Modelamiento e identificación de parámetros para el helicóptero 2DOF quanser aero

dc.contributor.advisorÁlzate Monroy, Marco Aurelio
dc.contributor.authorGonzález Camberos, Juan Nicolás
dc.contributor.orcidÁlzate Monroy, Marco Aurelio [0000-0001-6488-6013]
dc.date.accessioned2024-10-30T16:24:25Z
dc.date.available2024-10-30T16:24:25Z
dc.date.created2024-08-27
dc.descriptionEn el siguiente proyecto se aborda la identificación de un modelo dinámico no lineal que representa adecuadamente el comportamiento del sistema QUANSER AERO en su configuración como helicóptero de dos grados de libertad (2DOF). Este proyecto se enfoca en el área de los vehículos aéreos no tripulados (VANT), que está ganando relevancia en diversas aplicaciones como búsqueda y rescate, prevención de desastres, control de tráfico y grabación de eventos, entre otros. Esta tendencia se debe a la reducción de costos y a su capacidad para operar a altitudes bajas. Sin embargo, la mayoría de las investigaciones en torno a este tema se han centrado en el diseño e implementación de técnicas de control, generalmente independientes del modelo y aun si bien se nombra la modelización, no se profundiza en esta ni se valida el modelo. Para el desarrollo, primero se realiza el modelamiento del sistema empleando el método de Euler-Lagrange, considerando las interacciones entre movimientos y las entradas, posteriormente se realiza la toma de datos experimentales del sistema en diferentes condiciones de operación seguido de la identificación de los parámetros del modelo para su validación; siendo este un proceso crucial para la captura de la dinámica. Enseguida se realiza la estimación de parámetros para el modelo lineal, del cual posteriormente se extraen valores para el modelo no lineal. Finalmente, se realiza un ajuste de los modelos y se validan los resultados. La investigación busca superar las limitaciones de modelos anteriores, que no representaban fielmente el comportamiento del sistema; no solamente entregando un modelo particular, sino un método adecuado para el modelamiento de sistemas similares.
dc.description.abstractThe following project addresses the identification of a non-linear dynamic model that adequately represents the behavior of the QUANSER AERO system in its configuration as a two-degree-of-freedom (2DOF) helicopter. This project focuses on the area of ​​unmanned aerial vehicles (UAVs), which is gaining relevance in various applications such as search and rescue, disaster prevention, traffic control and event recording, among others. This trend is due to the reduction of costs and its ability to operate at low altitudes. However, most of the research on this topic has focused on the design and implementation of control techniques, generally independent of the model, and even though modeling is mentioned, it is not further explored nor is the model validated. In order to obtain the systems (linear and non linear) models, the system is first modeled using the Euler-Lagrange method, considering the interactions between movements and inputs. Then, experimental system data is taken under different operating conditions, followed by the identification of the model parameters for validation; this being a crucial process for capturing the dynamics. Parameter estimation is then performed for the linear model, from which values ​​are subsequently extracted for the non-linear model. Finally, the models are adjusted and the results are validated. The research seeks to overcome the limitations of previous models, which did not faithfully represent the behavior of the system; not only by providing a particular model, but also an adequate method for modeling similar systems.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/42586
dc.language.isospa
dc.relation.references[1] Quanser, “Quanser AERO- 2DOF Lab Guide.”
dc.relation.references[2] J. Vishnupriyan, P. Manoharan, and A. Ramalakshmi, “Uncertainty modeling of nonlinear 2-DOF helicopter model,” in 2014 International Conference on Computer Communication and Informatics. Coimbatore, India: IEEE, Jan. 2014, pp. 1–6. [Online]. Available: http://ieeexplore.ieee. org/document/6921840/
dc.relation.references[3] M. Dyvik, D. E. Fjereide, and D. Rotondo, “Modeling and identification of the Quanser Aero using a detailed description of friction and centripetal forces,” in Modeling and identification of the Quanser Aero using a detailed description of friction and centripetal forces, Oct. 2023, pp. 246–253. [Online]. Available: https://ecp.ep.liu.se/index.php/sims/article/view/773
dc.relation.references[4] E. C. Vivas González, “Control del helicóptero 2D usando métodos de control robusto H infinito,” Feb. 2011. [Online]. Available: https: //repositorio.unal.edu.co/handle/unal/7453
dc.relation.references[5] R. Patel, D. Deb, H. Modi, and S. Shah, “Adaptive backstepping control scheme with integral action for quanser 2-dof helicopter,” in 2017 Internatio nal Conference on Advances in Computing, Communications and Informatics (ICACCI), 2017, pp. 571–577
dc.relation.references[6] S. I. Abdelmaksoud, M. Mailah, and A. M. Abdallah, “Practical Real-Time Implementation of a Disturbance Rejection Control Scheme for a Twin-Rotor Helicopter System Using Intelligent Active Force Control,” IEEE Access, vol. 9, pp. 4886–4901, 2021. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/930520
dc.relation.references[7] B. Wu, J. Wu, J. Zhang, G. Tang, and Z. Zhao, “Adaptive Neural Control of a 2DOF Helicopter with Input Saturation and Time-Varying Output Constraint,” Actuators, vol. 11, no. 11, p. 336, Nov. 2022. [Online]. Available: https://www.mdpi.com/2076-0825/11/11/336
dc.relation.references[8] A. Ramalakshmi, P. Manoharan, K. Harshath, and M. Va ratharajan, “Model [Online]. predictive control of 2DOF helicopter,” International journal of innovation and scientific research, Jun. 2016. Available: https://www.semanticscholar.org/paper/ Model-predictive-control-of-2DOF-helicopter-Ramalakshmi-Manoharan/ 546b8bc047300e571bd8a9df57ec377d5991deb2
dc.relation.references[9] G. G. Neto, F. Dos Santos Barbosa, and B. A. Angelico, “2 DOF helicopter controlling by pole-placements,” in 2016 12th IEEE International Conference on Industry Applications (INDUSCON). Curitiba, PR, Brazil: IEEE, Nov. 2016, pp. 1–5. [Online]. Available: http: //ieeexplore.ieee.org/document/7874535
dc.relation.references[10] V. G. Sanchez-Meza, Y. Lozano-Hernandez, and O. O. Gutierrez Frias, “Modeling and Control of a Two DOF Helicopter with Tail Rotor Disturbances,” in 2020 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE). Cuernavaca, Mexico: IEEE, Nov. 2020, pp. 79–84. [Online]. Available: https://ieeexplore.ieee.org/ document/9359410
dc.relation.references[11] H.-S. Jeong, S.-M. Chang, and J.-S. Park, “Sliding Mode Trim and Attitude Control of a 2-00F Rigid-Rotor Helicopter Model,” International Journal of Aeronautical and Space Sciences, vol. 6, no. 2, pp. 23–32, Dec. 2005. [Online]. Available: http://koreascience.or.kr/journal/view.jsp? kj=HGJHC0&py=2005&vnc=v6n2&sp=23
dc.relation.references[12] “CE 150 HELICOPTER MODEL.” [Online]. Available: https://www3.diism. unisi.it/~control/cmr/altro/heli_ce150_manual.pdf
dc.relation.references[13] J. M. Frasik and S. I. L. Gabrielsen, “PRACTICAL APPLICATION OF ADVANCED CONTROL : An evaluation of control methods on a Quanser AERO,” in PRACTICAL APPLICATION OF AD VANCED CONTROL : An evaluation of control methods on a Quanser AERO, 2018. [Online]. Available: https://www.semanticscholar.org/paper/PRACTICAL-APPLICATION-OF-ADVANCED-CONTROL-% 3A-An-of-a-Frasik-Gabrielsen/86b1d1c93a95da917937c84a968ec9d3cbaab006
dc.relation.references[14] M. Reyhanoglu, M. Jafari, and M. Rehan, “Simple Learning-Based Robust Trajectory Tracking Control of a 2-DOF Helicopter System,” Electronics, vol. 11, no. 13, p. 2075, Jul. 2022. [Online]. Available: https://www.mdpi.com/2079-9292/11/13/2075
dc.relation.references[15] B. Wu, J. Wu, W. He, G. Tang, and Z. Zhao, “Adaptive Neural Control for an Uncertain 2-DOF Helicopter System with Unknown Control Direction and Actuator Faults,” Mathematics, vol. 10, no. 22, p. 4342, Jan. 2022. [Online]. Available: https://www.mdpi.com/2227-7390/10/22/4342
dc.relation.references[16] P. Mullhaupt, B. Srinivasan, J. Levine, and D. Bonvin, “Control of the Toycopter Using a Flat Approximation,” IEEE Transactions on Control Systems Technology, vol. 16, no. 5, pp. 882–896, Sep. 2008. [Online]. Available: https://ieeexplore.ieee.org/document/4480149
dc.relation.references[17] A. Tastemirov, A. Lecchini-Visintini, and R. M. Morales-Viviescas, “Complete dynamic model of the Twin Rotor MIMO System (TRMS) with experimental validation,” Control Engineering Practice, vol. 66, pp. 89–98, Sep. 2017. [Online]. Available: https://www.sciencedirect.com/ science/article/pii/S0967066117301351
dc.relation.references[18] L. M. Belmonte, R. Morales, A. Fernández-Caballero, and J. A. Somolinos, “Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System,” Sensors, vol. 16, no. 8, p. 1160, Aug. 2016. [Online]. Available: https://www.mdpi.com/1424-8220/16/8/1160
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectQuanser aero
dc.subjectHelicoptero 2DOF
dc.subjectModelamiento de sistemas dinámicos
dc.subjectModelo no lineal
dc.subject.keywordQuanser aero
dc.subject.keyword2DOF helicopter
dc.subject.keywordModeling of dynamic systems
dc.subject.keywordNon-linear model
dc.subject.lembIngeniería Electrónica -- Tesis y disertaciones académicas
dc.subject.lembModelamiento de sistemas dinámicos
dc.subject.lembIdentificación de parámetros
dc.subject.lembHelicóptero 2DOF Quanser Aero
dc.titleModelamiento e identificación de parámetros para el helicóptero 2DOF quanser aero
dc.title.titleenglishModeling and parameter identification for the quanser aero 2DOF helicopter
dc.typebachelorThesis
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Trabajo de grado
Tamaño:
8.1 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
Licencia de uso y autorización
Tamaño:
209.42 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: