Estructura de los PLARI-Semigrupos

dc.contributor.advisorCifuentes Vargas, Verónicaspa
dc.contributor.authorPerdomo Leiva, Sebastianspa
dc.date.accessioned2017-12-05T20:52:56Z
dc.date.available2017-12-05T20:52:56Z
dc.date.created2017-08-27spa
dc.descriptionEl siguiente trabajo consiste en crear una estructura para los semigrupos primitivos amplios a izquierda. Para esto, es necesario tener en cuenta las extensiones de las relaciones de Green $\mathcal{R}^*,\mathcal{L}^*$ entre otras. Recuerdece que un semigrupo es un conjunto $S$ con una operación interna $\cdot$ tal que para cualquier $x,y,z\in S$ se tiene, $(x\cdot y)\cdot z=x\cdot(y\cdot z)$. Se dice que para $a,b\in S$,\ \ $a\mathcal{R}^*b$ si y sólo si para todo $x,y\in S^1$\footnote{El termino “1” en $S^1$ significa que el semigrupo $S$ es tiene elemento identidad $1$.} \ \ $ax=ay$ si y sólo si $bx=by$. Tambien se dice que $a\mathcal{L}^*b$ si y sólo si para todo $x,y\in S^1$ se debe tener que $xa=ya$ si y sólo si $xb=yb$. Un elemento $e$ de un semigrupo $S$ es llamado idempotente cuando bajo la operación interna $\cdot$ de $S$, \ \ $e^2=e$. Se dirá que un semigrupo $S$ es amplio a izquierda cuando cada $\mathcal{R}^*-clase$ de $S$ tiene al menos un idempotentes y todos los idempotentes de $S$ conmutan entre si. Además se debe tener que para $a,e^2 \in S$,\ \ $ae=(ae)^\dagger a$ \footnote{El simbolo $\dagger$ denotado como $(t)^\dagger$ indica a idempotente de la $\mathcal{R}^*_{t}-clase$. }. Se puede ver que si $S$ es amplio, cada $\mathcal{R}-clase$ tiene un único idempotente y por lo tanto $(ae)^\dagger$ es único. Se denotará $E(S)$ el conjunto de los idempotentes de $S$ y adicionalmente se les dotará a sus sus elementos de un orden $\leq$ llamado orden natural donde $e\leq f$ si y sólo si $ef=fe=e$. Se definirá a un idempotente $e\in S$ como primitivo si y sólo si para culaquier, $f\leq e$ se debe tener que $f=e$ o $f=0$ si $S$ es un semigrupo con $0.$ Se dirá que $S$ es primitivo si todos sus idempotentes son primitivos. En la parte final del trabajo se construira una matriz de Rees en bloques primitiva amplia y se creará un isomorfismo de dicha matriz con los semigrupos primitivos amplios a izquierda en los que $aS\neq \{0\}$, denominados como en \cite{AG06a} los $PLARI-semigrupos.$spa
dc.description.abstractIn the following work consist in create a structure for the primitive left ample semigroups. For this, it is necessary to consider the extent of Green relationships $ \mathcal{R}^*, \mathcal{L}^* $ between others. Remember that a semigroup is set with inner operation $ \cdot $ such as for all $ x, y, z \in S $ we have, $ (x \cdot y) \ cdot z = x \cdot (y \cdot z )$. Will be say that for $ a, b \in S $, \ \ $ a \mathcal{R}^* b $ if and only if, for all $ x, and \in S^1 $ \ \ $ ax = ay $ if and only if $ bx = by $. Also, will be say that $ a \mathcal{L}^*b $ if and only if for all $ x, y \in S^1$ we have that $ xa = ya $ if and only if $xb = yb$. A element $ e $ front to semigroup $ S $ it's called idempotent when $ e^2 = e$. Will be say that semigroups it's left ample when each $\mathcal{R}^*-class $ it has at most to idempotent and all idempotent commute. Also must comply that $ ae = (ae)^\dagger a $, with $a,e^2=e\in S$. will be denote $E(S)$ the set of all idempotents from $S$ and additionally we will give its elements a order $\leq$ called natural order when $e\leq f$ if and only if $ef=fe=e$ will be defined an a idempotent as a primitive if for all $e\leq f$ it implies $f=e$ or $f=0$. Will be that a semigroups is primitive if all its idempotents are primitive. In the final part of the work will be Build a primitive ample Rees matrix and will be create a isomorphism with the primitive ample semigroups in which $aS\neq\{0\}.$ for $a\in S$ called as in \cite{AG06a} PLARI-semigroups.spa
dc.format.mimetypepdfspa
dc.identifier.urihttp://hdl.handle.net/11349/7204
dc.language.isospaspa
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional*
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSemigrupos Inversosspa
dc.subjectExtensiones de las Relaciones de Greenspa
dc.subjectSemigrupos de Matrices de Rees en Bloquesspa
dc.subjectSemigrupos primitivosspa
dc.subject.keywordInverse Semigroupsspa
dc.subject.keywordExtensions of the Green Relationsspa
dc.subject.keywordSemigroups of Rees Matrices in Blocksspa
dc.subject.keywordPrimitive semigroupsspa
dc.subject.lembMatemáticas - Tesis y disertaciones académicasspa
dc.subject.lembSemigruposspa
dc.subject.lembÁlgebra abstractaspa
dc.subject.lembTeoría de los gruposspa
dc.titleEstructura de los PLARI-Semigruposspa
dc.title.titleenglishStructure of PLARI-Semigroupsspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
trabajo-de-grado.pdf
Tamaño:
1.03 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones