Estimación de la eficiencia de detección de la red total de rayos de Earth Networks para el territorio colombiano

dc.contributor.advisorRojas Cubides, Herbert Enrique
dc.contributor.advisorGarcia Miranda, Diana Stella
dc.contributor.authorBuritica Angulo , Rominger
dc.contributor.authorAza Beltrán, Brenda Vannessa
dc.contributor.orcidRojas Cubides; Herbert Enrique [0000-0003-1253-6964]
dc.date.accessioned2025-04-02T20:24:30Z
dc.date.available2025-04-02T20:24:30Z
dc.date.created2024-12-05
dc.descriptionEsta monografía estima la eficiencia de detección (DE) de la Red Total de Rayos de Earth Networks (ENTLN) en Colombia para descargas nube-tierra (CG) con los registros tomados en el año 2021. Iniciando por una descripción sobre el funcionamiento de las redes de detección de rayos, abordando conceptos sobre las descargas eléctricas atmosféricas y la propagación de los campos electromagnéticos generados por este fenómeno. Se describen los sistemas de detección y localización, que usan métodos como la localización por dirección magnética (MDF) y el tiempo de arribo (TOA), utilizados en redes privadas y abiertas a nivel global. Se analiza la red ENTLN, se describe su infraestructura y la distribución de sus sensores en el territorio colombiano. Se explican de manera general algunos sistemas de información geográfica (GIS) que son fundamentares para comprender la naturaleza de los datos disponibles y suministrados por la red. Con base en esta información, se plantea un proceso de extracción y tratamiento de datos basado en técnicas de clasificación, filtrado y procesamiento geoespacial, con el objetivo de construir mapas de eficiencia de detección y densidad de descargas a tierra (DDT). Para la estimación de la DE, se utiliza el procedimiento CIGRE C4.404, el cual permite estimar la eficiencia de detección a partir de la distribución acumulada de corriente de las descargas CG que ocurren en un área delimitada. Este procedimiento se implementa mediante un algoritmo desarrollado en Python, que facilita la clasificación, filtrado y visualización de los datos y los resultados, el cual se integra mediante una herramienta computacional denominada ED4LLS que permite adicionalmente la generación y visualización de mapas de DE y DDT. Se presentan los resultados mediante mapas de eficiencia de detección, con valores superiores al 80% en la mayor parte del territorio colombiano y con algunas regiones alcanzando eficiencias cercanas al 100%. Estos valores se correlacionan con las zonas de mayor actividad de rayos CG, tales como Antioquia y Chocó. Finalmente, para validar los resultados, se comparan con estudios previos y otras fuentes académicas. Con base en estos hallazgos, se concluye que la red ENTLN presenta un alto desempeño en la detección de descargas nube-tierra en Colombia, y se proponen futuras líneas de investigación para continuar mejorando la precisión de los sistemas de detección y monitoreo de rayos en el país.
dc.description.abstractThis research study estimates the detection efficiency (DE) of the Earth Networks Total Lightning Network (ENTLN) in Colombia for cloud-to-ground (CG) discharges using records collected in 2021. The study begins with a description of the operation of lightning detection networks, covering fundamental concepts related to atmospheric electrical discharges and the propagation of electromagnetic fields generated by this phenomenon. Additionally, it describes the detection and localization systems, which utilize methods such as Magnetic Direction Finding (MDF) and Time of Arrival (TOA), both of which are widely used in private and open lightning detection networks worldwide. The analysis focuses on the ENTLN network, detailing its infrastructure and the spatial distribution of its sensors throughout Colombia. A general overview of Geographic Information Systems (GIS) is provided, as they are essential for understanding the nature of the available data supplied by the network. Based on this information, a data extraction and processing methodology is proposed, incorporating classification, filtering, and geospatial processing techniques. The goal is to construct detection efficiency (DE) maps and ground flash density (GFD) maps. For DE estimation, the study applies the CIGRE C4.404 procedure, which allows for the assessment of detection efficiency based on the cumulative current distribution of CG discharges occurring within a defined area. This procedure is implemented through a Python-based algorithm that facilitates the classification, filtering, and visualization of both data and results. This algorithm is integrated into a computational tool called ED4LLS, which also enables the generation and visualization of DE and GFD maps. The results are presented through detection efficiency maps, showing values exceeding 80% across most of the Colombian territory, with some regions reaching efficiencies close to 100%. These high-efficiency areas correlate with regions of intense CG lightning activity, such as Antioquia and Chocó. Finally, to validate the findings, the results are compared with previous studies and other academic sources. Based on these analyses, the study concludes that the ENTLN network demonstrates a high performance in detecting cloud-to-ground discharges in Colombia. Additionally, future research directions are proposed to further enhance the accuracy of lightning detection and monitoring systems in the country.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/94545
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesD. Aranguren, “Desempeño de Sensores de Campo Electrostatico en Sistemas de Alerta de Tormentas,” Universidad Nacional de Colombia, Bogotá D.C., 2011.
dc.relation.referencesN. Theethayi, “Electromagnetic Interference in Distributed Outdoor Electrical Systems, with an Emphasis on Lightning Interaction with Electrified Railway Network,” Uppsala University, Disciplinary Domain of Science and Technology, Upssala, Sweden, 2005.
dc.relation.referencesJ. Ely, “Electromagnetic Interference to Flight Navigation and Communication Systems: New Strategies in the Age of Wireless,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, and C. C. Collection of Technical Papers - AIAA Guidance, Navigation, Ed., Reston, Virigina: American Institute of Aeronautics and Astronautics, Aug. 2005, pp. 1–4. doi: 10.2514/6.2005-6361.
dc.relation.referencesH. Torres-Sánchez, “¿Qué rayos sabemos?,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 34, no. 131, pp. 193–208, Dec. 2023, doi: 10.18257/raccefyn.34(131).2010.2412.
dc.relation.referencesJ. C. Inampúes Borda, “Integración de los sistemas de alerta de tormentas eléctricas en redes inteligentes,” Universidad Nacional de Colombia, Bogotá D.C., 2014.
dc.relation.referencesH. D. Betz et al., “LINET—An international lightning detection network in Europe,” Atmos. Res., vol. 91, no. 2–4, pp. 564–573, Feb. 2009, doi: 10.1016/j.atmosres.2008.06.012.
dc.relation.referencesJ. S. Fernandez-Buitrago, “Relación entre la densidad de descargas a tierra (DDT) y algunos aspectos de la geografía colombiana usando la información del sistema de localización de rayos GLD360 (periodo 2013-2018),” Universidad Distrital Francisco José de Caldas, Bogotá D.C., 2022.
dc.relation.referencesJ. Barreto-Castañeda, “Relación entre aspectos socio-económicos de la población colombiana y la mortalidad por descargas eléctricas atmosféricas para el periodo 2008-2018,” Universidad Distrital Francisco José de Caldas, Bogotá D.C., 2022.
dc.relation.referencesD. E. Villamil, H. E. Rojas, F. Santamaria, R. L. Holle, and W. Brooks, “Analysis of the Lightning Mortality Risk in the Provinces of Cundinamarca - Colombia,” in 2022 36th International Conference on Lightning Protection (ICLP), Conf. Lightning Protection (ICLP), Ed., Piscataway, NJ, USA: IEEE, Oct. 2022, pp. 545–548. doi: 10.1109/ICLP56858.2022.9942616.
dc.relation.referencesO. A. Rodriguez, O. C. Rocha, K. Morcillo, and D. E. Villamil, “Promoting Lightning Safety inside School Articulation Programs at the Colombian National Training Service (SENA),” in 2022 36th International Conference on Lightning Protection (ICLP), IEEE, Oct. 2022, pp. 504–507. doi: 10.1109/ICLP56858.2022.9942577.
dc.relation.referencesJ. A. Barreto, J. S. Fernandez, D. E. Villamil, H. E. Rojas, and F. Santamaria, “Analysis of the Certified Lightning Fatalities and their Relation with Rainfall in Colombia for the Period 2008–2018,” in 2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA), IEEE, Sep. 2021, pp. 01–06. doi: 10.1109/ICLPandSIPDA54065.2021.9627416.
dc.relation.referencesD. E. Villamil, N. Navarrete, and M. A. Cooper, “Keraunoparalysis and burning thatch: A proposed explanation for severe lightning injuries reported in developing countries,” Electr. Power Syst. Res., vol. 197, p. 107301, Aug. 2021, doi: 10.1016/j.epsr.2021.107301.
dc.relation.referencesA. S. Cruz-Bernal, “Evaluación del riesgo por rayos para Colombia,” Universidad Nacional de Colombia, Bogotá D.C., 2019.
dc.relation.referencesD. E. Pedgley, “Luke Howard and his clouds,” Weather, vol. 58, no. 2, pp. 51–55, Feb. 2003, doi: 10.1256/wea.157.02.
dc.relation.referencesP. Galison, A Material Culture of Microphysics, IL: Univer. Chicago, 1997.
dc.relation.referencesJ. A. López Trujillo, “Metodología para predicción de tormentas eléctricas a partir de mediciones de campo electrostático ambiental y sistemas de localización de rayos en zona montañosa,” Universidad Nacional de Colombia, 2011.
dc.relation.referencesD. R. Fitzgerald, Electrical Structure of Large Overwater Shower Clouds. 1974.
dc.relation.referencesR. Zamorano Ulloa, “The Electric Fields of Lightning Clouds in Atmospheres of Different Properties,” in Electromagnetic Field in Advancing Science and Technology, IntechOpen, 2023. doi: 10.5772/intechopen.110092.
dc.relation.referencesJ. A. Piedra, “Estudio de los rayos en el País vasco y su relación con la precipitación,” Universidad del País Vasco-Euskal Herriko Unibertsitatea, Vitoria –Gasteiz, 2010.
dc.relation.referencesE. R. Williams, “The Electrification of Thunderstorms,” Sci. Am., vol. 259, no. 5, pp. 88–99, Nov. 1988, doi: 10.1038/scientificamerican1188-88.
dc.relation.referencesM. A. Uman, The Lightning Discharge. New York, 2001.
dc.relation.referencesV. a Rakov and M. A. Uman, Lightning: Physics and Effects. New York, 2003.
dc.relation.referencesL. M. Morales García and A. Santa Acosta, “Diseño y construcción de un módulo de adquisición automática para un sistema de medición de campo eléctrico producido por descargas atmosféricas,” 2021.
dc.relation.referencesH. E. Rojas, “Técnicas avanzadas para el tratamiento y procesamiento de señales de campos electromagnéticos generados por rayos,” p. 221, 2018.
dc.relation.referencesM. A. Uman, The Art and Science of Lightning Protection. Cambridge University Press, 2008. doi: 10.1017/CBO9780511585890.
dc.relation.referencesV.A. Rakov, “Lightning phenomenology and parameters important for lightning protection,” I. I. S. On and L. Protection, Eds., Foz do Iguaçu, Brazil: IX International Symposium on Lightning Protection, 2007.
dc.relation.referencesV. A. Rakov and G. R. Huffines, “Return-Stroke Multiplicity of Negative Cloud-to-Ground Lightning Flashes,” J. Appl. Meteorol., vol. 42, no. 10, pp. 1455–1462, Oct. 2003, doi: 10.1175/1520-0450(2003)042<1455:RMONCL>2.0.CO;2
dc.relation.referencesM. M. F. Saba et al., “High‐speed video observations of positive lightning flashes to ground,” J. Geophys. Res. Atmos., vol. 115, no. D24, Dec. 2010, doi: 10.1029/2010JD014330.
dc.relation.referencesK. L. Cummins, M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, “A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network,” J. Geophys. Res. Atmos., vol. 103, no. D8, pp. 9035–9044, Apr. 1998, doi: 10.1029/98JD00153
dc.relation.referencesY. Pan, D. Zheng, and Y. Zhang, “The characteristic of negative cloud-to-ground lightning with multiple return strokes,” in 2023 12th Asia-Pacific International Conference on Lightning (APL), IEEE, Jun. 2023, pp. 1–4. doi: 10.1109/APL57308.2023.10182214
dc.relation.referencesS. Shalev, B. Ziv, H. Saaroni, and Y. Yair, “Lightning multiplicity characteristics in Eastern Mediterranean thunderstorms,” ResearchGate, 2012.
dc.relation.referencesC.-L. Wooi, Z. Abdul-Malek, B. Salimi, N. A. Ahmad, K. Mehranzamir, and S. Vahabi-Mashak, “A Comparative Study on the Positive Lightning Return Stroke Electric Fields in Different Meteorological Conditions,” Adv. Meteorol., vol. 2015, pp. 1–12, 2015, doi: 10.1155/2015/307424
dc.relation.referencesA. Nag and V. A. Rakov, “Positive lightning: An overview, new observations, and inferences,” J. Geophys. Res. Atmos., vol. 117, no. D8, p. n/a-n/a, Apr. 2012, doi: 10.1029/2012JD017545
dc.relation.referencesV. A. Rakov, “A Review of Positive and Bipolar Lightning Discharges,” Bull. Am. Meteorol. Soc., vol. 84, no. 6, pp. 767–776, Jun. 2003, doi: 10.1175/BAMS-84-6-767
dc.relation.references“III. Investigations on lighting discharges and on the electric field of thunderstorms,” Philos. Trans. R. Soc. London. Ser. A, Contain. Pap. a Math. or Phys. Character, vol. 221, no. 582–593, pp. 73–115, Jan. 1921, doi: 10.1098/rsta.1921.0003
dc.relation.referencesM. C. Kelley, “Atmospheric Electricity,” in The Earth’s Electric Field, Elsevier, 2014, pp. 29–52. doi: 10.1016/B978-0-12-397886-8.00002-8.
dc.relation.referencesH. Emmanuel, S. Garc, R. A. Hincapi, A. G. Rend, S. El, and S. El, “Metodología para el planeamiento de sistemas de distribución considerando incertidumbre en la demanda Methodology to distribution system planning considering demand uncertainty,” vol. 19, no. 1, pp. 19–28, 2014.
dc.relation.referencesC. R. P. Jimenez, “Desarrollo e implementación de una estación de medición enlazada a la red abierta de detección y localización de rayos Blitzortung,” Universidad Distrital Francisco José de Caldas, Bogotá D.C., 2022.
dc.relation.referencesF. Soddy, “Electrons, or the Nature and Properties of Negative Electricity,” Nature, vol. 76, no. 1958, pp. 25–26, May 1907, doi: 10.1038/076025a0.
dc.relation.referencesJ. Ferling and H. W. Brands, “The First American: The Life and Times of Benjamin Franklin,” J. Am. Hist., vol. 88, no. 4, p. 1508, Mar. 2002, doi: 10.2307/2700631.
dc.relation.referencesD. MacGorman, W. D. Rust, and E. Williams, The Electrical Nature of Storms. New York, United States: Oxford University Press, Inc., 1998.
dc.relation.referencesF. H. W. Z. Z. F. C. Bouquegneau and C. Mazzetti, “Parameters of lightning current given in IEC 62305—Background, experience and outlook,” 29th Int. Conf. Light. Prot. ICLP, pp. 1–22, 2008.
dc.relation.referencesJ. M. Dias Pereira, “The history and technology of oscilloscopes,” IEEE Instrum. Meas. Mag., vol. 9, no. 6, pp. 27–35, Dec. 2006, doi: 10.1109/MIM.2006.250640.
dc.relation.referencesL. Antunes et al., “Characterization of lightning observed by multiple high-speed cameras,” in 2013 International Symposium on Lightning Protection (XII SIPDA), IEEE, Oct. 2013, pp. 17–25. doi: 10.1109/SIPDA.2013.6729178.
dc.relation.referencesR. U. Abbasi et al., “First High‐Speed Video Camera Observations of a Lightning Flash Associated With a Downward Terrestrial Gamma‐Ray Flash,” Geophys. Res. Lett., vol. 50, no. 14, Jul. 2023, doi: 10.1029/2023GL102958.
dc.relation.referencesG. Diendorfer, “LLS performance validation using lightning to towers,” Austrian Electrotech. Assoc., pp. 1–2, 2010
dc.relation.referencesS. Visacro and M. Guimarães, “Recent lightning measurements and results at Morro do Cachimbo Station,” Light. Res. Cent. Fed. Univ. Minas Gerais, pp. 1–5, 2014
dc.relation.referencesS. Visacro, A. Soares, M. A. O. Schroeder, L. C. L. Cherchiglia, and V. J. de Sousa, “Statistical analysis of lightning current parameters: Measurements at Morro do Cachimbo Station,” J. Geophys. Res. Atmos., vol. 109, no. D1, Jan. 2004, doi: 10.1029/2003JD003662
dc.relation.referencesI. Stucke et al., “Upward Lightning at the Gaisberg Tower: The Larger‐Scale Meteorological Influence on the Triggering Mode and Flash Type,” J. Geophys. Res. Atmos., vol. 128, no. 10, May 2023, doi: 10.1029/2022JD037776
dc.relation.referencesC. Zhang et al., “Influence of the Canton Tower on the cloud‐to‐ground lightning in its vicinity,” J. Geophys. Res. Atmos., vol. 122, no. 11, pp. 5943–5954, Jun. 2017, doi: 10.1002/2016JD026229
dc.relation.referencesM. Azadifar et al., “Evaluation of the performance characteristics of the European Lightning Detection Network EUCLID in the Alps region for upward negative flashes using direct measurements at the instrumented Säntis Tower,” J. Geophys. Res. Atmos., vol. 121, no. 2, pp. 595–606, Jan. 2016, doi: 10.1002/2015JD024259
dc.relation.referencesC. Romero et al., “A system for the measurements of lightning currents at the Säntis Tower,” Electr. Power Syst. Res., vol. 82, no. 1, pp. 34–43, Jan. 2012, doi: 10.1016/j.epsr.2011.08.011
dc.relation.referencesC. Romero, “Measurement of Lightning Currents Using a Combination of Rogowski Coils and B-Dot Sensors,” J. Light. Res., vol. 4, no. 1, pp. 71–77, Jul. 2012, doi: 10.2174/1652803401204010071
dc.relation.referencesW. Janischewskyj, A. M. Hussein, V. Shostak, I. Rusan, J.-X. Li, and J.-S. Chang, “Statistics of lightning strikes to the Toronto Canadian National Tower (1978-1995),” IEEE Trans. Power Deliv., vol. 12, no. 3, pp. 1210–1221, Jul. 1997, doi: 10.1109/61.636949
dc.relation.referencesA. M. Hussein, S. Kazazi, M. Anwar, M. Yusouf, and P. Liatos, “Characteristics of the most intense lightning storm ever recorded at the CN Tower,” J. Atmos. Solar-Terrestrial Phys., vol. 154, pp. 195–206, Feb. 2017, doi: 10.1016/j.jastp.2016.05.002
dc.relation.referencesT. Shindo et al., “Lightning observations at Tokyo Skytree,” in 2014 International Symposium on Electromagnetic Compatibility, IEEE, Sep. 2014, pp. 583–588. doi: 10.1109/EMCEurope.2014.6930973.
dc.relation.referencesJ. Jerauld et al., “An evaluation of the performance characteristics of the U.S. National Lightning Detection Network in Florida using rocket‐triggered lightning,” J. Geophys. Res. Atmos., vol. 110, no. D19, Oct. 2005, doi: 10.1029/2005JD005924
dc.relation.referencesA. Nag et al., “Evaluation of U.S. National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004–2009,” J. Geophys. Res., vol. 116, no. D2, p. D02123, Jan. 2011, doi: 10.1029/2010JD014929
dc.relation.referencesD. Zhang, K. L. Cummins, P. Bitzer, and W. J. Koshak, “Evaluation of the Performance Characteristics of the Lightning Imaging Sensor,” J. Atmos. Ocean. Technol., vol. 36, no. 6, pp. 1015–1031, Jun. 2019, doi: 10.1175/JTECH-D-18-0173.1
dc.relation.referencesS. Mallick et al., “Evaluation of the GLD360 performance characteristics using rocket‐and‐wire triggered lightning data,” Geophys. Res. Lett., vol. 41, no. 10, pp. 3636–3642, May 2014, doi: 10.1002/2014GL059920
dc.relation.referencesS. Mallick et al., “Performance characteristics of the NLDN for return strokes and pulses superimposed on steady currents, based on rocket‐triggered lightning data acquired in Florida in 2004–2012,” J. Geophys. Res. Atmos., vol. 119, no. 7, pp. 3825–3856, Apr. 2014, doi: 10.1002/2013JD021401
dc.relation.referencesS. Mallick et al., “Performance characteristics of the ENTLN evaluated using rocket-triggered lightning data,” Electr. Power Syst. Res., vol. 118, pp. 15–28, Jan. 2015, doi: 10.1016/j.epsr.2014.06.007
dc.relation.referencesL. Chen et al., “Performance Evaluation for a Lightning Location System Based on Observations of Artificially Triggered Lightning and Natural Lightning Flashes,” J. Atmos. Ocean. Technol., vol. 29, no. 12, pp. 1835–1844, Dec. 2012, doi: 10.1175/JTECH-D-12-00028.1
dc.relation.referencesV. Mochalov et al., “VLF Sensors for Lightning Research,” Procedia Eng., vol. 168, pp. 1721–1724, 2016, doi: 10.1016/j.proeng.2016.11.499
dc.relation.referencesW. Yin et al., “Lightning Detection and Imaging Based on VHF Radar Interferometry,” Remote Sens., vol. 13, no. 11, p. 2065, May 2021, doi: 10.3390/rs13112065
dc.relation.referencesV. Cooray, The Mechanism of the Lightning Flash. Institution of Engineering and Technology, 2014. doi: 10.1049/PBPO069E
dc.relation.referencesA. Galvan y M. Fernando, “Operative Characteristics of a Parallel-plate Antenna to Measure Vertical Electric Fields from Lightning Flashes,” Uppsala Univ., 2000
dc.relation.referencesC. Younes-Velosa, “Caracterización de parámetros del rayo en Colombia con base en sistemas de localización terrestres y satelitales, 20 años de análisis,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 44, no. 173, pp. 960–973, Dec. 2020, doi: 10.18257/raccefyn.1171
dc.relation.referencesHans Volland, Handbook of Atmospheric Electrodynamics, Volume I, 1st Editio. CRC Press, 2017. doi: 10.1201/9780203719503
dc.relation.referencesK. L. Cummins and M. J. Murphy, “An Overview of Lightning Locating Systems: History, Techniques, and Data Uses, With an In-Depth Look at the U.S. NLDN,” IEEE Trans. Electromagn. Compat., vol. 51, no. 3, pp. 499–518, Aug. 2009, doi: 10.1109/TEMC.2009.2023450
dc.relation.referencesC. Weidman, “Lightning Detection & Location at VLF/LF Using Magnetic Direction Finding & Time of Arrival: Techniques used to locate lightning,” Arizona, 2013
dc.relation.referencesA. Nag, M. J. Murphy, W. Schulz, and K. L. Cummins, “Lightning locating systems: Insights on characteristics and validation techniques,” Earth Sp. Sci., vol. 2, no. 4, pp. 65–93, Apr. 2015, doi: 10.1002/2014EA000051
dc.relation.referencesD. R. Poelman, “On the Science of Lightning:An Overview,” in On the Science of Lightning:An Overview, I. R. M. de Bélgica, Ed., Bruxelles: Royal Meteorological Institute of Belgium, 2010, ch. The Lightn, pp. 9–27
dc.relation.referencesG. Diendorfer et al., “Review of CIGRE Report ‘Cloud-to-Ground Lightning Parameters Derived from Lightning Location Systems – The Effects of System Performance,’” Cigre, no. 376, 2009
dc.relation.referencesH. B. Hu, Y. Wang, and X. Zhang, “An algorithm for estimating the detection efficiency of a lightning location system,” Geomatics, Nat. Hazards Risk, vol. 10, no. 1, pp. 1493–1511, 2019, doi: 10.1080/19475705.2019.1585968
dc.relation.referencesR. C. Moore, N. A. Dupree, J. T. Pilkey, D. M. Jordan, and M. A. Uman, “An analysis of ELF sferics produced by rocket-triggered lightning,” in 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), IEEE, Aug. 2014, pp. 1–1. doi: 10.1109/URSIGASS.2014.6929896
dc.relation.referencesM. Le Boulch, J. Hamelin, and C. Weidman, “UHF-VHF Radiation from Lightning,” Electromagnetics, vol. 7, no. 3–4, pp. 287–331, Jan. 1987, doi: 10.1080/02726348708908187
dc.relation.referencesT. Morimoto et al., “An overview of VHF lightning observations by digital interferometry from ISS/JEM-GLIMS,” Earth, Planets Sp., vol. 68, no. 1, p. 145, Dec. 2016, doi: 10.1186/s40623-016-0522-1
dc.relation.referencesR. . Lay, E.H., Rodger, C.J., Holzworth, R.H., & Dowden, “Introduction to the World Wide Lightning LocationNetwork (WWLLN),” Geophys. Res. Abstr., vol. 7, 2005
dc.relation.referencesR. K. Said, U. S. Inan, and K. L. Cummins, “Long-range lightning geolocation using a VLF radio atmospheric waveform bank,” J. Geophys. Res., vol. 115, no. D23, p. D23108, Dec. 2010, doi: 10.1029/2010JD013863
dc.relation.referencesS. D. Rudlosky and M. Rudlosky, Scott D.College Park, “Evaluating Ground-Based Lightning Detection Networks using TRMM/LIS Observations,” 23rd International Lightning Detection Conference, 18-19 Mar 2014, Tucson, Arizona, pp. 1–2, 2014
dc.relation.referencesRyan Said and M. Murphy, “GLD360 Upgrade: Performance Analysis and Applications,” Vaisala, Inc., Louisville, Color., vol. 24th Inter, 2016
dc.relation.referencesT. Systems, “Global Lightning Network.” [Online]. Available: http://toasystems.com/our-network/global-lightning/
dc.relation.referencesH. Höller et al., “Lightning characteristics observed by a VLF/LF lightning detection network (LINET) in Brazil, Australia, Africa and Germany,” Atmos. Chem. Phys., vol. 9, no. 20, pp. 7795–7824, Oct. 2009, doi: 10.5194/acp-9-7795-2009
dc.relation.referencesT. Zinner, C. Forster, E. de Coning, and H.-D. Betz, “Validation of the Meteosat storm detection and nowcasting system Cb-TRAM with lightning network data – Europe and South Africa,” Atmos. Meas. Tech., vol. 6, no. 6, pp. 1567–1583, Jun. 2013, doi: 10.5194/amt-6-1567-2013
dc.relation.referencesD. Aranguren, J. López, J. Inampués, H. Torres, and H. Betz, “Cloud-to-ground lightning activity in Colombia and the influence of topography,” J. Atmos. Solar-Terrestrial Phys., vol. 154, pp. 182–189, 2017, doi: 10.1016/j.jastp.2016.08.010
dc.relation.referencesD. Aranguren et al., “Colombian Total Lightning Detection Network and early detection of failure risks for power systems,” in Simposio Internacional sobe Calidad de la Energía Eléctrica, SICEL, Ed., Medellin, Colombia, 2013, pp. 1–2
dc.relation.referencesD. E. V. Sierra, “Characterization of the Lightning Safety Education Programs,” 2017
dc.relation.referencesV. Cooray, “Response of CIGRE and CCIR lightning flash counters to the electric field changes from lightning: A theoretical study,” J. Geophys. Res. Atmos., vol. 91, no. D2, pp. 2835–2842, Feb. 1986, doi: 10.1029/JD091iD02p02835
dc.relation.referencesH. Torres-Sánchez, El Rayo: mitos, leyendas, ciencia y tecnología, 1st. Bogotá D.C.: Universidad Nacional de Colombia, Facultad de Ingeniería, 2002
dc.relation.referencesJ. S. Fernandez-Buitrago, “Algunos Aspectos De La Geografía Colombiana Usando La Información Del Sistema De Localización De Rayos Gld360 Relación Entre La Densidad De Descargas a Tierra ( Ddt ) Y Información Del Sistema De Localización De Rayos Gld360,” vol. 360, 2022
dc.relation.referencesENTLN, “Comprehensive Solutions for Worldwide Lightning Detection and Severe Weather Prediction and Advanced Alerting,” 2012
dc.relation.referencesENLTLN, “Earth Networks _ 2019 U.S. Lightning Report,” 2019, pp. 6–7
dc.relation.referencesV. Bui, L. C. Chang, and S. Heckman, “A performance study of earth networks total lighting network (ENTLN) and worldwide lightning location network (WWLLN),” Proc. - 2015 Int. Conf. Comput. Sci. Comput. Intell. CSCI 2015, pp. 386–391, 2016, doi: 10.1109/CSCI.2015.120
dc.relation.referencesC. Liu and S. Heckman, “Total Lightning Detection and Real-Time Severe Storm Prediction,” Wmo Tech. Conf. Meteorol. Environ. Instruments Methods Obs., pp. 1–24, 2012
dc.relation.referencesJ. Lapierre, M. Hoekzema, M. Stock, C. Merrill, and S. C. Thangaraj, “Earth networks lightning network and dangerous thunderstorm alerts,” 2019 11th Asia-Pacific Int. Conf. Light. APL 2019, pp. 1–5, 2019, doi: 10.1109/APL.2019.8816032
dc.relation.referencesY. Zhu, M. Stock, J. Lapierre, and E. DiGangi, “Upgrades of the Earth Networks Total Lightning Network in 2021,” Remote Sens., vol. 14, no. 9, p. 2209, May 2022, doi: 10.3390/rs14092209
dc.relation.referencesENTLN, “EN Lightning_Sensor_Techspecs_September 2021,” 2021
dc.relation.referencesK. P. Naccarato and O. Pinto, “Lightning detection in Southeastern Brazil from the new Brazilian Total Lightning Network (BrasilDAT),” in 2012 International Conference on Lightning Protection (ICLP), IEEE, Sep. 2012, pp. 1–9. doi: 10.1109/ICLP.2012.6344294
dc.relation.referencesE. Tiempo, “Canalclima.com especializados en el clima de Colombia,” Bogotá DC., 2010
dc.relation.referencesGeoInnova, “¿Qué es un SIG, GIS o Sistema de Información Geográfica?” [Online]. Available: https://geoinnova.org/blog-territorio/
dc.relation.referencesZ. Y. Peña-Beltran and J. D. Pabon-Caicedo, “Climatología de las granizadas en Colombia,” Cuad. Geogr. Rev. Colomb. Geogr., vol. 29, no. 1, pp. 259–282, Jan. 2020, doi: 10.15446/rcdg.v29n1.75438
dc.relation.referencesB. H. Lynn, Y. Yair, C. Price, G. Kelman, and A. J. Clark, “Predicting Cloud-to-Ground and Intracloud Lightning in Weather Forecast Models,” Weather Forecast., vol. 27, no. 6, pp. 1470–1488, Dec. 2012, doi: 10.1175/WAF-D-11-00144.1
dc.relation.referencesD. Aranguren, “Sistema Colombiano de Detección Total de Rayos,” Work. Desempeño Sist. Eléctricos Potencia, 2018
dc.relation.referencesF. Ahmed, S. Hasan, I. M. Mahbubul, M. Abul Kalam Mallik, and M. Nafiz Hossen, “GIS-based spatial analysis for lightning scenario in Bangladesh,” Heliyon, vol. 10, no. 7, p. e28708, Apr. 2024, doi: 10.1016/j.heliyon.2024.e28708.
dc.relation.referencesM. Boneet, “Status of lightning detection Performances and limitations of existing systems,” CIGRE, vol. 21, p. 22, 2008
dc.relation.referencesCIGRE, “Methods for compensation of relative network detection efficiency C4. 404,” in Power system technical performance (C4), CIGRE, 2009, ch. Cloud-to-G
dc.relation.referencesK. P. Naccarato and O. Pinto, “Improvements in the detection efficiency model for the Brazilian lightning detection network (BrasilDAT),” Atmos. Res., vol. 91, no. 2–4, pp. 546–563, Feb. 2009, doi: 10.1016/j.atmosres.2008.06.019
dc.relation.referencesD. E. Villamil, F. Santamaria, and W. Diaz, “Lightning Disaster Risk assessment method in Colombia,” in 2015 International Symposium on Lightning Protection (XIII SIPDA), IEEE, Sep. 2015, pp. 146–152. doi: 10.1109/SIPDA.2015.7339315
dc.relation.referencesD. E. Villamil, “Lightning Safety Module Developed in Colombia,” Bogotá D.C., 2021
dc.relation.referencesS. Heckman, C. Liu, and C. Sloop, “Earth networks lightning overview,” 2014 Int. Conf. Light. Prot. ICLP 2014, pp. 1866–1869, 2014, doi: 10.1109/ICLP.2014.6973433
dc.relation.referencesM. Marchand, K. Hilburn, and S. D. Miller, “Geostationary Lightning Mapper and Earth Networks Lightning Detection Over the Contiguous United States and Dependence on Flash Characteristics,” J. Geophys. Res. Atmos., vol. 124, no. 21, pp. 11552–11567, 2019, doi: 10.1029/2019JD031039
dc.relation.referencesK. S. Virts, T. J. Lang, D. E. Buechler, and P. M. Bitzer, “Bayesian Analysis of the Detection Performance of the Lightning Imaging Sensors,” J. Atmos. Ocean. Technol., vol. 41, no. 5, pp. 441–455, May 2024, doi: 10.1175/JTECH-D-23-0090.1.
dc.relation.referencesR. Buritica Angulo, B. Aza Beltran, and H. E. Rojas Cubides, “Desarrollo de una herramienta basada en python para estimar la eficiencia de detección en sistemas de localización de rayos,” in XX Semana Nacional de Ingeniería Electrónica y V Semana Iberoamericana de Ingeniería Electrónica (SENIE), Bogotá DC.: Universidad Autónoma Metropolitana (UAM) – Plantel Azcapotzalco, 2024, pp. 15–17
dc.relation.referencesY. Trotsenko, M. Dixit, and V. Mykhailenko, “Expression for Calculation of Lightning Ground Flash Density for Conditions of India,” in 2021 IEEE International Conference on Modern Electrical and Energy Systems (MEES), IEEE, Sep. 2021, pp. 1–5. doi: 10.1109/MEES52427.2021.9598780
dc.relation.referencesT. O. Mazzetti and H. E. Fuelberg, “An Analysis of Total Lightning Flash Rates Over Florida,” J. Geophys. Res. Atmos., vol. 122, no. 23, Dec. 2017, doi: 10.1002/2017JD027579
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectDescargas eléctricas atmosféricas
dc.subjectEficiencia de detección
dc.subjectGeolocalización
dc.subjectParámetros del rayo
dc.subjectFlashes nube-tierra
dc.subjectSistemas de localización de rayos
dc.subject.keywordAtmospheric electrical discharges
dc.subject.keywordDetection efficiency
dc.subject.keywordGeolocation
dc.subject.keywordLightning parameters
dc.subject.keywordCloud-to-ground flashes
dc.subject.keywordLightning location systems
dc.subject.lembIngeniería Eléctrica -- Tesis y disertaciones académicas
dc.subject.lembRayos -- Detección
dc.subject.lembElectricidad atmosférica
dc.subject.lembDetección a distancia
dc.subject.lembSistemas de información geográfica (GIS)
dc.titleEstimación de la eficiencia de detección de la red total de rayos de Earth Networks para el territorio colombiano
dc.title.titleenglishEstimation of the Detection Efficiency of the Earth Networks Total Lightning Network for the Colombian Territory
dc.typebachelorThesis
dc.type.degreeMonografía

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
BuriticaAnguloRominger2025.pdf
Tamaño:
6.65 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y autorización.pdf
Tamaño:
217.16 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: