Propuesta metodológica basada en regresión espacial kriging para estimar el valor por metro cuadrado de área privada en apartamentos sometidos a propiedad horizontal con fines de avalúo hipotecario (2023– 2025): Caso UPL Britalia, Bogotá D.C.
| dc.contributor.advisor | Melo Martinez, Carlos Eduardo | |
| dc.contributor.author | Huaman Pineda, Meylin Sofia | |
| dc.contributor.author | Forero Silva, Kevin Santiago | |
| dc.contributor.orcid | Melo Martinez, Carlos Eduardo [0000-0002-5598-1913] | |
| dc.date.accessioned | 2025-11-26T16:50:31Z | |
| dc.date.available | 2025-11-26T16:50:31Z | |
| dc.date.created | 2025-11-06 | |
| dc.description | Este proyecto propone una metodología para la estimación del valor por metro cuadrado en apartamentos sometidos a propiedad horizontal, delimitada al caso de la Unidad de Planeación Local (UPL) Britalia en Bogotá D.C. durante el periodo 2023–2025. La propuesta surge de la necesidad de superar limitaciones de los métodos tradicionales de valoración urbana, los cuales suelen basarse en comparaciones directas o promedios zonales que no capturan de manera suficiente la heterogeneidad espacial ni las condiciones contextuales que inciden en el comportamiento del mercado inmobiliario. Para tal fin, se construye una base de datos georreferenciada que integra avalúos técnicos realizados en el periodo de estudio y registros de oferta inmobiliaria recolectados de manera sistemática mediante técnicas de web scraping en portales especializados, garantizando un insumo actualizado y homogéneo para el análisis. Sobre esta base se aplican modelos de regresión y econometría espacial, con el objetivo de evaluar el efecto de variables físicas, socioeconómicas y territoriales en la conformación del valor unitario. Adicionalmente, se contempla la aplicación de técnicas geoestadísticas, en particular la regresión kriging, como estrategia para capturar la dependencia espacial no explicada por los modelos econométricos, lo que permite generar superficies de estimación y representaciones cartográficas coherentes con la distribución territorial de los valores. Los resultados de este enfoque se proyectan como una herramienta metodológica replicable que amplía las alternativas técnicas disponibles para la valoración urbana, facilitando la validación de avalúos, la interpretación de la estructura espacial del mercado y el fortalecimiento de la trazabilidad en procesos aplicados a gestión inmobiliaria. Asimismo, el carácter escalable de la metodología abre la posibilidad de adaptarla a otros contextos urbanos con dinámicas de alta heterogeneidad y disponibilidad parcial de información, siempre que se disponga de datos georreferenciados que permitan la estructuración del modelo. | |
| dc.description.abstract | This project proposes a methodological approach for estimating the square meter value of private area in apartments under condominium ownership, focusing on the Local Planning Unit (UPL) Britalia in Bogotá D.C. during the 2023–2025 period. The proposal arises from the need to overcome the limitations of traditional urban valuation methods, which often rely on direct comparisons or zonal averages that fail to adequately capture spatial heterogeneity and contextual conditions influencing real estate market behavior. To address this, a georeferenced database is constructed by integrating technical appraisal records from the study period with real estate listings systematically collected through web scraping from specialized portals, ensuring a consistent and up-to-date input for analysis. On this basis, regression models and spatial econometrics are applied to evaluate the impact of physical, socioeconomic, and territorial variables on unit values. Additionally, geostatistical techniques, particularly residual kriging, are considered to capture spatial dependence not explained by econometric models, allowing the generation of estimation surfaces and cartographic representations consistent with the territorial distribution of property values. The outcomes of this approach are projected as a replicable methodological tool that broadens the technical alternatives available for urban valuation, supporting the validation of appraisals, the interpretation of spatial market structures, and the strengthening of traceability in real estate management processes. Furthermore, the scalable nature of the methodology opens the possibility of adapting it to other urban contexts characterized by high heterogeneity and partial data availability, provided that georeferenced information is available to support model structuring. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/99950 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José De Caldas | |
| dc.relation.references | 1. Alcaldía Mayor de Bogotá D.C. (2021). Decreto 555 de 2021: Por el cual se adopta la revisión general del Plan de Ordenamiento Territorial – POT Bogotá Reverdece 2022–2035. Secretaría Distrital de Planeación | |
| dc.relation.references | 2. Alcaldía Mayor de Bogotá D.C. (2023). Decreto 557 de 2023: Por el cual se reglamenta el Sector Norte y se adoptan las Unidades de Planeamiento Local (UPL) Britalia, Torca, Usaquén, Niza y Toberín. Secretaría Distrital de Planeación. | |
| dc.relation.references | 3. Alcaldía Mayor de Bogotá, D. C. (2017, 3 de marzo). Decreto Distrital 088 de 2017: Por medio del cual se establecen las normas para el ámbito de aplicación del Plan de Ordenamiento Zonal del Norte – “Ciudad Lagos de Torca” (POZ Norte). SISJUR – Sistema de Información Jurídica del Distrito. | |
| dc.relation.references | 4. Antipov, E. A., & Pokryshevskaya, E. B. (2012). Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics. Expert Systems with Applications, 39(2), 1772-1778. | |
| dc.relation.references | 5. Arbia, G. (2016). Spatial econometrics: A broad view. Foundations and Trends® in Econometrics, 8(3–4), 145–265. | |
| dc.relation.references | 6. Armijos-Toro, J., González, J., & Sarmiento, M. (2022). Estimation of housing prices in Ecuador using hedonic and geostatistical methods. Revista de Métodos Cuantitativos para la Economía y la Empresa, 33(2), 45–61. | |
| dc.relation.references | 7. Baisad, K., Chutsagulprom, N., & Moonchai, S. (2023). A Non-Linear Trend Function for Kriging with External Drift Using Least Squares Support Vector Machines. Mathematics, 11(23), 5108. | |
| dc.relation.references | 8. Bajari, P., & Kahn, M. E. (2005). Estimating housing demand with an application to explaining racial segregation in cities. Journal of Business & Economic Statistics, 23(1), 20-28 | |
| dc.relation.references | 9. Banco de la República. (2023). Informe especial de estabilidad financiera: Análisis de la cartera y del mercado inmobiliario en Colombia (I semestre 2023). Banco de la República. | |
| dc.relation.references | 10. Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2015). Hierarchical Modeling and Analysis for Spatial Data (2nd ed.). CRC Press. | |
| dc.relation.references | 11. Bivand, R. S., Pebesma, E., & Gómez-Rubio, V. (2013). Applied Spatial Data Analysis with R (2nd ed.). | |
| dc.relation.references | 12. Bourdais, T., Batlle, P., Yang, X., Baptista, R., Rouquette, N., & Owhadi, H. (2024). A Gaussian Process framework for connecting the dots. Proceedings of the National Academy of Sciences, 121(32), e2403449121. | |
| dc.relation.references | 13. Brueckner, J. K., Kahn, M. E., & Lin, G. C. (2021). A new spatial hedonic equilibrium in the emerging work-from-home economy (NBER Working Paper No. 28526). | |
| dc.relation.references | 14. Castrignanò, A. (2011). Spatial Data Analysis for Environmental and Agricultural Applications: A Practical Guide. Springer. | |
| dc.relation.references | 15. Cellmer, R., Bełej, M., & Konowalczuk, J. (2020). Spatial analysis of housing prices and market activity with the geographically weighted regression. ISPRS International Journal of Geo-Information, 9(6), 380. | |
| dc.relation.references | 16. Chica-Olmo, J., Cano-Guervos, R., & Chica-Rivas, M. (2019). Estimation of housing price variations using spatio-temporal data. Sustainability, 11(6), 1551. | |
| dc.relation.references | 17. Cressie, N. (1993). Statistics for Spatial Data (Revised ed.). John Wiley & Sons. | |
| dc.relation.references | 18. Datta, A., Banerjee, S., Finley, A. O., & Gelfand, A. E. (2016). Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets. Journal of the American Statistical Association, 111(514), 800–812. | |
| dc.relation.references | 19. Derdouri, A. (2020). A comparative study of land price estimation and mapping using hedonic modeling, kriging, and random forest methods. Journal of Applied Remote Sensing, 14(5), 050007. | |
| dc.relation.references | 20. Diao, M., Leonard, D., & Sing, T. F. (2017). Spatial-difference-in-differences models for impact of new mass rapid transit line on private housing values. Regional Science and Urban Economics, 67, 64. | |
| dc.relation.references | 21. Dou, M., Gu, Y., & Fan, H. (2023). Incorporating neighborhoods with explainable artificial intelligence for modeling fine-scale housing prices. Applied Geography, 158, 103032 | |
| dc.relation.references | 22. Elhorst, J. P. (2010). Applied spatial econometrics: Raising the bar. Spatial Economic Analysis, 5(1), 9–28 | |
| dc.relation.references | 23. Elhorst, J. P. (2017). Spatial panel data analysis. In S. Shekhar, H. Xiong, & X. Zhou (Eds.), Encyclopedia of GIS (2nd ed., pp. 2050–2058) | |
| dc.relation.references | 24. Elhorst, J. P. (2022). The dynamic general nesting spatial econometric model for spatial panels with common factors: Further raising the bar. Review of Regional Research, 42, 249–267. | |
| dc.relation.references | 25. Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley. | |
| dc.relation.references | 26. Getis, A., & Aldstadt, J. (2004). Constructing the spatial weights matrix using a local statistic. Geographical Analysis, 36(2), 90–104. | |
| dc.relation.references | 27. Gibbons, S., & Machin, S. (2005). Valuing rail access using transport innovations. Journal of Urban Economics, 57(1), 148-169. | |
| dc.relation.references | 28. Glaeser, E. L., & Gyourko, J. (2018). The economic implications of housing supply. Journal of Economic Perspectives, 32(1), 3–30. | |
| dc.relation.references | 29. Gräler, B., Pebesma, E., & Heuvelink, G. (2016). Spatio-Temporal Interpolation using gstat. The R Journal, 8(1), 204–218. | |
| dc.relation.references | 30. Goodchild, M. F. (1986). Spatial Autocorrelation (CATMOG 47). Norwich, UK: Geo Books. | |
| dc.relation.references | 31. Goodman, A. C., & Thibodeau, T. G. (2003). Housing market segmentation and hedonic prediction accuracy. Journal of Housing Economics, 12(3), 181-201. | |
| dc.relation.references | 32. Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. Oxford University Press. | |
| dc.relation.references | 33. GraphPad. (2024). Choosing a normality test. Statistics with Prism 10. | |
| dc.relation.references | 34. Grigsby, W., & Rosenburg, L. (1975). Urban housing policy. New York: APS Publications. | |
| dc.relation.references | 35. Han, F., Lu, M., Qin, D., Zheng, G., He, H., … (2025). Exploring housing price dynamics in sustainable cities through a cooperated big data driven machine learning method: Case study on a typical city in China. City and Environment Interactions, 28, 100223 | |
| dc.relation.references | 36. Heaton, M. J., Datta, A., Finley, A. O., Furrer, R., Guinness, J., Guhaniyogi, R., … Zammit-Mangion, A. (2019). A case study competition among methods for analyzing large spatial data. Journal of Agricultural, Biological and Environmental Statistics, 24(3), 398–425. | |
| dc.relation.references | 37. Helbich, M., Brunauer, W., Vaz, E., & Nijkamp, P. (2014). Spatial heterogeneity in hedonic house price models: The case of Austria. Urban Studies, 51(2), 390–411. | |
| dc.relation.references | 38. Hengl, T., Heuvelink, G. B. M., & Stein, A. (2004). A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120(1–2), 75–93 | |
| dc.relation.references | 39. Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., & Gräler, B. (2018). Random forest as a generic framework for predictive mapping of soil properties. PeerJ, 6, e5518. | |
| dc.relation.references | 40. Higgins, C. D., Arku, R. N., Farber, S., & Miller, E. J. (2024). Modelling changes in accessibility and property values associated with the King Street Transit Priority Corridor project in Toronto. Transportation Research Part A: Policy and Practice, 190, 104256. | |
| dc.relation.references | 41. Hjort, A., Williams, J. P., & Pensar, J. (2024). Clustered Conformal Prediction for the Housing Market. En Proceedings of the 13th Symposium on Conformal and Probabilistic Prediction with Applications (PMLR 230, pp. 366–386). | |
| dc.relation.references | 42. International Association of Assessing Officers. (2025). Standard on mass appraisal of real property (Rev. 2025). | |
| dc.relation.references | 43. International Organization for Standardization. (2023). ISO 19157-1:2023 Geographic information — Data quality — Part 1: General principles. | |
| dc.relation.references | 44. Isaaks, E. H., & Srivastava, R. M. (1989). An Introduction to Applied Geostatistics. Oxford University Press. | |
| dc.relation.references | 45. IVSC – International Valuation Standards Council (2021). International Valuation Standards (IVS). | |
| dc.relation.references | 46. Jim, C. Y., & Chen, W. Y. (2006). Impacts of urban environmental elements on residential housing prices in Guangzhou (China). Landscape and Urban Planning, 78(4), 422-434 | |
| dc.relation.references | 47. Joseph, V. R. (2025). Rational Kriging. Journal of the American Statistical Association, 120(549), 548–558. | |
| dc.relation.references | 48. Journel, A. G., & Huijbregts, C. J. (1978). Mining Geostatistics. Academic Press. | |
| dc.relation.references | 49. Kelejian, H. H., & Prucha, I. R. (2010). Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. Journal of Econometrics, 157(1), 53–67. | |
| dc.relation.references | 50. Keskin, H., & Grunwald, S. (2018). Regression-kriging as a workhorse in digital soil mapping. Geoderma, 326, 22–41. | |
| dc.relation.references | 51. Kitanidis, P. K. (1997). Introduction to Geostatistics: Applications in Hydrogeology. Cambridge University Press. | |
| dc.relation.references | 52. Kok, N., Koponen, E. L., & Martínez-Barbosa, C. A. (2017). Big data in real estate? From manual appraisal to automated valuation. Journal of Portfolio Management, 43(6), 202–211. | |
| dc.relation.references | 53. Koster, H. R. A., & van Ommeren, J. (2023). Neighbourhood stigma and place-based policies. Economic Policy, 38(114), 289–339. | |
| dc.relation.references | 54. Lee, L.-F., & Yu, J. (2010). Estimation of spatial autoregressive panel data models with fixed effects. Journal of Econometrics, 154(2), 165–185. | |
| dc.relation.references | 55. Leggett, C. G., & Bockstael, N. E. (2000). Evidence of the Effects of Water Quality on Residential Land Prices. Journal of Environmental Economics and Management, 39(2), 121–144. | |
| dc.relation.references | 56. Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software, 53, 173–189. | |
| dc.relation.references | 57. Lindgren, F., Rue, H., & Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4), 423–498. | |
| dc.relation.references | 58. Liu, Z., Zhang, Z., Zhou, C., Ming, W., & Du, Z. (2021). An Adaptive Inverse-Distance Weighting Interpolation Method Considering Spatial Differentiation in 3D Geological Modeling. Geosciences, 11(2), 51. | |
| dc.relation.references | 59. Lu, B., Hu, Y., Murakami, D., Brunsdon, C., Comber, A., Charlton, M., & Harris, P. (2022). High-performance solutions of geographically weighted regression in R. Geo-spatial Information Science, 25(4), 536–549. | |
| dc.relation.references | 60. Lucas, M. P., Lamb, R., & Siciliano, S. D. (2022). Optimizing automated kriging to improve spatial interpolation of climate variables. Journal of Hydrometeorology, 23(4), 739–756. | |
| dc.relation.references | 61. Mahoney, M. W., Johnson, L. K., Silge, J., Frick, H., Kuhn, M., & Beier, C. M. (2023). Assessing the performance of spatial cross-validation approaches for models of spatially structured data. arXiv preprint arXiv:2303.07334. | |
| dc.relation.references | 62. McCord, M. J., McCord, J., Davis, P. T., Haran, M., & Bidanset, P. (2019). House Price Estimation Using an Eigenvector Spatial Filtering Approach. International Journal of Housing Markets and Analysis, 13(5), 845–867. | |
| dc.relation.references | 63. McMillen, D. P. (2010). Issues in spatial data analysis. Journal of Regional Science, 50(1), 119–141. | |
| dc.relation.references | 64. Murakami, D., & Griffith, D. A. (2019). Eigenvector Spatial Filtering for Large Data Sets: Fixed and Random Effects Approaches. Geographical Analysis, 51(1), 23–49. | |
| dc.relation.references | 65. Murakami, D., Sugasawa, S., Seya, H., & Griffith, D. A. (2024). Sub-model Aggregation for Scalable Eigenvector Spatial Filtering: Application to Spatially Varying Coefficient Modeling. Geographical Analysis. | |
| dc.relation.references | 66. Nikou, M., & Tziachris, P. (2022). Prediction and Uncertainty Capabilities of Quantile Regression Forests in Estimating Spatial Distribution of Soil Organic Matter. ISPRS International Journal of Geo-Information, 11(2), 130. | |
| dc.relation.references | 67. Oliver, M. A., & Webster, R. (2015). Basic Steps in Geostatistics: The Variogram and Kriging. SpringerBriefs in Agriculture. | |
| dc.relation.references | 68. Open Geospatial Consortium. (2011). Simple Feature Access — Part 1: Common Architecture (OGC/ISO 19125-1). | |
| dc.relation.references | 69. Peng, Z., & Inoue, R. (2022). Identifying Multiple Scales of Spatial Heterogeneity in Housing Prices Based on Eigenvector Spatial Filtering Approaches. ISPRS International Journal of Geo-Information, 11(5), 283. | |
| dc.relation.references | 70. Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press. | |
| dc.relation.references | 71. Rennert, L. (2022). A meta-analysis of the impact of rail stations on property values: Applying a transit planning lens. Transport Policy, 163, 165–180. | |
| dc.relation.references | 72. Rey-Blanco, D., García-Palomares, J. C., & Gutiérrez, J. (2024). Improving hedonic housing price models by integrating accessibility measures. Expert Systems with Applications, 245, 122904. | |
| dc.relation.references | 73. Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., & Dormann, C. F. (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8), 913–929. | |
| dc.relation.references | 74. Rosen, S. (1974). Hedonic prices and implicit markets: Product differentiation in pure competition. Journal of Political Economy, 82(1), 34 | |
| dc.relation.references | 75. Rossiter, D. G. (2018). Co-kriging with the gstat package of the R environment for statistical computing (Technical Note, July 14, 2018). Cornell University. | |
| dc.relation.references | 76. Royal Institution of Chartered Surveyors. (2020). RICS Valuation – Global Standards Red Book Global Standards. RICS. Edición efectiva desde el 31/01/2020. | |
| dc.relation.references | 77. Sampson, P. D., Szpiro, A. A., Sheppard, L., Lindström, J., & Kaufman, J. D. (2013). A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2.5 concentrations in epidemiology. Environmental Health Perspectives, 121(8), 873–879. | |
| dc.relation.references | 78. Schabenberger, O., & Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis. Chapman & Hall/CRC. | |
| dc.relation.references | 79. SciPy. (2024a). scipy.stats.shapiro — Shapiro–Wilk test. | |
| dc.relation.references | 80. SciPy. (2024b). scipy.stats.normaltest — D’Agostino–Pearson test. | |
| dc.relation.references | 81. SciPy. (2024c). scipy.stats.anderson — Anderson–Darling test. | |
| dc.relation.references | 82. Sharma, H., Dua, N., & Tammana, R. (2024). An Optimal House Price Prediction Algorithm: XGBoost. arXiv preprint arXiv:2402.04082. | |
| dc.relation.references | 83. Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer. | |
| dc.relation.references | 84. Tyrväinen, L., & Miettinen, A. (2000). Property prices and urban forest amenities. Journal of Environmental Economics and Management, 39(2), 205-223. | |
| dc.relation.references | 85. Valavi, R., Elith, J., Lahoz-Monfort, J. J., & Guillera-Arroita, G. (2019). blockCV: An R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods in Ecology and Evolution, 10(2), 225–232. | |
| dc.relation.references | 86. Villada-Medina, J., Hernández-Muñoz, J., & Arango-Londoño, C. (2022). A house price modeling based on clustering and kriging: The Medellín case. Revista RRS, 12(4), 1–17. | |
| dc.relation.references | 87. Virtanen, P., Gommers, R., Oliphant, T. E., et al. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. | |
| dc.relation.references | 88. Wackernagel, H. (2003). Multivariate Geostatistics: An Introduction with Applications (3rd ed.). Springer. | |
| dc.relation.references | 89. Waller, L. A., & Gotway, C. A. (2004). Applied Spatial Statistics for Public Health Data. Wiley. | |
| dc.relation.references | 90. Webster, R., & Oliver, M. A. (2007). Geostatistics for Environmental Scientists (2nd ed.). John Wiley & Sons. | |
| dc.relation.references | 91. Yang, S., Wong, S. W. K., & Kou, S. C. (2021). Inference of dynamic systems from noisy and sparse data via manifold-constrained Gaussian processes. Proceedings of the National Academy of Sciences, 118(15), e2020397118. | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Econometría espacial | |
| dc.subject | Geoestadística | |
| dc.subject | Regresión kriging | |
| dc.subject | Valoración inmobiliaria | |
| dc.subject | Análisis espacial | |
| dc.subject | SIG | |
| dc.subject | Avalúos | |
| dc.subject.keyword | Spatial econometrics | |
| dc.subject.keyword | Geostatistics | |
| dc.subject.keyword | Kriging regression | |
| dc.subject.keyword | Real estate valuation | |
| dc.subject.keyword | Spatial analysis | |
| dc.subject.keyword | GIS | |
| dc.subject.keyword | Appraisal | |
| dc.subject.lemb | Ingeniería Catastral y Geodesia -- Tesis y disertaciones académicas | |
| dc.title | Propuesta metodológica basada en regresión espacial kriging para estimar el valor por metro cuadrado de área privada en apartamentos sometidos a propiedad horizontal con fines de avalúo hipotecario (2023– 2025): Caso UPL Britalia, Bogotá D.C. | |
| dc.title.titleenglish | Methodological proposal based on spatial kriging regression to estimate the value per square meter of private area in apartments subject to horizontal property for mortgage appraisal purposes (2023–2025): Case UPL Britalia, Bogotá D.C. | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Monografía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
