Estimación de un modelo micro-cuasigeoidal mediante el modelamiento del campo de gravedad local para la incorporación de la primera estación de Colombia en el IHRF

dc.contributor.advisorMelo Martínez, Carlos Eduardo
dc.contributor.authorOlarte Ramírez, Harold Steven
dc.contributor.orcidMelo Martínez, Carlos Eduardo [0000-0002-5598-1913]
dc.date.accessioned2025-12-02T20:01:09Z
dc.date.available2025-12-02T20:01:09Z
dc.date.created2025-11-06
dc.descriptionEn el presente documento se desarrolla el refinamiento del campo de gravedad regional, haciendo uso de funciones de base radial esféricas y un modelo extendido combinado de Gauss-Márkov, con el fin de determinar un modelo cuasigeoidal regional de alta precisión y riqueza espectral, para éste propósito, se genera la mezcla de mediciones de gravedad de diferentes técnicas para la captura y modelización de diferentes frecuencias de la señal proveniente del campo de gravedad. Asimismo, se realiza una regularización del sistema de ecuaciones mediante la estimación de las componentes de varianza (VCE por sus síglas en inglés) y, posteriormente, la estimación del parámetro de regularización de Tikhonov λ haciendo uso del método de la L-curva. En particular, para la representación de las longitudes de onda larga se hace uso del modelo de geopotencial global XGM2019, mientras que las longitudes de onda corta-muy corta se representan mediante una combinación armónica esférica de los modelos Earth2014 y ERTM2160. Paralelamente, la consistencia del modelo se valida mediante datos de GNSS/Nivelación, considerando este conjunto de datos como independiente. La materialización del Sistema Internacional de Alturas (IHRS por sus siglas en inglés) requiere una superficie geopotencial de referencia que responda al modelado cuasi-geoidal de alta resolución; por consiguiente, el modelo QgeoidMEDE2025 calculado en el presente proyecto proporciona una superficie que cumple la especificación antes mencionada y ofrece una solución para el cálculo del número geopotencial C(IHRF) asociado al Marco de referencia internacional de alturas (IHRF por sus siglas en inglés) en la estación de monitoreo permanente MEDE, la cual forma parte del marco de referencia geodésico SIRGAS-CON además de hacer parte de las estaciones del IHRF. En este orden de ideas, la solución proporcionada por la superficie calculada en el presente proyecto se compara con las soluciones del modelo continental SAM (cuasigeoide para las Américas del sur) y el modelo nacional QgeoidCOL2023. De este modo, el trabajo resulta fundamental para atender la petición del grupo de trabajo 3 de SIRGAS (GT-III), al contar con tres diferentes soluciones para las estaciones IHRF, y, además, para evidenciar en una aproximación que las diferentes configuraciones de modelización de cuasi-geoide tienen implicaciones directas en el cálculo de los números geopotenciales para IHRF C(IHRF).
dc.description.abstractIn this document, the refinement of the regional gravity field is developed using spherical radial basis functions and a combined extended Gauss–Markov model, with the objective of determining a regional quasigeoid model of high accuracy and spectral richness. For this purpose, a mixture of gravity measurements from different techniques is generated in order to capture and model different frequencies of the signal originating from the gravity field. Likewise, a regularization of the system of equations is carried out through the estimation of the variance components (VCE, for its acronym in English) and, subsequently, the estimation of the Tikhonov regularization parameter λ using the L-curve method. In particular, for the representation of long wavelengths, the global geopotential model XGM2019 is used, whereas short to very short wavelengths are represented by a spherical harmonic combination of the Earth2014 and ERTM2160 models. In parallel, the consistency of the model is validated by means of GNSS/Leveling data, considering this data set as independent. The materialization of the International Height Reference System (IHRS, for its acronym in English) requires a reference geopotential surface that conforms to high-resolution quasigeoid modeling; consequently, the QgeoidMEDE2025 model computed in the present project provides a surface that meets the aforementioned specification and offers a solution for computing the geopotential number C(IHRF) associated with the International Height Reference Frame (IHRF, for its acronym in English) at the permanent monitoring station MEDE, which is part of the SIRGAS-CON geodetic reference frame as well as being one of the IHRF stations. In this order of ideas, the solution provided by the surface computed in this project is compared with the solutions of the continental SAM model (quasigeoid for South America) and the national QgeoidCOL2023 model. In this way, the work is fundamental for addressing the request of SIRGAS Working Group 3 (GT-III), by having three different solutions for the IHRF stations and, furthermore, for showing, in an approximation, that the different quasigeoid modeling configurations have direct implications for the computation of the geopotential numbers for the IHRF, C(IHRF).
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/100030
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAndersen, O. B. and Knudsen, P. (2020). The dtu17 global marine gravity field: First validation results. In Fiducial Reference Measurements for Altimetry: Proceedings of the International Review Workshop on Satellite Altimetry Cal/Val Activities and Applications, pages 83–87. Springer.
dc.relation.referencesBentel, K. and Schmidt, M. (2015). Combining different types of gravity observations in regional gravity modeling in spherical radial basis functions. In International Association of Geodesy Symposia. Springer International Publishing Switzerland, Munich, Germany. Chapter in a book.
dc.relation.referencesBentel, K., Schmidt, M., and Gerlach, C. (2013). Different radial basis functions and their applicability for regional gravity field representation on the sphere. Int J Geomath, 4:67–96.
dc.relation.referencesBucha, B., Janák, J., Papčo, J., and Bezděk, A. (2016). High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data. Geophysical Journal International, 207(2):949–966. Accepted: 2016 August 12; Received: 2016 July 1; In original form: 2016 May 2; Advance Access publication: 2016 August 19.
dc.relation.referencesChilders, V. A., Bell, R. E., and Brozena, J. M. (1998). Airborne gravimetry: an investigation for filtering. Geophysics, 64:61–69. Manuscript received by the Editor October 30, 1995; revised manuscript received May 26, 1998.
dc.relation.referencesCid Palacios, R., Ferrer Martínez, S., and Nacional, I. G. (1999). Geodesia: geométrica, física y por satélites. Instituto Geográfico Nacional.
dc.relation.referencesde Matos, A. C. O. C., Blitzkow, D., Guimarães, G. d. N., and Silva, V. C. (2021). The south american gravimetric quasi-geoid: Qgeoid2021. v. 1.0. GFZ Data Services.
dc.relation.referencesDenker, H. (2013). Regional gravity field modeling: Theory and practical results. In Xu, G., editor, Sciences of Geodesy - II. Springer, Berlin, Heidelberg.
dc.relation.referencesEicker, A. (2008). Gravity Field Refinement by Radial Basis Functions from In-situ Satellite Data. Inaugural dissertation zur erlangung des akademischen grades doktor ingenieur (dr. ing.), Institut für Geodäsie und Geoinformation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
dc.relation.referencesFarquharson, C. G. and Oldenburg, D. W. (2004). A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems. Geophysical Journal International, 156(3):411–425.
dc.relation.referencesFeatherstone, W. E. (2001). Absolute and relative testing of gravimetric geoid models using global positioning system and orthometric height data. Computers & Geosciences, 27:807–814. Received 9 February 2000; received in revised form 11 August 2000; accepted 12 August 2000.
dc.relation.referencesFecher, T., Pail, R., Gruber, T., and GOCO Consortium (2017). Goco05c: A new combined gravity field model based on full normal equations and regionally varying weighting. Surveys in Geophysics, 38:571–590. Received 27 May 2016; accepted 5 December 2016; published online 7 January 2017.
dc.relation.referencesForsberg, R. (1993). Modelling the fine-structure of the geoid: Methods, data requirements and some results. Surveys in Geophysics, 14(4):403–418.
dc.relation.referencesFreeden, W., Gervens, T., and Schreiner, M. (1998). Constructive Approximation on the Sphere with Applications to Geomathematics. Oxford University Press, Oxford.
dc.relation.referencesGuimarães, G. d. N., Tocho, C., Piña, W. H. S., Cancoro de Matos, A. C. O., Gómez, A., Antokoletz, E. D., and Blitzkow, D. (2024). Guía06 directrices para el cálculo de los valores de potencial de gravedad en las estaciones IHRF de la región SIRGAS. GT III SIRGAS.
dc.relation.referencesGuo, J.-Y. (2023). Physical Geodesy. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham, 1 edition.
dc.relation.referencesHansen, P. C. (2000). The L-curve and its use in the numerical treatment of inverse problems. In Johnston, P., editor, Computational Inverse Problems in Electrocardiology, volume 4 of Advances in Computational Bioengineering, pages 119–142. WIT Press, Southampton.
dc.relation.referencesHansen, P. C. and O’Leary, D. P. (1993). The use of the L-curve in the regularization of discrete ill-posed problems. SIAM Journal on Scientific Computing, 14(6):1487–1503.
dc.relation.referencesHeiskanen, W. A. and Moritz, H. (1967). Physical Geodesy. Freeman and Company, San Francisco, USA.
dc.relation.referencesHirt, C., Kuhn, M., Claessens, S. J., Pail, R., Seitz, K., and Gruber, T. (2014). Study of Earth’s short-scale gravity field using the high-resolution SRTM topography model. Computers & Geosciences, 73:71–80.
dc.relation.referencesHirt, C. and Rexer, M. (2015). Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models – available as gridded data and degree-10,800 spherical harmonics. International Journal of Applied Earth Observation and Geoinformation, 39:103–112.
dc.relation.referencesHirt, C., Yang, M., Kuhn, M., Bucha, B., Kurzmann, A., and Pail, R. (2019). SRTM2gravity: an ultrahigh resolution global model of gravimetric terrain corrections. Geophysical Research Letters, 46.
dc.relation.referencesHofmann-Wellenhof, B. and Moritz, H. (2006). Physical Geodesy. Springer.
dc.relation.referencesIAG (2015). Definition and realization of an international height reference system (IHRS) and establishment of a global absolute gravity reference system.
dc.relation.referencesInstituto Geográfico Agustín Codazzi (2004). Parámetros oficiales de transformación para migrar a MAGNA–SIRGAS la información existente en Datum Bogotá. Technical report, Instituto Geográfico Agustín Codazzi, Bogotá, Colombia.
dc.relation.referencesKlees, R., Slobbe, D. C., and Farahani, H. H. (2018). A methodology for least-squares local quasigeoid modelling using a noisy satellite-only gravity field model. Journal of Geodesy, 92:431–442.
dc.relation.referencesKoch, K.-R. and Kusche, J. (2002). Regularization of geopotential determination from satellite data by variance components. Journal of Geodesy, 76(5):259–268.
dc.relation.referencesLeal, A. and Pérez, S. (2017). Modelo geoidal para la zona norte de Colombia: Propuesta metodológica. Technical report, Universidad Distrital Francisco José de Caldas, Bogotá D.C.
dc.relation.referencesLieb, V. (2017). Enhanced regional gravity field modeling from the combination of real data via MRR. Veröffentlichungen der DGK, Ausschuss Geodäsie der Bayerischen Akademie der Wissenschaften, Munich.
dc.relation.referencesLieb, V., Schmidt, M., Dettmering, D., and Börger, K. (2016). Combination of various observation techniques for regional modeling of the gravity field. Journal of Geophysical Research: Solid Earth, 121:3825–3845.
dc.relation.referencesLiu, Q. (2023). Regional gravity field refinement for geoid height modeling based on the combination of data from various observation techniques. Ausschuss Geodäsie der Bayerischen Akademie der Wissenschaften.
dc.relation.referencesLiu, Q., Schmidt, M., Pail, R., and Willberg, M. (2020a). Determination of the regularization parameter to combine heterogeneous observations in regional gravity field modeling. Remote Sensing, 12(10):1617.
dc.relation.referencesLiu, Q., Schmidt, M., Sánchez, L., et al. (2020b). Regional gravity field refinement for (quasi-) geoid determination based on spherical radial basis functions in Colorado. J Geod, 94:99.
dc.relation.referencesLiu, Q., Schmidt, M., Sánchez, L., et al. (2024). High-resolution regional gravity field modeling in data challenging regions for the realization of geopotential-based height systems. Earth Planets Space, 76(35).
dc.relation.referencesMäkinen, J. (2021). The permanent tide and the International Height Reference Frame IHRF. Journal of Geodesy, 95(106).
dc.relation.referencesMorelli, C. et al. (1972). The international gravity standardization net 1971 (I.G.S.N.71). Technical report, Air Force Cambridge Research Laboratories, European Office of Aerospace Research and Development, Osservatorio Geofisico Sperimentale. Distributed by NTIS, National Technical Information Service, U.S. Department of Commerce.
dc.relation.referencesMoritz, H. (1988). Geodetic Reference System 1980: Corrigendum. Bulletin Géodésique, 62(3):187–192. Due to errors in the formulas published in the 1992 Geodesists Handbook, readers should refer to this corrigendum.
dc.relation.referencesNaeimi, M., Flury, J., and Brieden, P. (2015). On the regularization of regional gravity field solutions in spherical radial basis functions. Geophysical Journal International, 202(2):1041–1053.
dc.relation.referencesRapp, R. H. (1984). Geodesia Geométrica Volumen I (Principios Básicos). Columbus, Ohio 43210.
dc.relation.referencesReuter, R. (1982). Über Integralformeln der Einheitssphäre und harmonische Splinefunktionen. PhD thesis, RWTH Aachen University.
dc.relation.referencesRexer, M. (2017). Spectral Solutions to the Topographic Potential in the context of High-Resolution Global Gravity Field Modelling. PhD thesis, Technische Universitaet Muenchen.
dc.relation.referencesRexer, M., Hirt, C., Claessens, S., and Tenzer, R. (2016). Layer-based modelling of the Earth’s gravitational potential up to 10-km scale in spherical harmonics in spherical and ellipsoidal approximation. Surveys in Geophysics, 37:1035–1074. Received 29 March 2016; accepted 10 August 2016; published online 29 August 2016.
dc.relation.referencesRexer, M., Hirt, C., and Pail, R. (2017). High-resolution global forward modelling – a degree-5480 global ellipsoidal topographic potential model. In European Geosciences Union General Assembly 2017, Vienna, Austria. Abstract EGU2017-7725; presented on 25/04/2017.
dc.relation.referencesSánchez, L., Huang, J., Ågren, J., Barzaghi, R., and Vergos, G. S. (2021). Recovering potential values from regional (quasi-)geoid models. Technical report, DGFI-TUM, Canadian Geodetic Survey, University of Gävle / Lantmäteriet / Royal Institute of Technology, Politecnico di Milano, Aristotle University of Thessaloniki. Summary based on: Sánchez L., Ågren J., Huang J., Wang Y. M., Mäkinen J., Pail R., Barzaghi R., Vergos G. S., Ahlgren K., Liu Q. (2021) Strategy for the realisation of the International Height Reference System (IHRS), Journal of Geodesy, 95(3), https://doi.org/10.1007/s00190-021-01481-0.
dc.relation.referencesSlobbe, C., Klees, R., Farahani, H. H., Huisman, L., Alberts, B., Voet, P., and Doncker, F. D. (2019). The impact of noise in a GRACE/GOCE global gravity model on a local quasi-geoid. Journal of Geophysical Research: Solid Earth, 124(3):3219–3237.
dc.relation.referencesSnow, K. (2024). Adjustment computations: Parts I and II of notes. Class notes. Based on former Geodetic Science Courses GS 650, GS 651, & GS 762 taught at The Ohio State University by Prof. Burkhard Schaffrin.
dc.relation.referencesSpäth, F. G. E., Antokoletz, E. D., and Tocho, C. N. (2020). Tópicos de Gravimetría: Primera Parte. Editorial de la UNLP, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata.
dc.relation.referencesSánchez, L. and Sideris, M. G. (2015). Vertical datum unification for the International Height Reference System (IHRS). Geophysical Journal International, 209(2):570–586.
dc.relation.referencesSánchez, L., Čunderlík, R., Dayoub, N., et al. (2016). A conventional value for the geoid reference potential W0. J Geod, 90:815–835.
dc.relation.referencesSánchez, L. R. (2003). Determinación de la superficie vertical de referencia para Colombia. PhD thesis, Technische Universität Dresden, Dresden.
dc.relation.referencesTikhonov, A. N. and Arsenin, V. Y. (1977). Solutions of Ill-posed Problems. Scripta series in mathematics. Winston, Washington; distributed solely by Halsted Press, New York. Translation of “Metody resheniia nekorrektnykh zadach”. Includes bibliography (pp. 236–255) and index.
dc.relation.referencesTorge, W. (2001). Geodesy. De Gruyter, Berlin, New York, 3rd edition.
dc.relation.referencesVarga, M., Pitoňák, M., Novák, P., and Bašić, T. (2021). Contribution of GRAV-D airborne gravity to improvement of regional gravimetric geoid modelling in Colorado, USA. Journal of Geodesy, 95:53.
dc.relation.referencesWang, Y. M., Sánchez, L., Ågren, J., et al. (2021). Colorado geoid computation experiment: overview and summary. J Geod, 95:127.
dc.relation.referencesWillberg, M., Zingerle, P., and Pail, R. (2020). Integration of airborne gravimetry data filtering into residual least-squares collocation: example from the 1 cm geoid experiment. Journal of Geodesy, 94(75).
dc.relation.referencesWittwer, T. (2015). Regional gravity field modelling with radial basis functions, volume 72 of Publications on Geodesy. NCG, Nederlandse Commissie voor Geodesie, Netherlands Geodetic Commission, Delft, the Netherlands.
dc.relation.referencesXu, J., Schreier, F., Doicu, A., and Trautmann, T. (2016). Assessment of Tikhonov-type regularization methods for solving atmospheric inverse problems. Journal of Quantitative Spectroscopy and Radiative Transfer, 184:274–286.
dc.relation.referencesZingerle, P. (2022). Advanced methodologies for large-scale gravity field modelling, volume Heft Nr. 888 of DGK: C (Dissertationen). München.
dc.relation.referencesZingerle, P., Pail, R., Gruber, T., and Oikonomidou, X. (2020a). The combined global gravity field model XGM2019e. Journal of Geodesy, 94:66.
dc.relation.referencesZingerle, P., Pail, R., Gruber, T., and Oikonomidou, X. (2020b). The combined global gravity field model XGM2019e. Journal of Geodesy, 94(66). Published online: 20 July 2020.
dc.relation.referencesZingerle, P., Pail, R., Scheinert, M., and Schaller, T. (2019). Evaluation of terrestrial and airborne gravity data over Antarctica—a generic approach. Journal of Geodetic Science. Received 2019-01-25; accepted 2019-04-30.
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectIHRF/IHRS
dc.subjectFunciones de base radial esféricas
dc.subjectModelo extendido combinado de Gauss-Márkov
dc.subjectRegularización de parámetros
dc.subjectRefinamiento regional del campo de gravedad
dc.subjectModelado cuasigeoidal regional
dc.subject.keywordIHRF/IHRS
dc.subject.keywordSpherical radial basis functions
dc.subject.keywordExtended combined Gauss–Markov model
dc.subject.keywordParameter regularization
dc.subject.keywordRegional gravity field refinement
dc.subject.keywordRegional quasigeoid modeling
dc.subject.lembIngeniería Catastral y Geodesia -- Tesis y disertaciones académicas
dc.subject.lembGeodesia
dc.subject.lembCampos gravitatorios
dc.subject.lembSistemas de información geográfica
dc.subject.lembGeofísica
dc.titleEstimación de un modelo micro-cuasigeoidal mediante el modelamiento del campo de gravedad local para la incorporación de la primera estación de Colombia en el IHRF
dc.title.titleenglishEstimation of a micro-quasigeoid model through local gravity field modeling for the Integration of Colombia’s first station into the IHRF
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeMonografía
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
OlarteRamirezHaroldSteven2025.pdf
Tamaño:
17.65 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicación.pdf
Tamaño:
657.17 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: