Método para identificar la cantidad necesaria de personal en oficinas de atención al cliente

dc.contributor.advisorFigueroa Garcia, Juan Carlos
dc.contributor.authorCepeda Cepeda, Wilson Alfonso
dc.contributor.orcidFigueroa Garcia, Juan Carlos [0000-0001-5544-5937]
dc.contributor.otherGarcía Barreto, Germán Alberto (Catalogador)
dc.date.accessioned2025-11-22T15:59:51Z
dc.date.available2025-11-22T15:59:51Z
dc.date.created2025-06-11
dc.descriptionEl trabajo presenta un método para identificar la cantidad necesaria de personal en oficinas de atención al cliente, asegurando el cumplimiento regulatorio del nivel de servicio mayor o igual al 80%, se emplea un enfoque ex post-facto, apoyado en análisis estadísticos no paramétricos, y modelos de clasificación como árbol de decisión, donde el ajuste dinámico de la distribución de personal, promover la atención en la jornada de la mañana para equilibrar la carga, asegurar tiempos adecuados de atención, mejorar el control de ausencias y la gestión de recursos humanos, permite a las organizaciones tomar decisiones de forma estratégica, que mejoren la experiencia del cliente en el proceso de atención de sus servicios, por consiguiente, la propuesta aporta de forma significativa a la gestión y es aplicable a contextos similares.
dc.description.abstractThe study presents a method for identifying the required number of personnel in customer service offices, ensuring regulatory compliance with a service level equal to or greater than 80%. An ex post facto approach is employed, supported by non-parametric statistical analyses and classification models such as decision trees. The dynamic adjustment of personnel distribution promoting morning shift coverage to balance workload, ensuring appropriate service times, improving absence control, and enhancing human resource management enables organizations to make strategic decisions that improve the customer experience throughout the service process. Consequently, the proposed method makes a significant contribution to organizational management and is applicable to similar contexts.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/99902
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAniyeri, R., & Nadar, R. (2018). Passengers queue analysis in international airports terminals in Kerala using multiphase queuing system. In Int. J. Mathematics in Operational Research (Vol. 12, Issue 1).
dc.relation.referencesArias, M. B., & Bae, S. (2017). Prediction of electric vehicle charging-power demand in realistic urban traffic networks. Applied Energy, 195, 738–753. https://doi.org/10.1016/j.apenergy.2017.02.021
dc.relation.referencesBorst, S. C., & Combé, M. B. (1993). An M/G/1 queue with customer collection. Communications in Statistics. Stochastic Models, 9(3), 341–371. https://doi.org/10.1080/15326349308807270
dc.relation.referencesBuchholz, P., & Kriege, J. (2017). Fitting correlated arrival and service times and related queueing performance. Queueing Systems, 85(3–4), 337–359. https://doi.org/10.1007/s11134-017-9514-5
dc.relation.referencesCantor, D. E., & Jin, Y. (2019). Theoretical and empirical evidence of behavioral and production line factors that influence helping behavior. Journal of Operations Management, 65(4), 312–332. https://doi.org/10.1002/joom.1019
dc.relation.referencesChacón, H., Koppisetti, V., Hardage, D., Choo, K.-K. R., & Rad, P. (2023). Forecasting call center arrivals using temporal memory networks and gradient boosting algorithm. Expert Systems with Applications, 224. https://doi.org/10.1016/j.eswa.2023.119983
dc.relation.referencesDudin, A. N., Klimenok, V. I., & Vishnevsky, V. M. (2019). The theory of queuing systems with correlated flows. In The Theory of Queuing Systems with Correlated Flows. https://doi.org/10.1007/978-3-030-32072-0
dc.relation.referencesDudina, O., Kim, C., & Dudin, S. (2013). Retrial queuing system with Markovian arrival flow and phase-type service time distribution. Computers and Industrial Engineering, 66(2), 360–373. https://doi.org/10.1016/j.cie.2013.06.020
dc.relation.referencesEfrat-Treister, D., Moriah, H., & Rafaeli, A. (2020). The effect of waiting on aggressive tendencies toward emergency department staff: Providing information can help but may also backfire. PLoS ONE, 15(1). https://doi.org/10.1371/journal.pone.0227729
dc.relation.referencesFendick, K. W., Saksena, V. R., & Whitt, W. (1991). Investigating Dependence in Packet Queues with the Index of Dispersion for Work. IEEE Transactions on Communications, 39(8), 1231–1244. https://doi.org/10.1109/26.134013
dc.relation.referencesFREDERICK S. HILLER, & GERALD J. LIEBERMAN. (2010). Introduction to Operations Research (McGraw-Hill Interamericana de España S.L., Ed.; 9 Ed).
dc.relation.referencesGauthier, T. D. (2001). Detecting Trends Using Spearman’s Rank Correlation Coefficient. Environmental Forensics, 2(4), 359–362. https://doi.org/10.1006/ENFO.2001.0061
dc.relation.referencesGeorge C. Canavos. (1988). Applied Probability and Statistic Methods (Limusa, Ed.; Primera Ed).
dc.relation.referencesHAMDY A. TAHA. (2012). Operations Research An Introduction 9a. (Pearson, Ed.; Pearson Education, Trans.; 9 Ed). Prentice Hall.
dc.relation.referencesHoseinpour, P. (2021). Improving service quality in a congested network with random breakdowns. Computers and Industrial Engineering, 157. https://doi.org/10.1016/j.cie.2021.107226
dc.relation.referencesIbrahim, R., L’Ecuyer, P., Shen, H., & Thiongane, M. (2016). Inter-dependent, heterogeneous, and time-varying service-time distributions in call centers. European Journal of Operational Research, 250(2), 480–492. https://doi.org/10.1016/j.ejor.2015.10.017
dc.relation.referencesImgbemena, C. E., Mgbemena, C. O., & Chinwuko, E. C. (2011). A regression analysis approach to queueing system modelling: A case of banks. Journal of Applied Sciences Research, 7(3), 200–212.
dc.relation.referencesIoannidou, O., & Erduran, S. (n.d.). Beyond Hypothesis Testing Investigating the Diversity of Scientific Methods in Science Teachers’ Understanding. https://doi.org/10.1007/s11191-020-00185-9
dc.relation.referencesIshizaki, F., Takine, T., & Hasegawa, T. (1995). Analysis of a discrete-time queue with gated priority. Performance Evaluation, 23(2), 121–143. https://doi.org/10.1016/0166-5316(95)90861-F
dc.relation.referencesKanawaty, George. (1992). Introduction to Work Study (Limusa S.A. De C.V., Ed.; 4 Edicion). OIT.
dc.relation.referencesKim, B., & Sohraby, K. (2006). Tail behavior of the queue size and waiting time in a queue with discrete autoregressive arrivals. Advances in Applied Probability, 38(4), 1116–1131. https://doi.org/10.1239/aap/1165414594
dc.relation.referencesKuaban, G. S., Kumar, R., Soodan, B. S., & Czekalski, P. (2020). A multi-server queuing model with balking and correlated reneging with application in health care management. IEEE Access, 8, 169623–169639. https://doi.org/10.1109/ACCESS.2020.3024259
dc.relation.referencesLiu, Y., & Whitt, W. (2012). The Gt/GI/st+GI many-server fluid queue. Queueing Systems, 71(4), 405–444. https://doi.org/10.1007/s11134-012-9291-0
dc.relation.referencesMohd Razali, N., & Bee Wah, Y. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. In Journal of Statistical Modeling and Analytics (Vol. 2).
dc.relation.referencesMüller, A. (2000). On the waiting times in queues with dependency between interarrival and service times. Operations Research Letters, 26(1), 43–47. https://doi.org/10.1016/S0167-6377(99)00060-7
dc.relation.referencesRomán, R. E., Smida, A., Román Castillo, R. E., & Smida, A. (2017). Una reflexión ex post facto sobre la conducción de estudios multicaso para la construcción de teoría en ciencias de gestión. Innovar, 27(64), 129–144. https://doi.org/10.15446/innovar.v27n64.62373
dc.relation.referencesShunko, M., Niederhoff, J., & Rosokha, Y. (2018). Humans are not machines: The behavioral impact of queueing design on service time. Management Science, 64(1), 453–473. https://doi.org/10.1287/mnsc.2016.2610
dc.relation.referencesvan Diepen, M., & Franses, P. H. (2006). Evaluating chi-squared automatic interaction detection. Information Systems, 31(8), 814–831. https://doi.org/10.1016/J.IS.2005.03.002
dc.relation.referencesVan Harten, A., & Sleptchenko, A. (2003). On Markovian Multi-Class, Multi-Server Queueing. Queueing Systems, 43(4), 307–328. https://doi.org/10.1023/A:1023209813523
dc.relation.referencesVinish, P., Pinto, P., & Hawaldar, I. T. (2022). PERCEIVED IDLE WAIT AND ASSOCIATED EMOTIONAL DISCOMFORT: AN ANALYSIS OF RETAIL WAITING EXPERIENCE. Innovative Marketing, 18(1), 1–11. https://doi.org/10.21511/im.18(1).2022.01
dc.relation.referencesVinish, P., Pinto, P., Hawaldar, I. T., & Munshi, M. M. (2022). Coping emotional discomfort at retail checkout: Potential distractions and implications. Innovative Marketing, 18(3), 159–169. https://doi.org/10.21511/im.18(3).2022.14
dc.relation.referencesvon Schéele, F., Haftor, D. M., & Pashkevich, N. (2022). Predicting delays in service operations. Service Business, 16(2), 211–226. https://doi.org/10.1007/s11628-021-00466-5
dc.relation.referencesWhitt, W. (1984). Open and Closed Models for Networks of Queues. AT&T Bell Laboratories Technical Journal, 63(9), 1911–1979. https://doi.org/10.1002/j.1538-7305.1984.tb00084.
dc.relation.referencesWu, C. A., Bassamboo, A., & Perry, O. (2019). Service system with dependent service and patience times. Management Science, 65(3), 1151–1172. https://doi.org/10.1287/mnsc.2017.2983
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectCorrelación
dc.subjectÁrbol de decisión
dc.subjectServicios al Cliente
dc.subjectTeoria de Colas
dc.subjectNivel de Servicio
dc.subject.keywordCorrelation
dc.subject.keywordDecision tree
dc.subject.keywordCustomer Service
dc.subject.keywordQueueing Theory
dc.subject.keywordService level
dc.subject.lembMaestría en Ingeniería Industrial -- Tesis y disertaciones académicas
dc.subject.lembServicio al cliente
dc.subject.lembRelaciones con el cliente
dc.subject.lembServicio al cliente -- Árboles de decisión
dc.subject.lembGestión de recursos humanos
dc.titleMétodo para identificar la cantidad necesaria de personal en oficinas de atención al cliente
dc.title.titleenglishMethod to identify the required number of personnel in a customer service office
dc.typemasterThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
CepedaCepedaWilsonAlfonso2025.pdf
Tamaño:
3.04 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formato Licencia de Uso y Publicación.pdf
Tamaño:
281.04 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: