Reducción de costos operativos en sistemas eléctricos de potencia mediante la conmutación de líneas de transmisión usando una estrategia heurística
| dc.contributor.advisor | Montoya Giraldo, Oscar Danilo | |
| dc.contributor.author | Vera Zambrano, Juan Camilo | |
| dc.contributor.author | Álvarez Arévalo, Mario Andrés | |
| dc.contributor.orcid | Montoya Giraldo, Oscar Danilo [0000-0001-6051-4925] | |
| dc.date.accessioned | 2025-02-28T20:44:18Z | |
| dc.date.available | 2025-02-28T20:44:18Z | |
| dc.date.created | 2025-02-13 | |
| dc.description | Las redes eléctricas enfrentan nuevos desafíos debido al crecimiento de la demanda, la expansión de la interconexión entre sistemas de potencia y las restricciones en la infraestructura de transmisión, lo que puede generar congestión en las líneas, pérdidas de energía y sobrecostos operativos. Para abordar estos problemas, en este documento se plantea la conmutación de líneas de transmisión como una estrategia para reducir los costos operativos y mejorar la eficiencia del sistema mediante la desconexión estratégica de ciertas líneas para optimizar el flujo de potencia. Este enfoque se formula como un problema de flujo óptimo de potencia con variables binarias y se resuelve mediante programación entera mixta no lineal. Para evaluar su viabilidad y eficacia, se analizaron sistemas de 5, 118 y 3374 nodos utilizando MATPOWER en MATLAB, demostrando que esta metodología permite redistribuir el suministro de potencia respetando los límites operativos y reduciendo costos. En el sistema de 5 nodos, la desconexión de la Línea 6 redujo los costos en un 13.61%, en el sistema de 118 nodos la desconexión de la Línea 104 permitió una reducción del 0.0433%, y en el sistema de 3374 nodos la desconexión de la Línea 1116 resultó en una disminución del 0.0729%, representando un ahorro significativo en términos absolutos debido a la magnitud del sistema. | |
| dc.description.abstract | Electric power networks face new challenges due to growing demand, the expansion of interconnection between power systems, and transmission infrastructure constraints, which can lead to line congestion, energy losses, and increased operational costs. To address these issues, this document proposes transmission line switching as a strategy to reduce operational costs and improve system efficiency by strategically disconnecting certain lines to optimize power flow. This approach is formulated as an optimal power flow problem with binary variables and is solved using mixed-integer nonlinear programming. To evaluate its feasibility and effectiveness, power systems with 5, 118, and 3374 buses were analyzed using MATPOWER in MATLAB, demonstrating that this methodology enables power supply redistribution while respecting operational limits and reducing costs. In the 5-bus system, disconnecting Line 6 reduced costs by 13.61%; in the 118-bus system, disconnecting Line 104 led to a 0.0433% reduction; and in the 3374-bus system, disconnecting Line 1116 resulted in a 0.0729% decrease, representing a significant absolute savings due to the system's scale. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/93091 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Aazami, R., Talaeizadeh, V., and Daniar, S. (2017). Transmission switching cost modeling and determination candidate Lines for participation in joint energy and reserve markets. AUT Journal of Electrical Engineering, 49(1):39–52. | |
| dc.relation.references | Agarwal, A., Pandey, A., and Pillegi, L. (2022). Continuous Switch Model and Heuristics for Mixed-Integer Problems in Power Systems. | |
| dc.relation.references | Andrés, P., Almeida, M., Francisco, D., and Galarza, C. (2019). Estado del Arte de conmutación de líneas de transmisión con análisis de contingencias. I+D Tecnológico, 15(2):98–106. | |
| dc.relation.references | Atul, D. and Singh, M. (2024). A BRIEF REVIEW FOR POWER QUALITY PROBLEMS EVALUATION, RELIABILITY, CONCERNS AND VARIOUS MITIGATION – ISJEM Journal. | |
| dc.relation.references | Barrows, C., Blumsack, S., and Bent, R. (2012). Computationally efficient optimal Transmission Switching: Solution space reduction. IEEE Power and Energy Society General Meeting | |
| dc.relation.references | Bosupally, D., Muniyamuthu, V., and Muktevi, C. (2023). Congestion Management of Power Systems by Optimal Allocation of FACTS devices using Hybrid Techniques. International Journal of Electrical and Electronics Research, 11(2):299–307 | |
| dc.relation.references | Capitanescu, F. and Wehenkel, L. (2014). An AC OPF-based heuristic algorithm for optimal transmission switching. Proceedings - 2014 Power Systems Computation Conference, PSCC 2014. | |
| dc.relation.references | Díaz González, C. (2017). Despacho económico de cargas en un sistema eléctrico de potencia: modelado, simulación y análisis. | |
| dc.relation.references | El-Sayed, E. I., Al-Gazzar, M. M., Seif, M. S., and Soliman, A. M. A. (2022). Energy management of renewable energy sources incorporating with energy storage device. International Journal of Power Electronics and Drive Systems (IJPEDS), 13(2):883–899. | |
| dc.relation.references | Fang, X., Li, F., Wei, Y., and Cui, H. (2016). Strategic scheduling of energy storage for load serving entities in locational marginal pricing market. IET Generation, Transmission and Distribution, 10(5):1258– 1267. | |
| dc.relation.references | Fattahi, S., Lavaei, J., and Atamturk, A. (2019). A bound strengthening method for optimal transmission switching in power systems. IEEE Transactions on Power Systems, 34(1):280–291. | |
| dc.relation.references | Khanabadi, M. and Ghasemi, H. (2011). Transmission congestion management through optimal transmission switching. IEEE Power and Energy Society General Meeting. | |
| dc.relation.references | Koglin, H. J. and Muller, H. (1982). Corrective switching: a new dimension in optimal load flow. International Journal of Electrical Power & Energy Systems, 4(2):142–149. | |
| dc.relation.references | Li, F. and Bo, R. (2010). Small test systems for power system economic studies. IEEE PES General Meeting, PES 2010. | |
| dc.relation.references | Moran, L., Espinoza, J., and Burgos, R. (2014). Voltage regulation in mine power distribution systems: Problems and solutions. 2014 IEEE Industry Application Society Annual Meeting, IAS 2014. | |
| dc.relation.references | Nair, V. J. (2023). Optimal transmission switching and grid reconfiguration for transmission systems via convex relaxations. | |
| dc.relation.references | Numan, M., Abbas, M. F., Yousif, M., Ghoneim, S. S., Mohammad, A., and Noorwali, A. (2023). The Role of Optimal Transmission Switching in Enhancing Grid Flexibility: A Review. IEEE Access, 11:32437– 32463. | |
| dc.relation.references | Oviedo, M., Rios, D., Baum, G., and Blanco, G. (2020). Optimal Transmission Switching for cost reduction in the Interconnected System of Paraguay. IEEE Biennial Congress of Argentina. | |
| dc.relation.references | Patrick, D. R., Fardo, S. W., and Fardo, B. W. (2022). Electrical Power Systems Technology. Electrical Power Systems Technology. | |
| dc.relation.references | Peña, I., Martinez-Anido, C. B., and Hodge, B. M. (2018). An Extended IEEE 118-Bus Test System With High Renewable Penetration. IEEE Transactions on Power Systems, 33(1):281–289. | |
| dc.relation.references | Prince, W. R., Nielsen, E. K., and McNair, H. D. (1989). A survey of current operational problems. IEEE Transactions on Power Systems; (USA), 4:4(4):1492–1498. | |
| dc.relation.references | Rashid, M. H., Abed, N. Y., Hussien, Z. F., Rahim, A. A., and Abdullah, N. (2024). Electric Power System. Power Electronics Handbook, pages 845–863. | |
| dc.relation.references | Singh, B., Sharma, A., Garg, A. R., and Mahela, O. P. (2024). Novel Approach for Security Constrained Optimal Power Flow Solution of Utility Grid Power Network. 2024 4th International Conference on Intelligent Technologies, CONIT 2024. | |
| dc.relation.references | Srivastava, M., Goyal, S. K., Saraswat, A., Shekhawat, R. S., and Gangil, G. (2022). A Review on Power Quality Problems, Causes and Mitigation Techniques. 2022 1st International Conference on Sustainable Technology for Power and Energy Systems, STPES 2022. | |
| dc.relation.references | Tabatabaei Khorram, S. A., Fotuhi-Firuzabad, M., and Safdarian, A. (2017). Optimal transmission switching as a remedial action to enhance power system reliability. 2016 Smart Grids Conference, SGC 2016, pages 7–12. | |
| dc.relation.references | Toctaquiza, J., Carrión, D., and Jaramillo, M. (2023). An Electrical Power System Reconfiguration Model Based on Optimal Transmission Switching under Scenarios of Intentional Attacks. Energies 2023, Vol. 16, Page 2879, 16(6):2879. | |
| dc.relation.references | V., V., D., M., V., V., and D., M. (2016). Transmission System Reconfiguration to Reduce Losses and Cost Ensuring Voltage Security. Journal of Power and Energy Engineering, 4(6):4–12. | |
| dc.relation.references | Wang, H., Murillo-Sánchez, C. E., Zimmerman, R. D., and Thomas, R. J. (2007a). On computational issues of market-based optimal power flow. IEEE Transactions on Power Systems, 22(3):1185–1193. | |
| dc.relation.references | Wang, H., Murillo-Sánchez, C. E., Zimmerman, R. D., and Thomas, R. J. (2007b). On computational issues of market-based optimal power flow. IEEE Transactions on Power Systems, 22(3):1185–1193. | |
| dc.relation.references | Yadav, A. K. and Mahajan, V. (2019). Transmission line switching for loss reduction and reliability improvement. 2019 International Conference on Information and Communications Technology, ICOIACT 2019, pages 794–799. | |
| dc.relation.references | Zimmerman, R. D., Murillo-Sánchez, C. E., and Thomas, R. J. (2009). MATPOWER’s extensible optimal power flow architecture. 2009 IEEE Power and Energy Society General Meeting, PES ’09. | |
| dc.relation.references | Zimmerman, R. D., Murillo-Sánchez, C. E., and Thomas, R. J. (2011). MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Transactions on Power Systems, 26(1):12–19. | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Conmutación de líneas de transmisión | |
| dc.subject | Flujo óptimo de potencia | |
| dc.subject | Reducción de costos operativos | |
| dc.subject | Programación entera mixta no lineal | |
| dc.subject | Congestión en líneas de transmisión | |
| dc.subject.keyword | Transmission line switching | |
| dc.subject.keyword | Optimal power flow | |
| dc.subject.keyword | Operational cost reduction | |
| dc.subject.keyword | Transmission line congestion | |
| dc.subject.keyword | Mixed-integer nonlinear programming | |
| dc.subject.lemb | Ingeniería Eléctrica -- Tesis y Disertaciones Académicas | |
| dc.subject.lemb | Conmutación (Telecomunicaciones) | |
| dc.subject.lemb | Líneas telefónicas -- Mantenimiento y reparación. | |
| dc.subject.lemb | Sistemas de transmisión de datos | |
| dc.subject.lemb | Telecomunicaciones | |
| dc.subject.lemb | Matlab -- Programa de computadoras -- Comunicaciones | |
| dc.title | Reducción de costos operativos en sistemas eléctricos de potencia mediante la conmutación de líneas de transmisión usando una estrategia heurística | |
| dc.title.titleenglish | Reduction of operational costs in power systems through transmission line switching using a heuristic search strategy | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Monografía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
