Diseño y desarrollo de un prototipo de dispositivo de internet de las cosas (Iot) para la medición de variables forestales

dc.contributor.advisorCamargo López, Julián Rolando
dc.contributor.authorArdila González, Jhon Nicolás
dc.contributor.orcidCamargo López, Julián Rolando [0000-0003-3483-1884]
dc.date.accessioned2025-11-22T16:13:52Z
dc.date.available2025-11-22T16:13:52Z
dc.date.created2025-10-31
dc.descriptionEl presente trabajo describe el diseño y desarrollo del prototipo FRED-01, un dispositivo IoT forestal autónomo orientado al monitoreo ambiental y dendrométrico en árboles. El sistema integra sensores de CO2, temperatura, humedad y diámetro a la altura del pecho (DAP), junto con un módulo de comunicación LoRa y un microcontrolador ESP32-S3, permitiendo la transmisión de datos sin necesidad de infraestructura LoRaWAN. El firmware fue desarrollado bajo una arquitectura basada en FreeRTOS, con enfoque en eficiencia energética mediante el uso del modo deep sleep y control de periféricos a través de MOSFET, lo que garantiza una operación prolongada alimentada únicamente por baterías recargables. Los datos sensados se cifran con AES-GCM, asegurando confidencialidad e integridad antes de ser enviados a un servidor web construido con Django y PostgreSQL. Se realizaron pruebas funcionales de comunicación y sensado en campo, obteniéndose un alcance de aproximadamente 850 metros y un funcionamiento estable durante periodos prolongados. El prototipo demostró ser una alternativa de bajo costo, autónoma y segura frente a soluciones comerciales, con potencial para escalar hacia redes forestales distribuidas y futuras integraciones de inteligencia artificial para la detección temprana de eventos ambientales.
dc.description.abstractThis work presents the design and development of FRED-01, an autonomous forest IoT prototype aimed at environmental and dendrometric monitoring in trees. The system integrates sensors for CO2 concentration, temperature, humidity, and diameter at breast height (DBH), combined with a LoRa communication module and an ESP32-S3 microcontroller, enabling data transmission without the need for LoRaWAN infrastructure. The firmware was developed under a FreeRTOS-based architecture, focusing on energy efficiency through the use of deep sleep mode and peripheral control via MOSFET, ensuring long-term operation powered solely by rechargeable batteries. The sensed data are encrypted using AES-GCM, guaranteeing confidentiality and integrity before being transmitted to a web server built with Django and PostgreSQL. Functional field tests of communication and sensing achieved an effective range of approximately 850 meters, with stable performance over extended periods. The prototype proved to be a low-cost, autonomous, and secure alternative to commercial solutions, with potential for scaling into distributed forest sensor networks and future integration of artificial intelligence for early detection of environmental events.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/99905
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAtzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010
dc.relation.referencesMiorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of Things: Vision, applications and research challenges. Ad Hoc Networks, 10(7), 1497–1516. https://doi.org/10.1016/j.adhoc.2012.02.016
dc.relation.referencesGubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. https://doi.org/10.1016/j.future.2013.01.010
dc.relation.referencesZanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of Things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32. https://doi.org/10.1109/JIOT.2014.2306328
dc.relation.referencesKumar, S., Tiwari, P., & Zymbler, M. (2019). Internet of Things is a revolutionary approach for future technology enhancement: A review. Journal of Big Data, 6(1), 1–21. https://doi.org/10.1186/s40537-019-0268-2
dc.relation.referencesHart, M., & Martinez, D. (2006). Environmental sensor networks: A revolution in the earth system science? Earth-Science Reviews, 78(3–4), 177–191. https://doi.org/10.1016/j.earscirev.2006.05.001
dc.relation.referencesMorais, R., Fernandes, M. A., Matos, S. G., Serôdio, C., Cunha, P. J., & Ferreira, M. J. (2008). A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture. Computers and Electronics in Agriculture, 62(2), 94–106. https://doi.org/10.1016/j.compag.2007.11.006
dc.relation.referencesSensirion. (2021). SCD4x CO₂ sensor series – Data sheet. https://sensirion.com/products/catalog/SCD41/
dc.relation.referencesEcomatik. (2020). Manual dendrometer DB20. https://www.ecomatik.de/
dc.relation.referencesFernández, D., Álvarez, M., & Pizarro, R. (2015). Automatic dendrometer for continuous measurement of tree stem diameter variations. Computers and Electronics in Agriculture, 118, 255–265. https://doi.org/10.1016/j.compag.2015.09.018
dc.relation.referencesSemtech. (2021). LoRa technology overview. https://lora-developers.semtech.com/
dc.relation.referencesAdelantado, F., Vilajosana, X., Tuset-Peiro, P., Martinez, B., Melia-Segui, J., & Watteyne, T. (2017). Understanding the limits of LoRaWAN. IEEE Communications Magazine, 55(9), 34–40. https://doi.org/10.1109/MCOM.2017.1600613
dc.relation.referencesLoRa Alliance. (2020). LoRaWAN 1.0.4 specification. https://lora-alliance.org/
dc.relation.referencesRaza, U., Kulkarni, P., & Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE Communications Surveys & Tutorials, 19(2), 855–873. https://doi.org/10.1109/COMST.2017.2652320
dc.relation.referencesGSMA. (2019). NB-IoT deployment guide to basic feature set requirements. https://www.gsma.com/
dc.relation.referencesMekki, H., Bajic, E., Chaxel, F., & Meyer, F. (2018). Overview of cellular LPWAN technologies for IoT deployment: Sigfox, LoRaWAN, and NB-IoT. In 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) (pp. 197–202). https://doi.org/10.1109/PERCOMW.2018.8480255
dc.relation.referencesHiguera, J., Parra, C., & Vargas, M. (2020). Energy-efficient IoT devices for environmental monitoring: Challenges and trends. IEEE Latin America Transactions, 18(9), 1523–1532. https://doi.org/10.1109/TLA.2020.9398105
dc.relation.referencesEspressif Systems. (2022). ESP32 series datasheet. https://www.espressif.com/
dc.relation.referencesIslam, M. N., Wang, Y., & Tepe, K. (2021). Powering IoT devices: A review on energy harvesting approaches. Sensors, 21(17), 5582. https://doi.org/10.3390/s21175582
dc.relation.referencesTexas Instruments. (2019). DC-DC step-down converters for low-power applications (Application Note).
dc.relation.referencesGoudos, S. K., Athanasiadou, G. E., & Adam, K. K. (2020). Energy harvesting in wireless sensor networks: A comprehensive review. IEEE Access, 8, 55529–55548. https://doi.org/10.1109/ACCESS.2020.2981474
dc.relation.referencesSicari, S., Rizzardi, A., Grieco, L., & Coen-Porisini, A. (2015). Security, privacy and trust in Internet of Things: The road ahead. Computer Networks, 76, 146–164. https://doi.org/10.1016/j.comnet.2014.11.008
dc.relation.referencesStallings, W. (2020). Cryptography and network security: Principles and practice (8th ed.). Pearson.
dc.relation.referencesTiloca, M., Oikonomou, G., & Hancke, G. P. (2016). Secure group communication in the Internet of Things with DTLS and multicast. Ad Hoc Networks, 52, 80–92. https://doi.org/10.1016/j.adhoc.2016.09.004
dc.relation.referencesGarcia-Morchon, O., Kumar, S., & Struik, R. (2013). Security considerations in the IP-based Internet of Things. Internet Engineering Task Force (IETF) Draft. https://datatracker.ietf.org/doc/html/draft-ietf-core-security-06
dc.relation.referencesMartin, R. (2017). Implementing AES on low-power microcontrollers. IEEE Transactions on Information Forensics and Security, 12(11), 2731–2743. https://doi.org/10.1109/TIFS.2017.2728682
dc.relation.referencesMcGrew, D., & Viega, J. (2004). The security and performance of the Galois/Counter Mode (GCM) of operation. In B. Roy & W. Meier (Eds.), Progress in Cryptology – INDOCRYPT 2004 (pp. 343–355). Springer. https://doi.org/10.1007/978-3-540-30556-9_27
dc.relation.referencesAbdellatif, A. A., Mohamed, A., Chiasserini, C. F., & Elfouly, T. (2019). Edge computing for smart health: Context-aware approaches, opportunities, and challenges. IEEE Network, 33(3), 96–103. https://doi.org/10.1109/MNET.2019.1800325
dc.relation.referencesTreevia. (2024). Implantar sensores IoT na floresta. https://treevia.com.br/
dc.relation.referencesCatSensors. (2023). DL-ZN1-001 – Sensor LoRaWAN dendrómetro T-O Dual. https://www.catsensors.com/es/lorawan/sensores-lorawan-decentlab/dl-zn1-001-sensor-lorawan-dendrometro-t-o-dual
dc.relation.referencesEcomatik. (2020). Electronic band dendrometers – Product overview. https://www.ecomatik.de/
dc.relation.referencesGarcía, D. (2022). Diseño e implementación de un sistema IoT mediante la plataforma ESP32 para la automatización del proceso de compostaje [Trabajo de grado, Universitat Politècnica de València]. Riunet. https://riunet.upv.es/server/api/core/bitstreams/c4a73f33-fbc6-4b49-8f0c-6583e1461e50/content
dc.relation.referencesOsorio Quiroga, D. E., & Garzón Duque, W. D. (2022). Desarrollo de un sistema IoT para la medición de variables ambientales en agricultura urbana [Trabajo de grado, Universidad Distrital Francisco José de Caldas]. Repositorio Institucional UD. https://repository.udistrital.edu.co/server/api/core/bitstreams/95a7fc9b-c1f4-430f-be93-933b74d70df5/content
dc.relation.referencesMokroš, M., et al. (2024). Smart forests: Integrating LiDAR and IoT for advanced environmental monitoring. SSRN Electronic Journal. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5386703
dc.relation.referencesGoogle AI Edge. (2025). LiteRT for microcontrollers. https://ai.google.dev/edge/litert/microcontrollers/overview
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectIoT forestal
dc.subjectESP32
dc.subjectLoRa
dc.subjectSensado ambiental
dc.subjectCifrado AES-GCM
dc.subjectEficiencia energética
dc.subject.keywordForest IoT
dc.subject.keywordESP32
dc.subject.keywordLoRa
dc.subject.keywordEnvironmental sensing
dc.subject.keywordAES-GCM encryption
dc.subject.keywordEnergy efficiency
dc.subject.lembIngeniería Electrónica -- Tesis y disertaciones académicas
dc.titleDiseño y desarrollo de un prototipo de dispositivo de internet de las cosas (Iot) para la medición de variables forestales
dc.title.titleenglishDesign and development of an internet of things (IoT) device prototype for measuring forest variables
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreePasantía
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Licencia de uso y publicacion editable.pdf
Tamaño:
209.37 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
ArdilaGonzalezJhonNicolas2025.pdf
Tamaño:
822.48 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: