Estimación de la eficiencia de detección de la red total de rayos de Earth Networks para el territorio colombiano
| dc.contributor.advisor | Rojas Cubides, Herbert Enrique | |
| dc.contributor.advisor | Garcia Miranda, Diana Stella | |
| dc.contributor.author | Buritica Angulo , Rominger | |
| dc.contributor.author | Aza Beltrán, Brenda Vannessa | |
| dc.contributor.orcid | Rojas Cubides; Herbert Enrique [0000-0003-1253-6964] | |
| dc.date.accessioned | 2025-04-02T20:24:30Z | |
| dc.date.available | 2025-04-02T20:24:30Z | |
| dc.date.created | 2024-12-05 | |
| dc.description | Esta monografía estima la eficiencia de detección (DE) de la Red Total de Rayos de Earth Networks (ENTLN) en Colombia para descargas nube-tierra (CG) con los registros tomados en el año 2021. Iniciando por una descripción sobre el funcionamiento de las redes de detección de rayos, abordando conceptos sobre las descargas eléctricas atmosféricas y la propagación de los campos electromagnéticos generados por este fenómeno. Se describen los sistemas de detección y localización, que usan métodos como la localización por dirección magnética (MDF) y el tiempo de arribo (TOA), utilizados en redes privadas y abiertas a nivel global. Se analiza la red ENTLN, se describe su infraestructura y la distribución de sus sensores en el territorio colombiano. Se explican de manera general algunos sistemas de información geográfica (GIS) que son fundamentares para comprender la naturaleza de los datos disponibles y suministrados por la red. Con base en esta información, se plantea un proceso de extracción y tratamiento de datos basado en técnicas de clasificación, filtrado y procesamiento geoespacial, con el objetivo de construir mapas de eficiencia de detección y densidad de descargas a tierra (DDT). Para la estimación de la DE, se utiliza el procedimiento CIGRE C4.404, el cual permite estimar la eficiencia de detección a partir de la distribución acumulada de corriente de las descargas CG que ocurren en un área delimitada. Este procedimiento se implementa mediante un algoritmo desarrollado en Python, que facilita la clasificación, filtrado y visualización de los datos y los resultados, el cual se integra mediante una herramienta computacional denominada ED4LLS que permite adicionalmente la generación y visualización de mapas de DE y DDT. Se presentan los resultados mediante mapas de eficiencia de detección, con valores superiores al 80% en la mayor parte del territorio colombiano y con algunas regiones alcanzando eficiencias cercanas al 100%. Estos valores se correlacionan con las zonas de mayor actividad de rayos CG, tales como Antioquia y Chocó. Finalmente, para validar los resultados, se comparan con estudios previos y otras fuentes académicas. Con base en estos hallazgos, se concluye que la red ENTLN presenta un alto desempeño en la detección de descargas nube-tierra en Colombia, y se proponen futuras líneas de investigación para continuar mejorando la precisión de los sistemas de detección y monitoreo de rayos en el país. | |
| dc.description.abstract | This research study estimates the detection efficiency (DE) of the Earth Networks Total Lightning Network (ENTLN) in Colombia for cloud-to-ground (CG) discharges using records collected in 2021. The study begins with a description of the operation of lightning detection networks, covering fundamental concepts related to atmospheric electrical discharges and the propagation of electromagnetic fields generated by this phenomenon. Additionally, it describes the detection and localization systems, which utilize methods such as Magnetic Direction Finding (MDF) and Time of Arrival (TOA), both of which are widely used in private and open lightning detection networks worldwide. The analysis focuses on the ENTLN network, detailing its infrastructure and the spatial distribution of its sensors throughout Colombia. A general overview of Geographic Information Systems (GIS) is provided, as they are essential for understanding the nature of the available data supplied by the network. Based on this information, a data extraction and processing methodology is proposed, incorporating classification, filtering, and geospatial processing techniques. The goal is to construct detection efficiency (DE) maps and ground flash density (GFD) maps. For DE estimation, the study applies the CIGRE C4.404 procedure, which allows for the assessment of detection efficiency based on the cumulative current distribution of CG discharges occurring within a defined area. This procedure is implemented through a Python-based algorithm that facilitates the classification, filtering, and visualization of both data and results. This algorithm is integrated into a computational tool called ED4LLS, which also enables the generation and visualization of DE and GFD maps. The results are presented through detection efficiency maps, showing values exceeding 80% across most of the Colombian territory, with some regions reaching efficiencies close to 100%. These high-efficiency areas correlate with regions of intense CG lightning activity, such as Antioquia and Chocó. Finally, to validate the findings, the results are compared with previous studies and other academic sources. Based on these analyses, the study concludes that the ENTLN network demonstrates a high performance in detecting cloud-to-ground discharges in Colombia. Additionally, future research directions are proposed to further enhance the accuracy of lightning detection and monitoring systems in the country. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/94545 | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | D. Aranguren, “Desempeño de Sensores de Campo Electrostatico en Sistemas de Alerta de Tormentas,” Universidad Nacional de Colombia, Bogotá D.C., 2011. | |
| dc.relation.references | N. Theethayi, “Electromagnetic Interference in Distributed Outdoor Electrical Systems, with an Emphasis on Lightning Interaction with Electrified Railway Network,” Uppsala University, Disciplinary Domain of Science and Technology, Upssala, Sweden, 2005. | |
| dc.relation.references | J. Ely, “Electromagnetic Interference to Flight Navigation and Communication Systems: New Strategies in the Age of Wireless,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, and C. C. Collection of Technical Papers - AIAA Guidance, Navigation, Ed., Reston, Virigina: American Institute of Aeronautics and Astronautics, Aug. 2005, pp. 1–4. doi: 10.2514/6.2005-6361. | |
| dc.relation.references | H. Torres-Sánchez, “¿Qué rayos sabemos?,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 34, no. 131, pp. 193–208, Dec. 2023, doi: 10.18257/raccefyn.34(131).2010.2412. | |
| dc.relation.references | J. C. Inampúes Borda, “Integración de los sistemas de alerta de tormentas eléctricas en redes inteligentes,” Universidad Nacional de Colombia, Bogotá D.C., 2014. | |
| dc.relation.references | H. D. Betz et al., “LINET—An international lightning detection network in Europe,” Atmos. Res., vol. 91, no. 2–4, pp. 564–573, Feb. 2009, doi: 10.1016/j.atmosres.2008.06.012. | |
| dc.relation.references | J. S. Fernandez-Buitrago, “Relación entre la densidad de descargas a tierra (DDT) y algunos aspectos de la geografía colombiana usando la información del sistema de localización de rayos GLD360 (periodo 2013-2018),” Universidad Distrital Francisco José de Caldas, Bogotá D.C., 2022. | |
| dc.relation.references | J. Barreto-Castañeda, “Relación entre aspectos socio-económicos de la población colombiana y la mortalidad por descargas eléctricas atmosféricas para el periodo 2008-2018,” Universidad Distrital Francisco José de Caldas, Bogotá D.C., 2022. | |
| dc.relation.references | D. E. Villamil, H. E. Rojas, F. Santamaria, R. L. Holle, and W. Brooks, “Analysis of the Lightning Mortality Risk in the Provinces of Cundinamarca - Colombia,” in 2022 36th International Conference on Lightning Protection (ICLP), Conf. Lightning Protection (ICLP), Ed., Piscataway, NJ, USA: IEEE, Oct. 2022, pp. 545–548. doi: 10.1109/ICLP56858.2022.9942616. | |
| dc.relation.references | O. A. Rodriguez, O. C. Rocha, K. Morcillo, and D. E. Villamil, “Promoting Lightning Safety inside School Articulation Programs at the Colombian National Training Service (SENA),” in 2022 36th International Conference on Lightning Protection (ICLP), IEEE, Oct. 2022, pp. 504–507. doi: 10.1109/ICLP56858.2022.9942577. | |
| dc.relation.references | J. A. Barreto, J. S. Fernandez, D. E. Villamil, H. E. Rojas, and F. Santamaria, “Analysis of the Certified Lightning Fatalities and their Relation with Rainfall in Colombia for the Period 2008–2018,” in 2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA), IEEE, Sep. 2021, pp. 01–06. doi: 10.1109/ICLPandSIPDA54065.2021.9627416. | |
| dc.relation.references | D. E. Villamil, N. Navarrete, and M. A. Cooper, “Keraunoparalysis and burning thatch: A proposed explanation for severe lightning injuries reported in developing countries,” Electr. Power Syst. Res., vol. 197, p. 107301, Aug. 2021, doi: 10.1016/j.epsr.2021.107301. | |
| dc.relation.references | A. S. Cruz-Bernal, “Evaluación del riesgo por rayos para Colombia,” Universidad Nacional de Colombia, Bogotá D.C., 2019. | |
| dc.relation.references | D. E. Pedgley, “Luke Howard and his clouds,” Weather, vol. 58, no. 2, pp. 51–55, Feb. 2003, doi: 10.1256/wea.157.02. | |
| dc.relation.references | P. Galison, A Material Culture of Microphysics, IL: Univer. Chicago, 1997. | |
| dc.relation.references | J. A. López Trujillo, “Metodología para predicción de tormentas eléctricas a partir de mediciones de campo electrostático ambiental y sistemas de localización de rayos en zona montañosa,” Universidad Nacional de Colombia, 2011. | |
| dc.relation.references | D. R. Fitzgerald, Electrical Structure of Large Overwater Shower Clouds. 1974. | |
| dc.relation.references | R. Zamorano Ulloa, “The Electric Fields of Lightning Clouds in Atmospheres of Different Properties,” in Electromagnetic Field in Advancing Science and Technology, IntechOpen, 2023. doi: 10.5772/intechopen.110092. | |
| dc.relation.references | J. A. Piedra, “Estudio de los rayos en el País vasco y su relación con la precipitación,” Universidad del País Vasco-Euskal Herriko Unibertsitatea, Vitoria –Gasteiz, 2010. | |
| dc.relation.references | E. R. Williams, “The Electrification of Thunderstorms,” Sci. Am., vol. 259, no. 5, pp. 88–99, Nov. 1988, doi: 10.1038/scientificamerican1188-88. | |
| dc.relation.references | M. A. Uman, The Lightning Discharge. New York, 2001. | |
| dc.relation.references | V. a Rakov and M. A. Uman, Lightning: Physics and Effects. New York, 2003. | |
| dc.relation.references | L. M. Morales García and A. Santa Acosta, “Diseño y construcción de un módulo de adquisición automática para un sistema de medición de campo eléctrico producido por descargas atmosféricas,” 2021. | |
| dc.relation.references | H. E. Rojas, “Técnicas avanzadas para el tratamiento y procesamiento de señales de campos electromagnéticos generados por rayos,” p. 221, 2018. | |
| dc.relation.references | M. A. Uman, The Art and Science of Lightning Protection. Cambridge University Press, 2008. doi: 10.1017/CBO9780511585890. | |
| dc.relation.references | V.A. Rakov, “Lightning phenomenology and parameters important for lightning protection,” I. I. S. On and L. Protection, Eds., Foz do Iguaçu, Brazil: IX International Symposium on Lightning Protection, 2007. | |
| dc.relation.references | V. A. Rakov and G. R. Huffines, “Return-Stroke Multiplicity of Negative Cloud-to-Ground Lightning Flashes,” J. Appl. Meteorol., vol. 42, no. 10, pp. 1455–1462, Oct. 2003, doi: 10.1175/1520-0450(2003)042<1455:RMONCL>2.0.CO;2 | |
| dc.relation.references | M. M. F. Saba et al., “High‐speed video observations of positive lightning flashes to ground,” J. Geophys. Res. Atmos., vol. 115, no. D24, Dec. 2010, doi: 10.1029/2010JD014330. | |
| dc.relation.references | K. L. Cummins, M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, “A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network,” J. Geophys. Res. Atmos., vol. 103, no. D8, pp. 9035–9044, Apr. 1998, doi: 10.1029/98JD00153 | |
| dc.relation.references | Y. Pan, D. Zheng, and Y. Zhang, “The characteristic of negative cloud-to-ground lightning with multiple return strokes,” in 2023 12th Asia-Pacific International Conference on Lightning (APL), IEEE, Jun. 2023, pp. 1–4. doi: 10.1109/APL57308.2023.10182214 | |
| dc.relation.references | S. Shalev, B. Ziv, H. Saaroni, and Y. Yair, “Lightning multiplicity characteristics in Eastern Mediterranean thunderstorms,” ResearchGate, 2012. | |
| dc.relation.references | C.-L. Wooi, Z. Abdul-Malek, B. Salimi, N. A. Ahmad, K. Mehranzamir, and S. Vahabi-Mashak, “A Comparative Study on the Positive Lightning Return Stroke Electric Fields in Different Meteorological Conditions,” Adv. Meteorol., vol. 2015, pp. 1–12, 2015, doi: 10.1155/2015/307424 | |
| dc.relation.references | A. Nag and V. A. Rakov, “Positive lightning: An overview, new observations, and inferences,” J. Geophys. Res. Atmos., vol. 117, no. D8, p. n/a-n/a, Apr. 2012, doi: 10.1029/2012JD017545 | |
| dc.relation.references | V. A. Rakov, “A Review of Positive and Bipolar Lightning Discharges,” Bull. Am. Meteorol. Soc., vol. 84, no. 6, pp. 767–776, Jun. 2003, doi: 10.1175/BAMS-84-6-767 | |
| dc.relation.references | “III. Investigations on lighting discharges and on the electric field of thunderstorms,” Philos. Trans. R. Soc. London. Ser. A, Contain. Pap. a Math. or Phys. Character, vol. 221, no. 582–593, pp. 73–115, Jan. 1921, doi: 10.1098/rsta.1921.0003 | |
| dc.relation.references | M. C. Kelley, “Atmospheric Electricity,” in The Earth’s Electric Field, Elsevier, 2014, pp. 29–52. doi: 10.1016/B978-0-12-397886-8.00002-8. | |
| dc.relation.references | H. Emmanuel, S. Garc, R. A. Hincapi, A. G. Rend, S. El, and S. El, “Metodología para el planeamiento de sistemas de distribución considerando incertidumbre en la demanda Methodology to distribution system planning considering demand uncertainty,” vol. 19, no. 1, pp. 19–28, 2014. | |
| dc.relation.references | C. R. P. Jimenez, “Desarrollo e implementación de una estación de medición enlazada a la red abierta de detección y localización de rayos Blitzortung,” Universidad Distrital Francisco José de Caldas, Bogotá D.C., 2022. | |
| dc.relation.references | F. Soddy, “Electrons, or the Nature and Properties of Negative Electricity,” Nature, vol. 76, no. 1958, pp. 25–26, May 1907, doi: 10.1038/076025a0. | |
| dc.relation.references | J. Ferling and H. W. Brands, “The First American: The Life and Times of Benjamin Franklin,” J. Am. Hist., vol. 88, no. 4, p. 1508, Mar. 2002, doi: 10.2307/2700631. | |
| dc.relation.references | D. MacGorman, W. D. Rust, and E. Williams, The Electrical Nature of Storms. New York, United States: Oxford University Press, Inc., 1998. | |
| dc.relation.references | F. H. W. Z. Z. F. C. Bouquegneau and C. Mazzetti, “Parameters of lightning current given in IEC 62305—Background, experience and outlook,” 29th Int. Conf. Light. Prot. ICLP, pp. 1–22, 2008. | |
| dc.relation.references | J. M. Dias Pereira, “The history and technology of oscilloscopes,” IEEE Instrum. Meas. Mag., vol. 9, no. 6, pp. 27–35, Dec. 2006, doi: 10.1109/MIM.2006.250640. | |
| dc.relation.references | L. Antunes et al., “Characterization of lightning observed by multiple high-speed cameras,” in 2013 International Symposium on Lightning Protection (XII SIPDA), IEEE, Oct. 2013, pp. 17–25. doi: 10.1109/SIPDA.2013.6729178. | |
| dc.relation.references | R. U. Abbasi et al., “First High‐Speed Video Camera Observations of a Lightning Flash Associated With a Downward Terrestrial Gamma‐Ray Flash,” Geophys. Res. Lett., vol. 50, no. 14, Jul. 2023, doi: 10.1029/2023GL102958. | |
| dc.relation.references | G. Diendorfer, “LLS performance validation using lightning to towers,” Austrian Electrotech. Assoc., pp. 1–2, 2010 | |
| dc.relation.references | S. Visacro and M. Guimarães, “Recent lightning measurements and results at Morro do Cachimbo Station,” Light. Res. Cent. Fed. Univ. Minas Gerais, pp. 1–5, 2014 | |
| dc.relation.references | S. Visacro, A. Soares, M. A. O. Schroeder, L. C. L. Cherchiglia, and V. J. de Sousa, “Statistical analysis of lightning current parameters: Measurements at Morro do Cachimbo Station,” J. Geophys. Res. Atmos., vol. 109, no. D1, Jan. 2004, doi: 10.1029/2003JD003662 | |
| dc.relation.references | I. Stucke et al., “Upward Lightning at the Gaisberg Tower: The Larger‐Scale Meteorological Influence on the Triggering Mode and Flash Type,” J. Geophys. Res. Atmos., vol. 128, no. 10, May 2023, doi: 10.1029/2022JD037776 | |
| dc.relation.references | C. Zhang et al., “Influence of the Canton Tower on the cloud‐to‐ground lightning in its vicinity,” J. Geophys. Res. Atmos., vol. 122, no. 11, pp. 5943–5954, Jun. 2017, doi: 10.1002/2016JD026229 | |
| dc.relation.references | M. Azadifar et al., “Evaluation of the performance characteristics of the European Lightning Detection Network EUCLID in the Alps region for upward negative flashes using direct measurements at the instrumented Säntis Tower,” J. Geophys. Res. Atmos., vol. 121, no. 2, pp. 595–606, Jan. 2016, doi: 10.1002/2015JD024259 | |
| dc.relation.references | C. Romero et al., “A system for the measurements of lightning currents at the Säntis Tower,” Electr. Power Syst. Res., vol. 82, no. 1, pp. 34–43, Jan. 2012, doi: 10.1016/j.epsr.2011.08.011 | |
| dc.relation.references | C. Romero, “Measurement of Lightning Currents Using a Combination of Rogowski Coils and B-Dot Sensors,” J. Light. Res., vol. 4, no. 1, pp. 71–77, Jul. 2012, doi: 10.2174/1652803401204010071 | |
| dc.relation.references | W. Janischewskyj, A. M. Hussein, V. Shostak, I. Rusan, J.-X. Li, and J.-S. Chang, “Statistics of lightning strikes to the Toronto Canadian National Tower (1978-1995),” IEEE Trans. Power Deliv., vol. 12, no. 3, pp. 1210–1221, Jul. 1997, doi: 10.1109/61.636949 | |
| dc.relation.references | A. M. Hussein, S. Kazazi, M. Anwar, M. Yusouf, and P. Liatos, “Characteristics of the most intense lightning storm ever recorded at the CN Tower,” J. Atmos. Solar-Terrestrial Phys., vol. 154, pp. 195–206, Feb. 2017, doi: 10.1016/j.jastp.2016.05.002 | |
| dc.relation.references | T. Shindo et al., “Lightning observations at Tokyo Skytree,” in 2014 International Symposium on Electromagnetic Compatibility, IEEE, Sep. 2014, pp. 583–588. doi: 10.1109/EMCEurope.2014.6930973. | |
| dc.relation.references | J. Jerauld et al., “An evaluation of the performance characteristics of the U.S. National Lightning Detection Network in Florida using rocket‐triggered lightning,” J. Geophys. Res. Atmos., vol. 110, no. D19, Oct. 2005, doi: 10.1029/2005JD005924 | |
| dc.relation.references | A. Nag et al., “Evaluation of U.S. National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004–2009,” J. Geophys. Res., vol. 116, no. D2, p. D02123, Jan. 2011, doi: 10.1029/2010JD014929 | |
| dc.relation.references | D. Zhang, K. L. Cummins, P. Bitzer, and W. J. Koshak, “Evaluation of the Performance Characteristics of the Lightning Imaging Sensor,” J. Atmos. Ocean. Technol., vol. 36, no. 6, pp. 1015–1031, Jun. 2019, doi: 10.1175/JTECH-D-18-0173.1 | |
| dc.relation.references | S. Mallick et al., “Evaluation of the GLD360 performance characteristics using rocket‐and‐wire triggered lightning data,” Geophys. Res. Lett., vol. 41, no. 10, pp. 3636–3642, May 2014, doi: 10.1002/2014GL059920 | |
| dc.relation.references | S. Mallick et al., “Performance characteristics of the NLDN for return strokes and pulses superimposed on steady currents, based on rocket‐triggered lightning data acquired in Florida in 2004–2012,” J. Geophys. Res. Atmos., vol. 119, no. 7, pp. 3825–3856, Apr. 2014, doi: 10.1002/2013JD021401 | |
| dc.relation.references | S. Mallick et al., “Performance characteristics of the ENTLN evaluated using rocket-triggered lightning data,” Electr. Power Syst. Res., vol. 118, pp. 15–28, Jan. 2015, doi: 10.1016/j.epsr.2014.06.007 | |
| dc.relation.references | L. Chen et al., “Performance Evaluation for a Lightning Location System Based on Observations of Artificially Triggered Lightning and Natural Lightning Flashes,” J. Atmos. Ocean. Technol., vol. 29, no. 12, pp. 1835–1844, Dec. 2012, doi: 10.1175/JTECH-D-12-00028.1 | |
| dc.relation.references | V. Mochalov et al., “VLF Sensors for Lightning Research,” Procedia Eng., vol. 168, pp. 1721–1724, 2016, doi: 10.1016/j.proeng.2016.11.499 | |
| dc.relation.references | W. Yin et al., “Lightning Detection and Imaging Based on VHF Radar Interferometry,” Remote Sens., vol. 13, no. 11, p. 2065, May 2021, doi: 10.3390/rs13112065 | |
| dc.relation.references | V. Cooray, The Mechanism of the Lightning Flash. Institution of Engineering and Technology, 2014. doi: 10.1049/PBPO069E | |
| dc.relation.references | A. Galvan y M. Fernando, “Operative Characteristics of a Parallel-plate Antenna to Measure Vertical Electric Fields from Lightning Flashes,” Uppsala Univ., 2000 | |
| dc.relation.references | C. Younes-Velosa, “Caracterización de parámetros del rayo en Colombia con base en sistemas de localización terrestres y satelitales, 20 años de análisis,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 44, no. 173, pp. 960–973, Dec. 2020, doi: 10.18257/raccefyn.1171 | |
| dc.relation.references | Hans Volland, Handbook of Atmospheric Electrodynamics, Volume I, 1st Editio. CRC Press, 2017. doi: 10.1201/9780203719503 | |
| dc.relation.references | K. L. Cummins and M. J. Murphy, “An Overview of Lightning Locating Systems: History, Techniques, and Data Uses, With an In-Depth Look at the U.S. NLDN,” IEEE Trans. Electromagn. Compat., vol. 51, no. 3, pp. 499–518, Aug. 2009, doi: 10.1109/TEMC.2009.2023450 | |
| dc.relation.references | C. Weidman, “Lightning Detection & Location at VLF/LF Using Magnetic Direction Finding & Time of Arrival: Techniques used to locate lightning,” Arizona, 2013 | |
| dc.relation.references | A. Nag, M. J. Murphy, W. Schulz, and K. L. Cummins, “Lightning locating systems: Insights on characteristics and validation techniques,” Earth Sp. Sci., vol. 2, no. 4, pp. 65–93, Apr. 2015, doi: 10.1002/2014EA000051 | |
| dc.relation.references | D. R. Poelman, “On the Science of Lightning:An Overview,” in On the Science of Lightning:An Overview, I. R. M. de Bélgica, Ed., Bruxelles: Royal Meteorological Institute of Belgium, 2010, ch. The Lightn, pp. 9–27 | |
| dc.relation.references | G. Diendorfer et al., “Review of CIGRE Report ‘Cloud-to-Ground Lightning Parameters Derived from Lightning Location Systems – The Effects of System Performance,’” Cigre, no. 376, 2009 | |
| dc.relation.references | H. B. Hu, Y. Wang, and X. Zhang, “An algorithm for estimating the detection efficiency of a lightning location system,” Geomatics, Nat. Hazards Risk, vol. 10, no. 1, pp. 1493–1511, 2019, doi: 10.1080/19475705.2019.1585968 | |
| dc.relation.references | R. C. Moore, N. A. Dupree, J. T. Pilkey, D. M. Jordan, and M. A. Uman, “An analysis of ELF sferics produced by rocket-triggered lightning,” in 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), IEEE, Aug. 2014, pp. 1–1. doi: 10.1109/URSIGASS.2014.6929896 | |
| dc.relation.references | M. Le Boulch, J. Hamelin, and C. Weidman, “UHF-VHF Radiation from Lightning,” Electromagnetics, vol. 7, no. 3–4, pp. 287–331, Jan. 1987, doi: 10.1080/02726348708908187 | |
| dc.relation.references | T. Morimoto et al., “An overview of VHF lightning observations by digital interferometry from ISS/JEM-GLIMS,” Earth, Planets Sp., vol. 68, no. 1, p. 145, Dec. 2016, doi: 10.1186/s40623-016-0522-1 | |
| dc.relation.references | R. . Lay, E.H., Rodger, C.J., Holzworth, R.H., & Dowden, “Introduction to the World Wide Lightning LocationNetwork (WWLLN),” Geophys. Res. Abstr., vol. 7, 2005 | |
| dc.relation.references | R. K. Said, U. S. Inan, and K. L. Cummins, “Long-range lightning geolocation using a VLF radio atmospheric waveform bank,” J. Geophys. Res., vol. 115, no. D23, p. D23108, Dec. 2010, doi: 10.1029/2010JD013863 | |
| dc.relation.references | S. D. Rudlosky and M. Rudlosky, Scott D.College Park, “Evaluating Ground-Based Lightning Detection Networks using TRMM/LIS Observations,” 23rd International Lightning Detection Conference, 18-19 Mar 2014, Tucson, Arizona, pp. 1–2, 2014 | |
| dc.relation.references | Ryan Said and M. Murphy, “GLD360 Upgrade: Performance Analysis and Applications,” Vaisala, Inc., Louisville, Color., vol. 24th Inter, 2016 | |
| dc.relation.references | T. Systems, “Global Lightning Network.” [Online]. Available: http://toasystems.com/our-network/global-lightning/ | |
| dc.relation.references | H. Höller et al., “Lightning characteristics observed by a VLF/LF lightning detection network (LINET) in Brazil, Australia, Africa and Germany,” Atmos. Chem. Phys., vol. 9, no. 20, pp. 7795–7824, Oct. 2009, doi: 10.5194/acp-9-7795-2009 | |
| dc.relation.references | T. Zinner, C. Forster, E. de Coning, and H.-D. Betz, “Validation of the Meteosat storm detection and nowcasting system Cb-TRAM with lightning network data – Europe and South Africa,” Atmos. Meas. Tech., vol. 6, no. 6, pp. 1567–1583, Jun. 2013, doi: 10.5194/amt-6-1567-2013 | |
| dc.relation.references | D. Aranguren, J. López, J. Inampués, H. Torres, and H. Betz, “Cloud-to-ground lightning activity in Colombia and the influence of topography,” J. Atmos. Solar-Terrestrial Phys., vol. 154, pp. 182–189, 2017, doi: 10.1016/j.jastp.2016.08.010 | |
| dc.relation.references | D. Aranguren et al., “Colombian Total Lightning Detection Network and early detection of failure risks for power systems,” in Simposio Internacional sobe Calidad de la Energía Eléctrica, SICEL, Ed., Medellin, Colombia, 2013, pp. 1–2 | |
| dc.relation.references | D. E. V. Sierra, “Characterization of the Lightning Safety Education Programs,” 2017 | |
| dc.relation.references | V. Cooray, “Response of CIGRE and CCIR lightning flash counters to the electric field changes from lightning: A theoretical study,” J. Geophys. Res. Atmos., vol. 91, no. D2, pp. 2835–2842, Feb. 1986, doi: 10.1029/JD091iD02p02835 | |
| dc.relation.references | H. Torres-Sánchez, El Rayo: mitos, leyendas, ciencia y tecnología, 1st. Bogotá D.C.: Universidad Nacional de Colombia, Facultad de Ingeniería, 2002 | |
| dc.relation.references | J. S. Fernandez-Buitrago, “Algunos Aspectos De La Geografía Colombiana Usando La Información Del Sistema De Localización De Rayos Gld360 Relación Entre La Densidad De Descargas a Tierra ( Ddt ) Y Información Del Sistema De Localización De Rayos Gld360,” vol. 360, 2022 | |
| dc.relation.references | ENTLN, “Comprehensive Solutions for Worldwide Lightning Detection and Severe Weather Prediction and Advanced Alerting,” 2012 | |
| dc.relation.references | ENLTLN, “Earth Networks _ 2019 U.S. Lightning Report,” 2019, pp. 6–7 | |
| dc.relation.references | V. Bui, L. C. Chang, and S. Heckman, “A performance study of earth networks total lighting network (ENTLN) and worldwide lightning location network (WWLLN),” Proc. - 2015 Int. Conf. Comput. Sci. Comput. Intell. CSCI 2015, pp. 386–391, 2016, doi: 10.1109/CSCI.2015.120 | |
| dc.relation.references | C. Liu and S. Heckman, “Total Lightning Detection and Real-Time Severe Storm Prediction,” Wmo Tech. Conf. Meteorol. Environ. Instruments Methods Obs., pp. 1–24, 2012 | |
| dc.relation.references | J. Lapierre, M. Hoekzema, M. Stock, C. Merrill, and S. C. Thangaraj, “Earth networks lightning network and dangerous thunderstorm alerts,” 2019 11th Asia-Pacific Int. Conf. Light. APL 2019, pp. 1–5, 2019, doi: 10.1109/APL.2019.8816032 | |
| dc.relation.references | Y. Zhu, M. Stock, J. Lapierre, and E. DiGangi, “Upgrades of the Earth Networks Total Lightning Network in 2021,” Remote Sens., vol. 14, no. 9, p. 2209, May 2022, doi: 10.3390/rs14092209 | |
| dc.relation.references | ENTLN, “EN Lightning_Sensor_Techspecs_September 2021,” 2021 | |
| dc.relation.references | K. P. Naccarato and O. Pinto, “Lightning detection in Southeastern Brazil from the new Brazilian Total Lightning Network (BrasilDAT),” in 2012 International Conference on Lightning Protection (ICLP), IEEE, Sep. 2012, pp. 1–9. doi: 10.1109/ICLP.2012.6344294 | |
| dc.relation.references | E. Tiempo, “Canalclima.com especializados en el clima de Colombia,” Bogotá DC., 2010 | |
| dc.relation.references | GeoInnova, “¿Qué es un SIG, GIS o Sistema de Información Geográfica?” [Online]. Available: https://geoinnova.org/blog-territorio/ | |
| dc.relation.references | Z. Y. Peña-Beltran and J. D. Pabon-Caicedo, “Climatología de las granizadas en Colombia,” Cuad. Geogr. Rev. Colomb. Geogr., vol. 29, no. 1, pp. 259–282, Jan. 2020, doi: 10.15446/rcdg.v29n1.75438 | |
| dc.relation.references | B. H. Lynn, Y. Yair, C. Price, G. Kelman, and A. J. Clark, “Predicting Cloud-to-Ground and Intracloud Lightning in Weather Forecast Models,” Weather Forecast., vol. 27, no. 6, pp. 1470–1488, Dec. 2012, doi: 10.1175/WAF-D-11-00144.1 | |
| dc.relation.references | D. Aranguren, “Sistema Colombiano de Detección Total de Rayos,” Work. Desempeño Sist. Eléctricos Potencia, 2018 | |
| dc.relation.references | F. Ahmed, S. Hasan, I. M. Mahbubul, M. Abul Kalam Mallik, and M. Nafiz Hossen, “GIS-based spatial analysis for lightning scenario in Bangladesh,” Heliyon, vol. 10, no. 7, p. e28708, Apr. 2024, doi: 10.1016/j.heliyon.2024.e28708. | |
| dc.relation.references | M. Boneet, “Status of lightning detection Performances and limitations of existing systems,” CIGRE, vol. 21, p. 22, 2008 | |
| dc.relation.references | CIGRE, “Methods for compensation of relative network detection efficiency C4. 404,” in Power system technical performance (C4), CIGRE, 2009, ch. Cloud-to-G | |
| dc.relation.references | K. P. Naccarato and O. Pinto, “Improvements in the detection efficiency model for the Brazilian lightning detection network (BrasilDAT),” Atmos. Res., vol. 91, no. 2–4, pp. 546–563, Feb. 2009, doi: 10.1016/j.atmosres.2008.06.019 | |
| dc.relation.references | D. E. Villamil, F. Santamaria, and W. Diaz, “Lightning Disaster Risk assessment method in Colombia,” in 2015 International Symposium on Lightning Protection (XIII SIPDA), IEEE, Sep. 2015, pp. 146–152. doi: 10.1109/SIPDA.2015.7339315 | |
| dc.relation.references | D. E. Villamil, “Lightning Safety Module Developed in Colombia,” Bogotá D.C., 2021 | |
| dc.relation.references | S. Heckman, C. Liu, and C. Sloop, “Earth networks lightning overview,” 2014 Int. Conf. Light. Prot. ICLP 2014, pp. 1866–1869, 2014, doi: 10.1109/ICLP.2014.6973433 | |
| dc.relation.references | M. Marchand, K. Hilburn, and S. D. Miller, “Geostationary Lightning Mapper and Earth Networks Lightning Detection Over the Contiguous United States and Dependence on Flash Characteristics,” J. Geophys. Res. Atmos., vol. 124, no. 21, pp. 11552–11567, 2019, doi: 10.1029/2019JD031039 | |
| dc.relation.references | K. S. Virts, T. J. Lang, D. E. Buechler, and P. M. Bitzer, “Bayesian Analysis of the Detection Performance of the Lightning Imaging Sensors,” J. Atmos. Ocean. Technol., vol. 41, no. 5, pp. 441–455, May 2024, doi: 10.1175/JTECH-D-23-0090.1. | |
| dc.relation.references | R. Buritica Angulo, B. Aza Beltran, and H. E. Rojas Cubides, “Desarrollo de una herramienta basada en python para estimar la eficiencia de detección en sistemas de localización de rayos,” in XX Semana Nacional de Ingeniería Electrónica y V Semana Iberoamericana de Ingeniería Electrónica (SENIE), Bogotá DC.: Universidad Autónoma Metropolitana (UAM) – Plantel Azcapotzalco, 2024, pp. 15–17 | |
| dc.relation.references | Y. Trotsenko, M. Dixit, and V. Mykhailenko, “Expression for Calculation of Lightning Ground Flash Density for Conditions of India,” in 2021 IEEE International Conference on Modern Electrical and Energy Systems (MEES), IEEE, Sep. 2021, pp. 1–5. doi: 10.1109/MEES52427.2021.9598780 | |
| dc.relation.references | T. O. Mazzetti and H. E. Fuelberg, “An Analysis of Total Lightning Flash Rates Over Florida,” J. Geophys. Res. Atmos., vol. 122, no. 23, Dec. 2017, doi: 10.1002/2017JD027579 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Descargas eléctricas atmosféricas | |
| dc.subject | Eficiencia de detección | |
| dc.subject | Geolocalización | |
| dc.subject | Parámetros del rayo | |
| dc.subject | Flashes nube-tierra | |
| dc.subject | Sistemas de localización de rayos | |
| dc.subject.keyword | Atmospheric electrical discharges | |
| dc.subject.keyword | Detection efficiency | |
| dc.subject.keyword | Geolocation | |
| dc.subject.keyword | Lightning parameters | |
| dc.subject.keyword | Cloud-to-ground flashes | |
| dc.subject.keyword | Lightning location systems | |
| dc.subject.lemb | Ingeniería Eléctrica -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Rayos -- Detección | |
| dc.subject.lemb | Electricidad atmosférica | |
| dc.subject.lemb | Detección a distancia | |
| dc.subject.lemb | Sistemas de información geográfica (GIS) | |
| dc.title | Estimación de la eficiencia de detección de la red total de rayos de Earth Networks para el territorio colombiano | |
| dc.title.titleenglish | Estimation of the Detection Efficiency of the Earth Networks Total Lightning Network for the Colombian Territory | |
| dc.type | bachelorThesis | |
| dc.type.degree | Monografía |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
