Diseño y desarrollo de un prototipo de dispositivo de internet de las cosas (Iot) para la medición de variables forestales
| dc.contributor.advisor | Camargo López, Julián Rolando | |
| dc.contributor.author | Ardila González, Jhon Nicolás | |
| dc.contributor.orcid | Camargo López, Julián Rolando [0000-0003-3483-1884] | |
| dc.date.accessioned | 2025-11-22T16:13:52Z | |
| dc.date.available | 2025-11-22T16:13:52Z | |
| dc.date.created | 2025-10-31 | |
| dc.description | El presente trabajo describe el diseño y desarrollo del prototipo FRED-01, un dispositivo IoT forestal autónomo orientado al monitoreo ambiental y dendrométrico en árboles. El sistema integra sensores de CO2, temperatura, humedad y diámetro a la altura del pecho (DAP), junto con un módulo de comunicación LoRa y un microcontrolador ESP32-S3, permitiendo la transmisión de datos sin necesidad de infraestructura LoRaWAN. El firmware fue desarrollado bajo una arquitectura basada en FreeRTOS, con enfoque en eficiencia energética mediante el uso del modo deep sleep y control de periféricos a través de MOSFET, lo que garantiza una operación prolongada alimentada únicamente por baterías recargables. Los datos sensados se cifran con AES-GCM, asegurando confidencialidad e integridad antes de ser enviados a un servidor web construido con Django y PostgreSQL. Se realizaron pruebas funcionales de comunicación y sensado en campo, obteniéndose un alcance de aproximadamente 850 metros y un funcionamiento estable durante periodos prolongados. El prototipo demostró ser una alternativa de bajo costo, autónoma y segura frente a soluciones comerciales, con potencial para escalar hacia redes forestales distribuidas y futuras integraciones de inteligencia artificial para la detección temprana de eventos ambientales. | |
| dc.description.abstract | This work presents the design and development of FRED-01, an autonomous forest IoT prototype aimed at environmental and dendrometric monitoring in trees. The system integrates sensors for CO2 concentration, temperature, humidity, and diameter at breast height (DBH), combined with a LoRa communication module and an ESP32-S3 microcontroller, enabling data transmission without the need for LoRaWAN infrastructure. The firmware was developed under a FreeRTOS-based architecture, focusing on energy efficiency through the use of deep sleep mode and peripheral control via MOSFET, ensuring long-term operation powered solely by rechargeable batteries. The sensed data are encrypted using AES-GCM, guaranteeing confidentiality and integrity before being transmitted to a web server built with Django and PostgreSQL. Functional field tests of communication and sensing achieved an effective range of approximately 850 meters, with stable performance over extended periods. The prototype proved to be a low-cost, autonomous, and secure alternative to commercial solutions, with potential for scaling into distributed forest sensor networks and future integration of artificial intelligence for early detection of environmental events. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/99905 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010 | |
| dc.relation.references | Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of Things: Vision, applications and research challenges. Ad Hoc Networks, 10(7), 1497–1516. https://doi.org/10.1016/j.adhoc.2012.02.016 | |
| dc.relation.references | Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. https://doi.org/10.1016/j.future.2013.01.010 | |
| dc.relation.references | Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of Things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32. https://doi.org/10.1109/JIOT.2014.2306328 | |
| dc.relation.references | Kumar, S., Tiwari, P., & Zymbler, M. (2019). Internet of Things is a revolutionary approach for future technology enhancement: A review. Journal of Big Data, 6(1), 1–21. https://doi.org/10.1186/s40537-019-0268-2 | |
| dc.relation.references | Hart, M., & Martinez, D. (2006). Environmental sensor networks: A revolution in the earth system science? Earth-Science Reviews, 78(3–4), 177–191. https://doi.org/10.1016/j.earscirev.2006.05.001 | |
| dc.relation.references | Morais, R., Fernandes, M. A., Matos, S. G., Serôdio, C., Cunha, P. J., & Ferreira, M. J. (2008). A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture. Computers and Electronics in Agriculture, 62(2), 94–106. https://doi.org/10.1016/j.compag.2007.11.006 | |
| dc.relation.references | Sensirion. (2021). SCD4x CO₂ sensor series – Data sheet. https://sensirion.com/products/catalog/SCD41/ | |
| dc.relation.references | Ecomatik. (2020). Manual dendrometer DB20. https://www.ecomatik.de/ | |
| dc.relation.references | Fernández, D., Álvarez, M., & Pizarro, R. (2015). Automatic dendrometer for continuous measurement of tree stem diameter variations. Computers and Electronics in Agriculture, 118, 255–265. https://doi.org/10.1016/j.compag.2015.09.018 | |
| dc.relation.references | Semtech. (2021). LoRa technology overview. https://lora-developers.semtech.com/ | |
| dc.relation.references | Adelantado, F., Vilajosana, X., Tuset-Peiro, P., Martinez, B., Melia-Segui, J., & Watteyne, T. (2017). Understanding the limits of LoRaWAN. IEEE Communications Magazine, 55(9), 34–40. https://doi.org/10.1109/MCOM.2017.1600613 | |
| dc.relation.references | LoRa Alliance. (2020). LoRaWAN 1.0.4 specification. https://lora-alliance.org/ | |
| dc.relation.references | Raza, U., Kulkarni, P., & Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE Communications Surveys & Tutorials, 19(2), 855–873. https://doi.org/10.1109/COMST.2017.2652320 | |
| dc.relation.references | GSMA. (2019). NB-IoT deployment guide to basic feature set requirements. https://www.gsma.com/ | |
| dc.relation.references | Mekki, H., Bajic, E., Chaxel, F., & Meyer, F. (2018). Overview of cellular LPWAN technologies for IoT deployment: Sigfox, LoRaWAN, and NB-IoT. In 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) (pp. 197–202). https://doi.org/10.1109/PERCOMW.2018.8480255 | |
| dc.relation.references | Higuera, J., Parra, C., & Vargas, M. (2020). Energy-efficient IoT devices for environmental monitoring: Challenges and trends. IEEE Latin America Transactions, 18(9), 1523–1532. https://doi.org/10.1109/TLA.2020.9398105 | |
| dc.relation.references | Espressif Systems. (2022). ESP32 series datasheet. https://www.espressif.com/ | |
| dc.relation.references | Islam, M. N., Wang, Y., & Tepe, K. (2021). Powering IoT devices: A review on energy harvesting approaches. Sensors, 21(17), 5582. https://doi.org/10.3390/s21175582 | |
| dc.relation.references | Texas Instruments. (2019). DC-DC step-down converters for low-power applications (Application Note). | |
| dc.relation.references | Goudos, S. K., Athanasiadou, G. E., & Adam, K. K. (2020). Energy harvesting in wireless sensor networks: A comprehensive review. IEEE Access, 8, 55529–55548. https://doi.org/10.1109/ACCESS.2020.2981474 | |
| dc.relation.references | Sicari, S., Rizzardi, A., Grieco, L., & Coen-Porisini, A. (2015). Security, privacy and trust in Internet of Things: The road ahead. Computer Networks, 76, 146–164. https://doi.org/10.1016/j.comnet.2014.11.008 | |
| dc.relation.references | Stallings, W. (2020). Cryptography and network security: Principles and practice (8th ed.). Pearson. | |
| dc.relation.references | Tiloca, M., Oikonomou, G., & Hancke, G. P. (2016). Secure group communication in the Internet of Things with DTLS and multicast. Ad Hoc Networks, 52, 80–92. https://doi.org/10.1016/j.adhoc.2016.09.004 | |
| dc.relation.references | Garcia-Morchon, O., Kumar, S., & Struik, R. (2013). Security considerations in the IP-based Internet of Things. Internet Engineering Task Force (IETF) Draft. https://datatracker.ietf.org/doc/html/draft-ietf-core-security-06 | |
| dc.relation.references | Martin, R. (2017). Implementing AES on low-power microcontrollers. IEEE Transactions on Information Forensics and Security, 12(11), 2731–2743. https://doi.org/10.1109/TIFS.2017.2728682 | |
| dc.relation.references | McGrew, D., & Viega, J. (2004). The security and performance of the Galois/Counter Mode (GCM) of operation. In B. Roy & W. Meier (Eds.), Progress in Cryptology – INDOCRYPT 2004 (pp. 343–355). Springer. https://doi.org/10.1007/978-3-540-30556-9_27 | |
| dc.relation.references | Abdellatif, A. A., Mohamed, A., Chiasserini, C. F., & Elfouly, T. (2019). Edge computing for smart health: Context-aware approaches, opportunities, and challenges. IEEE Network, 33(3), 96–103. https://doi.org/10.1109/MNET.2019.1800325 | |
| dc.relation.references | Treevia. (2024). Implantar sensores IoT na floresta. https://treevia.com.br/ | |
| dc.relation.references | CatSensors. (2023). DL-ZN1-001 – Sensor LoRaWAN dendrómetro T-O Dual. https://www.catsensors.com/es/lorawan/sensores-lorawan-decentlab/dl-zn1-001-sensor-lorawan-dendrometro-t-o-dual | |
| dc.relation.references | Ecomatik. (2020). Electronic band dendrometers – Product overview. https://www.ecomatik.de/ | |
| dc.relation.references | García, D. (2022). Diseño e implementación de un sistema IoT mediante la plataforma ESP32 para la automatización del proceso de compostaje [Trabajo de grado, Universitat Politècnica de València]. Riunet. https://riunet.upv.es/server/api/core/bitstreams/c4a73f33-fbc6-4b49-8f0c-6583e1461e50/content | |
| dc.relation.references | Osorio Quiroga, D. E., & Garzón Duque, W. D. (2022). Desarrollo de un sistema IoT para la medición de variables ambientales en agricultura urbana [Trabajo de grado, Universidad Distrital Francisco José de Caldas]. Repositorio Institucional UD. https://repository.udistrital.edu.co/server/api/core/bitstreams/95a7fc9b-c1f4-430f-be93-933b74d70df5/content | |
| dc.relation.references | Mokroš, M., et al. (2024). Smart forests: Integrating LiDAR and IoT for advanced environmental monitoring. SSRN Electronic Journal. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5386703 | |
| dc.relation.references | Google AI Edge. (2025). LiteRT for microcontrollers. https://ai.google.dev/edge/litert/microcontrollers/overview | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | IoT forestal | |
| dc.subject | ESP32 | |
| dc.subject | LoRa | |
| dc.subject | Sensado ambiental | |
| dc.subject | Cifrado AES-GCM | |
| dc.subject | Eficiencia energética | |
| dc.subject.keyword | Forest IoT | |
| dc.subject.keyword | ESP32 | |
| dc.subject.keyword | LoRa | |
| dc.subject.keyword | Environmental sensing | |
| dc.subject.keyword | AES-GCM encryption | |
| dc.subject.keyword | Energy efficiency | |
| dc.subject.lemb | Ingeniería Electrónica -- Tesis y disertaciones académicas | |
| dc.title | Diseño y desarrollo de un prototipo de dispositivo de internet de las cosas (Iot) para la medición de variables forestales | |
| dc.title.titleenglish | Design and development of an internet of things (IoT) device prototype for measuring forest variables | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Pasantía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
