | A. Von Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Trans. Power Deliv., vol. 16, no. 4, pp. 782–790, 2001, doi: 10.1109/61.956770. | |
| dc.relation.references | V. V. S. N. Murty and A. Kumar, “Capacitor allocation in unbalanced distribution system under unbalances and loading conditions,” Energy Procedia, vol. 54, pp. 47–74, 2014, doi: 10.1016/j.egypro.2014.07.248. | |
| dc.relation.references | M. Savaghebi, J. M. Guerrero, A. Jalilian, and J. C. Vasquez, “Hierarchical control scheme for voltage unbalance compensation in islanded microgrids,” in IECON Proceedings (Industrial Electronics Conference), 2011. doi: 10.1109/IECON.2011.6119815. | |
| dc.relation.references | A. Carlos and Z. De Souza, Microgrids Design and Implementation, 2019th ed. Springer Nature Switzerland AG, 2018. doi: 10.1007/978-3-319-98687-6. | |
| dc.relation.references | B. Ren, X. Sun, S. Chen, and H. Liu, “A Compensation Control Scheme of Voltage Unbalance Using a Combined Three-Phase Inverter in an Islanded Microgrid,” Energies, vol. 11, no. 9, p. 2486, Sep. 2018, doi: 10.3390/en11092486. | |
| dc.relation.references | A. von Jouanne, “Closure on ‘assessment of voltage unbalance,’” IEEE Trans. Power Deliv., vol. 17, no. 4, pp. 1176–1177, 2005, doi: 10.1109/tpwrd.2002.805032. | |
| dc.relation.references | Z. Wei, X. Ru, W. Shi, J. Wang, F. Song, and B. Yu, “Control strategy for microgrid inverter under unbalanced load conditions,” Dianli Xitong Zidonghua/Automation Electr. Power Syst., vol. 40, no. 20, pp. 76–82, 2016, doi: 10.7500/AEPS20151028004. | |
| dc.relation.references | S. Kaur and B. Dwivedi, “Power quality issues and their mitigation techniques in microgrid system- A review,” India Int. Conf. Power Electron. IICPE, vol. 2016-Novem, pp. 1–4, 2017, doi: 10.1109/IICPE.2016.8079543. | |
| dc.relation.references | S. Whaite, B. Grainger, and A. Kwasinski, “Power quality in DC power distribution systems and microgrids,” Energies, vol. 8, no. 5. pp. 4378–4399, 2015. doi: 10.3390/en8054378. | |
| dc.relation.references | Z. Shuai et al., “Microgrid stability: Classification and a review,” Renew. Sustain. Energy Rev., vol. 58, pp. 167–179, 2016, doi: 10.1016/j.rser.2015.12.201. | |
| dc.relation.references | Q. Liu, Y. Tao, X. Liu, Y. Deng, and X. He, “Voltage unbalance and harmonics compensation for islanded microgrid inverters,” IET Power Electron., vol. 7, no. 5, pp. 1055–1063, 2014, doi: 10.1049/iet-pel.2013.0410. | |
| dc.relation.references | M. Omar and G. Scarcella, “Unbalanced and reactive power compensation for grid friendly microgrids,” DIEEI - Dep. Electr. Electron. Comput. Eng. - Univ. Catania, pp. 3.3.3-3.3.3, 2014, doi: 10.1049/cp.2014.0848. | |
| dc.relation.references | T. Ma and G. Cheng, “A novel control method for islanding mode microgrid with unbalanced load,” Proc. 5th IEEE Int. Conf. Electr. Util. Deregulation, Restruct. Power Technol. DRPT 2015, pp. 2134–2138, 2016, doi: 10.1109/DRPT.2015.7432602. | |
| dc.relation.references | G. Anup, B. Ian, and O. Sang-Eun, “Micro-hydropower: A promising decentralized renewable technology and its impact on rural livelihoods,” Sci. Res. Essays, vol. 6, no. 6, pp. 1240–1248, 2011, doi: 10.5897/SRE10.717. | |
| dc.relation.references | P. Ignacio, “A Rising Role for Decentralized Solar Minigrids in Integrated in Uganda,” 2022. | |
| dc.relation.references | W. E. Guacaneme Muñoz, A. F. Rodríguez Benavides, L. M. Gómez Páez, ilmer08@hotmail.com, andres920208@hotmail.com, and pgomezlm@gmail.com, “Emulador de una Microrred Residencial Aislada con un Sistema de Gestión de Energía a Partir de Generación Fotovoltaica y Tecnología V2g,” 2016, [Online]. Available: http://repository.udistrital.edu.co/handle/11349/4485 | |
| dc.relation.references | A. Ivan, C. Vargas, J. David, and L. Segura, “Diseño E Implementación De Una Microrred En La Universidad Distrital Francisco José De Caldas Sede De Ingeniería,” 2017, [Online]. Available: http://repository.udistrital.edu.co/bitstream/11349/6500/1/Diseño e implementacion deuna microrred en la universidad distrital.pdf | |
| dc.relation.references | E. Mojica-Nava, B. W. Toro Tovar, E. E. Gaona García, and C. L. Trujillo Rodríguez, “Control de microrredes eléctricas inteligentes,” p. 78, 2017. | |
| dc.relation.references | D. E. Caldas, M. S. Elvis, E. G. García, L. César, R. Trujillo, and D. C. Bogotá, “Universidad Distrital Francisco José Tesis Doctoral Presentada Por: Dirigida Por,” 2017. | |
| dc.relation.references | C. R. Esmeralda, D. A. Nelson, and R. C. Herbert, “Evaluación de estrategias de control para la reducción del desbalance de tensión en microrredes eléctricas Evaluation of control strategies for the reduction of voltage unbalance in islanded micro-grids,” Simp. Int. sobre Calid. la Energía Eléctrica - SICEL 2023., vol. 21, no. x, p. 19, 2023, doi: https://doi.org/10.15446/sicel.v11.109649. | |
| dc.relation.references | C. L. Góngora Alexander, “Análisis de la calidad de la potencia y suministro eléctrico en el sistema fotovoltaico de 150 kWp de la Universidad Autónoma de Occidente,” Univ. Autónoma Occiodente, vol. 53, no. 9, pp. 1689–1699, 2018. | |
| dc.relation.references | J. R. Lopez Beltran and E. N. Ventura Gamez, “Estudio del desbalance de tensiones y sus efectos en la calidad del producto técnico para sistemas de distribución a nivel industrial,” pp. 1–84, 2019, [Online]. Available: http://ri.ues.edu.sv/id/eprint/19500/ | |
| dc.relation.references | R. D. Medina, “Microrredes Basadas en Electrónica de Potencia: parte II: Control de Potencia Activa y Reactiva,” Ingenius, no. 12, pp. 24–34, 2015, doi: 10.17163/ings.n12.2014.03. | |
| dc.relation.references | J. J. Grainger and W. D. Stevenson, “Análisis de Sistemas de Potencia_Grainger.pdf.” McGraw - Hill /Interamericana de México, S. A. de C. V., p. 743, 1985. | |
| dc.relation.references | Z. Ghanem et al., “Advanced Microgrid Protection Utilizing Zero Sequence Components with Hard-ware-in-the-Loop Testing,” IEEE Access, vol. 13, no. January, pp. 7623–7636, 2025, doi: 10.1109/ACCESS.2025.3527023. | |
| dc.relation.references | X. Eriac, “Xiii eriac décimo tercer encuentro regional iberoamericano de cigr,” Control, vol. 57, no. Cc, pp. 1–8, 2009, doi: 10.1109/QSEPDS.2003.1259312. | |
| dc.relation.references | G. Casaravilla and V. Echinope, “Desbalances - Estudio de alternativas para su estimacion,” Inst. Ing. Eléctrica Montevideo-Uruguay, 2005, [Online]. Available: https://hdl.handle.net/20.500.12008/21167 | |
| dc.relation.references | A. Pavas, “Potencia en sistemas trifásicos y evaluación de la asimetría en condiciones sinusoidales,” pp. 1–12, 2011. | |
| dc.relation.references | P. Q. Hurtado and M. Lafoz, “Compensación de desequilibrios en redes eléctricas mediante convertidores electrónicos de potencia y redes de secuencia,” E.T.S.I. Ind. (UPM)., 2017, doi: 10.2105/AJPH.2013.301744. | |
| dc.relation.references | D. w. Hart, Electrónica de Potencia. 2001. doi: 10.1007/s13398-014-0173-7.2. | |
| dc.relation.references | N. Leonardo and D. Aldana, CONTROL Y GESTIÓN PARA MICRORREDES POTENCIA. Bogotá: Editorial UD, Universidad Distrital Francisco José de Caldas. [Online]. Available: https://editorial.udistrital.edu.co/detalle.php?id=1385&f=6 | |
| dc.relation.references | N. L. Díaz, A. César, L. T. Rodríguez, and A. C. L. Hernández, CONTROL Y GESTION PARA MICRORREDES ELÉCTRICAS BASADAS EN CONVERTIDORES DE POTENCIA, I. Bogotá: Universidad Distrital Francisco José de Caldas, 2022. | |
| dc.relation.references | D. B. Rathnayake et al., “Grid Forming Inverter Modeling, Control, and Applications,” IEEE Access, vol. 9, pp. 114781–114807, 2021, doi: 10.1109/ACCESS.2021.3104617. | |
| dc.relation.references | Q. C. Zhong and G. Weiss, “Synchronverters: Inverters that mimic synchronous generators,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1259–1267, 2011, doi: 10.1109/TIE.2010.2048839. | |
| dc.relation.references | S. Tahir, J. Wang, M. H. Baloch, and G. S. Kaloi, “Digital control techniques based on voltage source inverters in renewable energy applications: A review,” Electron., vol. 7, no. 2, 2018, doi: 10.3390/electronics7020018. | |
| dc.relation.references | L. Hassaine, “TESIS DOCTORAL Implementación de un Control Digital de Potencia Activa y Reactiva para Inversores. Aplicación a Sistemas Fotovoltaicos Conectados a Red,” no. March, p. 264, 2016. | |
| dc.relation.references | T. C. Green and M. Prodanović, “Control of inverter-based micro-grids,” Electr. Power Syst. Res., vol. 77, no. 9, pp. 1204–1213, 2007, doi: 10.1016/j.epsr.2006.08.017. | |
| dc.relation.references | D. E. Olivares et al., “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905–1919, 2014, doi: 10.1109/TSG.2013.2295514. | |
| dc.relation.references | N. Y. Gonzalez Castro, C. A. Cusguen Gomez, E. A. Mojica Nava, and F. A. Pavas Martinez, “Estrategias de control de calidad de energía en microrredes rurales,” Rev. UIS Ing., vol. 16, no. 2, pp. 93–104, 2018, doi: 10.18273/revuin.v16n2-2017009. | |
| dc.relation.references | P. Pérez, “Descripción e infraestructura de una microrred para un entorno residencial,” 2017. [Online]. Available: https://core.ac.uk/download/pdf/211107164.pdf | |
| dc.relation.references | M. S. Mahmoud, S. Azher Hussain, and M. A. Abido, “Modeling and control of microgrid: An overview,” J. Franklin Inst., vol. 351, no. 5, pp. 2822–2859, 2014, doi: 10.1016/j.jfranklin.2014.01.016. | |
| dc.relation.references | M. Savaghebi, A. Jalilian, J. C. Vasquez, and J. M. Guerrero, “Secondary control scheme for voltage unbalance compensation in an Islanded droop-controlled microgrid,” IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 797–807, 2012, doi: 10.1109/TSG.2011.2181432. | |
| dc.relation.references | J. M. Guerrero, “Advanced Control Architectures for Intelligent Microgrids,” APEC 2011, Inst. Energy Technol. Aalborg Univ., vol. 1, no. 1, pp. 1–73, 2011. | |
| dc.relation.references | M. Savaghebi, A. Jalilian, J. C. Vasquez, and J. M. Guerrero, “Autonomous voltage unbalance compensation in an islanded droop-controlled microgrid,” IEEE Trans. Ind. Electron., 2013, doi: 10.1109/TIE.2012.2185914. | |
| dc.relation.references | P. Teodorescu, Remus ; Liserre, Marco; Rodríguez, Grid Converters for Photovoltaic and Wind Systems. 2011. | |
| dc.relation.references | F. Guo, C. Wen, J. Mao, J. Chen, and Y. D. Song, “Distributed Cooperative Secondary Control for Voltage Unbalance Compensation in an Islanded Microgrid,” IEEE Trans. Ind. Informatics, vol. 11, no. 5, pp. 1078–1088, 2015, doi: 10.1109/TII.2015.2462773. | |
| dc.relation.references | M. Savaghebi, J. M. Guerrero, A. Jalilian, and J. C. Vasquez, “Secondary control for voltage unbalance compensation in an islanded microgrid,” in 2011 IEEE International Conference on Smart Grid Communications, SmartGridComm 2011, 2011. doi: 10.1109/SmartGridComm.2011.6102373. | |
| dc.relation.references | M. Savaghebi, A. Jalilian, J. C. Vasquez, and J. M. Guerrero, “Secondary control for voltage quality enhancement in microgrids,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1893–1902, 2012, doi: 10.1109/TSG.2012.2205281. | |
| dc.relation.references | A. R. Martínez, “Análisis comparativo de controladores clásicos en inversores con aplicaciones en microrredes,” Ing. Eléctrica, 2020, [Online]. Available: https://ciencia.lasalle.edu.co/ing_electrica/582 | |
| dc.relation.references | A. Dimeas, A. Tsikalakis, G. Kariniotakis, and G. Korres, “2. Microgrid Control Issues,” Microgrids Archit. Control, 2014. | |
| dc.relation.references | D. Yazdani, M. Mojiri, A. Bakhshai, and G. Joós, “A fast and accurate synchronization technique for extraction of symmetrical components,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 674–684, 2009, doi: 10.1109/TPEL.2008.2010321. | |
| dc.relation.references | M. M. Canteli and R. Bansal, POWER QUALITY – MONITORING , ANALYSIS AND ENHANCEMENT Edited by Ahmed Faheem Zobaa. | |
| dc.relation.references | D. Yazdani, M. Mojiri, A. Bakhshai, and G. Joós, “A fast and accurate synchronization technique for extraction of symmetrical components,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 674–684, 2009, doi: 10.1109/TPEL.2008.2010321. | |
| dc.relation.references | D. Sánchez Guerrero, “Métodos de medida para fenómenos de calidad de la energía según el estándar IEC 61000-4-30.,” 2021. | |
| dc.relation.references | M. Savaghebi, J. M. Guerrero, A. Jalilian, and J. C. Vasquez, “Experimental evaluation of voltage unbalance compensation in an islanded microgrid,” in Proceedings - ISIE 2011: 2011 IEEE International Symposium on Industrial Electronics, 2011. doi: 10.1109/ISIE.2011.5984374. | |
| dc.relation.references | O. A. Morfín Garduño, L. A. Zavala Rubio, F. Ornelas Téllez, and R. Ramírez Betancour, “Compensación de potencia reactiva mediante el control robusto de un STATCOM en un sistema de potencia,” Ing. Investig. y Tecnol., vol. 22, no. 3, pp. 1–13, 2021, doi: 10.22201/fi.25940732e.2021.22.3.020. | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Convertidores electrónicos de potencia | |
| dc.subject | Desbalance de tensión | |
| dc.subject | Microrredes | |
| dc.subject | Control de tensión | |
| dc.subject | Factor de desbalance | |
| dc.subject.keyword | Electronic converter | |
| dc.subject.keyword | AC microgrids | |
| dc.subject.keyword | Voltage Unbalance | |
| dc.subject.keyword | Control strategies | |
| dc.subject.keyword | Unbalance factor | |
| dc.subject.lemb | Maestría en Ingeniería - Énfasis en Ingeniería Electrónica -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Microrredes eléctricas | |
| dc.subject.lemb | Ingeniería eléctrica | |
| dc.subject.lemb | Electrónica de potencia | |
| dc.subject.lemb | Sistemas eléctricos | |
| dc.title | Estrategia de control para la reducción del desbalance de tensión en microredes eléctricas. | |
| dc.title.titleenglish | Control strategy for reducing voltage imbalance in electric microgrids. | |
| dc.type | masterThesis | |
| dc.type.degree | Investigación-Innovación | |
| dc.type.driver | info:eu-repo/semantics/masterThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
