Modelo de asignación espectral multiusuario para redes de radio cognitiva descentralizadas

dc.contributor.authorHernández Suárez, César Augusto
dc.contributor.authorGiral Ramírez, Diego Armando
dc.contributor.authorSalgado Franco, Lizet Camila
dc.date.accessioned2023-11-02T22:26:47Z
dc.date.available2023-11-02T22:26:47Z
dc.date.created2021-12
dc.descriptionEl crecimiento de las aplicaciones inalámbricas plantea nuevos de safíos a los futuros sistemas de comunicación, como el uso ineficiente del espectro radioeléctrico. Las redes de radio cognitiva surgen como una solución a los problemas de escasez de espectro y uso ineficiente del recurso espectral, mediante el acceso dinámico al espectro. Estas redes están caracterizadas por percibir, aprender, planificar (toma de decisiones) y actuar de acuerdo con las condiciones actuales de la red. El objetivo general de una red de radio cognitiva consiste en que el usuario secundario acceda de manera oportuna a un canal de frecuencia disponible en una banda licenciada, sin generar interferencia al usuario primario, lo cual se puede lograr con una adecuada toma de decisión espectral. La probabilidad de que dos o más usuarios secundarios elijan el mismo canal es alta, especialmente cuando el número de usuarios secundarios es mayor que el número de canales disponibles, y cuantos más usuarios secundarios seleccionen el mismo canal, menor será la utilidad que cada uno pueda obtener y el número de interferencias por acceso simultáneo será mayor. El desafío consiste entonces en dotar los nodos de una red descentralizada con la capacidad de aprender del entorno, proponiendo estrategias que les permita a los usuarios secundarios tomar decisiones e intercambiar información de forma cooperativa o competitiva, en un ambiente de acceso multiusuario al espectro. Asimismo, este libro busca resolver la pregunta: ¿cómo y en qué medida se puede reducir la tasa de handoff espectral en redes de radio cognitiva descentralizadas con un enfoque multiusuario y colaborativospa
dc.description.abstractThe growth of wireless applications poses new challenges to future communication systems, such as the inefficient use of the radio spectrum. Cognitive radio networks emerge as a solution to the problems of spectrum scarcity and inefficient use of the spectral resource, through dynamic access to the spectrum. These networks are characterized by perceiving, learning, planning (decision making), and acting according to current network conditions. The general objective of a cognitive radio network is for the secondary user to timely access an available frequency channel in a licensed band, without generating interference to the primary user, which can be achieved with adequate spectral decision making. The probability that two or more secondary users will choose the same channel is high, especially when the number of secondary users is greater than the number of available channels, and the more secondary users select the same channel, the lower the utility each can obtain and the number of interferences due to simultaneous access will be greater. The challenge then consists of providing the nodes of a decentralized network with the ability to learn from the environment, proposing strategies that allow secondary users to make decisions and exchange information cooperatively or competitively, in an environment of multi-user access to the spectrum. Likewise, this book seeks to resolve the question: how and to what extent can the spectral handoff rate be reduced in decentralized cognitive radio networks with a multi-user and collaborative approach?spa
dc.description.cityBogotáspa
dc.format.mimetypepdfspa
dc.identifier.editorialUniversidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científicospa
dc.identifier.isbn9789587873108spa
dc.identifier.isbn9587873106spa
dc.identifier.urihttp://hdl.handle.net/11349/32604
dc.relation.ispartofseriesEspaciosspa
dc.relation.references3GPP. (2011). Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands IEEE Computer Society (vol. 2015, Issue July).spa
dc.relation.referencesAbass, A. A. A., Mandayam, N. B. y Gajic, Z. (2017). An evolutionary game model for threat revocation in ephemeral networks. 2017 51st Annual Conference on Information Sciences and Systems (CISS), 1-5. https://doi.org/10.1109/CISS.2017.7926128spa
dc.relation.referencesAbbas, N., Nasser, Y. y Ahmad, K. E. (2015). Recent advances on artificial intelligence and learning techniques in cognitive radio networks. EURASIP Journal on Wireless Communications and Networking, 1(2015), 174. https://doi.org/10.1186/s13638-015-0381-7spa
dc.relation.referencesAhmed, A., Boulahia, L. M. y Gaïti, D. (2014). Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys and Tutorials, 16(2), 776-811. https://doi.org/10.1109/SURV.2013.082713.00141spa
dc.relation.referencesAhmed, E., Gani, A., Abolfazli, S., Yao, L. J. y Khan, S. U. (2016). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 795-823. https://doi.org/10.1109/COMST.2014.2363082spa
dc.relation.referencesAkter, L., Natarajan, B. y Scoglio, C. (2008). Modeling and forecasting secondary user activity in cognitive radio networks. 17th International Conference on Computer Communications and Networks. https://doi.org/10.1109/ICCCN.2008.ECP.50spa
dc.relation.referencesAkyildiz, I. F. y Li, Y. (2006). OCRA: OFDM-based cognitive radio networks. En Broadband and Wireless Networking Laboratory Technical Report.spa
dc.relation.referencesAkyildiz, I. F., Lee, W.-Y. y Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810-836. https://doi.org/10.1016/j.adhoc.2009.01.001spa
dc.relation.referencesAkyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127-2159. https://doi.org/10.1016/j.comnet.2006.05.001spa
dc.relation.referencesAkyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. Communications Magazine, IEEE, 46(4), 40-48. https://doi.org/10.1109/MCOM.2008.4481339spa
dc.relation.referencesAkyildiz, I. F., Lo, B. F. y Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40- 62. https://doi.org/https://doi.org/10.1016/j.phycom.2010.12.003spa
dc.relation.referencesAl-Amidie, M., Al-Asadi, A., Micheas, A. C. y Islam, N. E. (2019). Spectrum sensing based on Bayesian generalized likelihood ratio for cognitive radio systems with multiple antennas. IET Communications, 13(3), 305- 311. https://doi.org/10.1049/iet-com.2018.5276spa
dc.relation.referencesAli, A. y Hamouda, W. (2017). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communications Surveys and Tutorials, 19(2), 1277-1304. https://doi.org/10.1109/COMST.2016.2631080spa
dc.relation.referencesAlias, D. M. y Ragesh, G. K. (2016). Cognitive radio networks: A survey. Proceedings of the 2016 IEEE International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2016, 1981- 1986. https://doi.org/10.1109/WiSPNET.2016.7566489spa
dc.relation.referencesAlmasaeid, H. M. y Kamal, A. E. (2010). Receiver-based channel allocation for wireless cognitive radio mesh networks. IEEE Symposium on New Frontiers in Dynamic Spectrum, 1-10. https://doi.org/10.1109/DYSPAN.2010.5457862spa
dc.relation.referencesAlnwaimi, G., Arshad, K. y Moessner, K. (2011). Dynamic spectrum allocation algorithm with interference management in co-existing networks. IEEE Communications Letters, 15(9), 932-934. https://doi.org/10.1109/LCOMM.2011.062911.110248spa
dc.relation.referencesAlsarhan, A. y Agarwal, A. (2009). Cluster-based spectrum management using cognitive radios in wireless mesh network. Internatonal Conference on Computer Communications and Networks, 1-6.spa
dc.relation.referencesAmir, M., El-Keyi, A. y Nafie, M. (2011). Constrained interference alignment and the spatial degrees of freedom of mimo cognitive networks. IEEE Transactions on Information Theory, 57(5), 2994-3004. https://doi.org/10.1109/TIT.2011.2119770spa
dc.relation.referencesAmjad, M. F., Chatterjee, M. y Zou, C. C. (2016). Coexistence in heterogeneous spectrum through distributed correlated equilibrium in cognitive radio networks. Computer Networks, (98), 109-122. https://doi.org/10.1016/j.comnet.2016.01.016spa
dc.relation.referencesAzarfar, A., Frigon, J.-F. y Sanso, B. (2012). Improving the reliability of wireless networks using cognitive radios. IEEE Communications Surveys & Tutorials, 14(2, Second Quarter), 338-354. https://doi.org/10.1109/SURV.2011.021111.00064spa
dc.relation.referencesBaran, P. (1964). On distributed communications networks. IEEE Transactions on Communications, 12(1), 1-9. https://doi.org/10.1109/TCOM.1964.1088883spa
dc.relation.referencesBhowmik, M. y Malathi, P. (2019). spectrum sensing in cognitive radio using actor-critic neural network with Krill Herd-Whale optimization algorithm. Wireless Personal Communications, 105(1), 335-354. https://doi.org/10.1007/s11277-018-6115-5spa
dc.relation.referencesBkassiny, M., Li, Y. y Jayaweera, S. K. (2013). A survey on machine-learning techniques in cognitive radios. IEEE Communications Surveys and Tutorials. https://doi.org/10.1109/SURV.2012.100412.00017spa
dc.relation.referencesBolstad, W. M. (2007). Introduction to Bayesian statistics. En Book. https://doi.org/10.1080/10543406.2011.589638spa
dc.relation.referencesBoorstin, J. (2016). An internet of things that will number ten billions. CNBS.spa
dc.relation.referencesBrik, V., Rozner, E., Banerjee, S. y Bahl, P. (2005). DSAP: A protocol for coordinated spectrum access. 2005 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005, 611-614. https://doi.org/10.1109/DYSPAN.2005.1542680spa
dc.relation.referencesBujari, A., Calafate, C. T., Cano, J.-C., Manzoni, P., Palazzi, C. E. y Ronzani, D. (2018). Flying adhoc network application scenarios and mobility models. International Journal of Distributed Sensor Networks, 13(10), 1550147717738192. https://doi.org/10.1177/1550147717738192spa
dc.relation.referencesBüyüközkan, G., Kahraman, C. y Ruan, D. (2004). A fuzzy multi-criteria decision approach for software development strategy selection. International Journal of General Systems, 33(2-3), 259-280. https://doi.org/10.1080/03081070310001633581spa
dc.relation.referencesBüyüközkan, G. y Çifçi, G. (2012). A combined fuzzy AHP and fuzzy TOPSIS based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354.spa
dc.relation.referencesByun, S. S., Balasingham, I. y Liang, X. (2008). Dynamic spectrum allocation in wireless cognitive sensor networks: Improving fairness and energy efficiency. IEEE Vehicular Technology Conference. https://doi.org/10.1109/VETECF.2008.299spa
dc.relation.referencesCao, L. y Zheng, H. (2005). Distributed spectrum allocation via local bargaining. 2005 Second Annual IEEE Communications Society Conference on Sensor and AdHoc Communications and Networks, SECON 2005, 2005, 475-486. https://doi.org/10.1109/SAHCN.2005.1557100 Cárdenas, M., Díaz, M., Pineda, U., Arce, A. y Stevens, E. (2016). On spectrum occupancy measurements at 2.4 GHz ISM band for cognitive radio applications. International Conference on Electronics, Communications and Computers, 25-31. https://doi.org/10.1109/CONIELECOMP.2016.7438547spa
dc.relation.referencesChang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. https://doi.org/10.1016/0377-2217(95)00300-2spa
dc.relation.referencesChen, Y. y Hee-Seok, O. (2016). A Survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Communications Surveys & Tutorials, 18(1), 848-859. https://doi.org/10.1109/COMST.2014.2364316spa
dc.relation.referencesChen, D., Zhang, Q. y Jia, W. (2008). Aggregation aware spectrum assignment in cognitive adhoc networks. International Conference on Cognitive Radio Oriented Wireless Networks and Communications. https://doi.org/10.1109/CROWNCOM.2008.4562548spa
dc.relation.referencesChen, T., Zhang, H., Maggio, G. M. y Chlamtac, I. (2007). CogMesh: A cluster-based cognitive radio network. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 168-178. https://doi.org/10.1109/DYSPAN.2007.29spa
dc.relation.referencesCheng, X. y Jiang, M. (2011). Cognitive radio spectrum assignment based on artificial bee colony algorithm. IEEE International Conference on Communication Technology, 161-164. https://doi.org/10.1109/ICCT.2011.6157854spa
dc.relation.referencesCheng, Y. C., Wu, E. H. y Chen, G. H. (2016). A decentralized MAC protocol for unfairness problems in coexistent heterogeneous cognitive radio networks scenarios with collision-based primary users. IEEE Systems Journal, 10(1), 346-357. https://doi.org/10.1109/JSYST.2015.2431715spa
dc.relation.referencesCho, J. y Lee, J. (2013). Development of a new technology product evaluation model for assessing commercialization opportunities using Delphi method and fuzzy AHP approach. Expert Systems with Applications, 40(13), 5314-5330.spa
dc.relation.referencesChou, C. T., Shankar, S., Kim, H. y Shin, K. G. (2007). What and how much to gain by spectrum agility? IEEE Journal on Selected Areas in Communications, 25(3), 576-587. https://doi.org/10.1109/JSAC.2007.070408spa
dc.relation.referencesChoudhary, D. y Shankar, R. (2012). A STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India. Energy, 42(1), 510-521.spa
dc.relation.referencesChristian, I., Moh, S., Chung, I. y Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50(6), 114-121. https://doi.org/10.1109/MCOM.2012.6211495spa
dc.relation.referencesCISCO. (2021). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update. In CISCO. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.htmlspa
dc.relation.referencesCortés, J. (2011). Metodología para la implementación de tecnologías de la información y las comunicaciones TIC’s para soportar una estrategia de cadena de suministro esbelta [Master’s Dissertation, Universidad Nacional de Colombia].spa
dc.relation.referencesCruz-Pol, S., Van Zee, L., Kassim, N., Blackwell, W., Le Vine, D. y Scott, A. (2018). Spectrum management and the impact of RFI on science sensors. Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), 1-5. https://doi.org/10.1109/MICRORAD.2018.8430720spa
dc.relation.referencesCsurgai-Horvath, L. y Bito, J. (2011). Primary and secondary user activity models for cognitive wireless network. International Conference on Telecommunications, 301-306.spa
dc.relation.referencesDadallage, S., Yi, C. y Cai, J. (2016). Joint beamforming, power and channel allocation in multi-user and multi-channel underlay MISO cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3349-3359. https://doi.org/10.1109/TVT.2015.2440412spa
dc.relation.referencesDadios, E. P. (2012). Fuzzy logic: Algorithms, techniques and implementations. TechOpen.spa
dc.relation.referencesDarak, S. J., Zhang, H., Palicot, J. y Moy, C. (2014). Efficient decentralized dynamic spectrum learning and access policy for multi-standard multi-user cognitive radio networks. 2014 11th International Symposium on Wireless Communications Systems, ISWCS 2014–Proceedings, 271-275. https://doi.org/10.1109/ISWCS.2014.6933360spa
dc.relation.referencesDarak, Sumit J., Dhabu, S., Moy, C., Zhang, H., Palicot, J. y Vinod, A. P. (2015). Low complexity and efficient dynamic spectrum learning and tunable bandwidth access for heterogeneous decentralized Cognitive Radio Networks. Digital Signal Processing: A Review Journal, 37(1), 13-23. https://doi.org/10.1016/j.dsp.2014.12.001 Darak, Sumit J., Zhang, H., Palicot, J. y Moy, C. (2017).spa
dc.relation.referencesDecision making policy for RF energy harvesting enabled cognitive radios in decentralized wireless networks. Digital Signal Processing, 60, 33-45. https://doi.org/10.1016/j.dsp.2016.08.014spa
dc.relation.referencesDel-Ser, J., Matinmikko, M., Gil-López, S. y Mustonen, M. (2010). A novel harmony search based spectrum allocation technique for cognitive radio networks. International Symposium on Wireless Communication Systems, 233-237. https://doi.org/10.1109/ISWCS.2010.5624341spa
dc.relation.referencesDelgado, M. y Rodríguez, B. (2016). Opportunities for a more Efficient Use of the Spectrum based in Cognitive Radio. IEEE Latin America Transactions, 14(2), 610-616. https://doi.org/10.1109/TLA.2016.7437200spa
dc.relation.referencesDeng, H., Huang, L., Yang, C. y Xu, H. (2018). Centralized spectrum leasing via cooperative SU assignment in cognitive radio networks. International Journal of Communication Systems, 31(13). https://doi.org/10.1002/ dac.3726spa
dc.relation.referencesDhamodharavadhani, S. (2015). A survey on clustering based routing protocols in Mobile ad hoc networks. 2015 International Conference on Soft-Computing and Networks Security (ICSNS), 1-6. https://doi.org/10.1109/ICSNS.2015.7292426spa
dc.relation.referencesDigham, F. F., Alouini, M. y Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21-24. https://doi.org/10.1109/TCOMM.2006.887483spa
dc.relation.referencesDing, L., Melodia, T., Batalama, S. N., Matyjas, J. D. y Medley, M. J. (2010). Cross-layer routing and dynamic spectrum allocation in cognitive radio ad hoc networks. IEEE Transactions on Vehicular Technology, 59(4), 1969-1979. https://doi.org/10.1109/TVT.2010.2045403spa
dc.relation.referencesDuan, J. y Li, Y. (2011). An optimal spectrum handoff scheme for cognitive radio mobile Ad Hoc networks. Advances in Electrical and Computer Engineering, 11(3), 11-16. https://doi.org/10.4316/aece.2011.03002spa
dc.relation.referencesFederal Communications Commission. (2003). Notice of proposed rulemaking and order. Mexico DF: Report ET Docket No. 03, 332.spa
dc.relation.referencesFerber, J. (1999). Multi-agent systems: An introduction to distributed artificial intelligence. Addison-Wesley.spa
dc.relation.referencesFraser, A. M. (2008). Hidden Markov models and dynamical systems. SIAM.spa
dc.relation.referencesFudenberg, D. y Tirole, J. (1991). Game theory. MIT Press.spa
dc.relation.referencesGallardo, J. R., Pineda, U. y Stevens, E. (2009). VIKOR method for vertical handoff decision in beyond 3G wireless networks. International Conference on Electrical Engineering, Computing Science and Automatic Control. https://doi.org/10.1109/ICEEE.2009.5393320spa
dc.relation.referencesGavrilovska, L., Atanasovski, V., Macaluso, I. y Dasilva, L. A. (2013). Learning and reasoning in cognitive radio networks. IEEE Communications Surveys and Tutorials, 15(4), 1761-1777. https://doi.org/10.1109/SURV.2013.030713.00113spa
dc.relation.referencesGhanem, M., Sabaei, M. y Dehghan, M. (2017). A novel model for implicit cooperation between primary users and secondary users in cognitive radio-cooperative communication systems. International Journal of Communication Systems, e3524, 1-22. https://doi.org/10.1002/dac.3524spa
dc.relation.referencesGiupponi, L. y Pérez-Neira, A. I. (2008). Fuzzy-based spectrum handoff in cognitive radio networks. International Conference on Cognitive Radio Oriented Wireless Networks and Communications. https://doi.org/10.1109/CROWNCOM.2008.4562535spa
dc.relation.referencesGoldberg, D. E. y Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95-99. https://doi.org/10.1023/A:1022602019183spa
dc.relation.referencesGoswami, M. M. (2017). AODV based adaptive distributed hybrid multipath routing for mobile AdHoc network. 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT), 410- 414. https://doi.org/10.1109/ICICCT.2017.7975230spa
dc.relation.referencesGreen, K. C., Armstrong, J. S. y Graefe, A. (2007). Methods to elicit forecasts from groups: Delphi and prediction markets compared. Social Science Research Network, (8), 17-20.spa
dc.relation.referencesHan, J., Kamber, M. y Pei, J. (2012). Data mining: Concepts and techniques. Elsevier.spa
dc.relation.referencesHasegawa, M., Hirai, H., Nagano, K., Harada, H. y Aihara, K. (2014). Optimization for centralized and decentralized cognitive radio networks. Proceedings of the IEEE, 102(4), 574-584. https://doi.org/10.1109/JPROC.2014.2306255spa
dc.relation.referencesHaykin, S. (1998). Neural networks: A comprehensive foundation (2.ª ed.). Prentice Hall PTR.spa
dc.relation.referencesHaykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201-220.spa
dc.relation.referencesHe, A., Bae, K. K., Newman, T. R., Gaeddert, J., Kim, K., Menon, R., Morales-Tirado, L., Neel, J., Zhao, Y., Reed, J. H. y Tranter, W. H. (2010). A survey of artificial intelligence for cognitive radios. IEEE Transactions on Vehicular Technology, 59(4), 1578-1592. https://doi.org/10.1109/TVT.2010.2043968spa
dc.relation.referencesHernández-Guillén, J., Rodríguez-Colina, E., Marcelín-Jiménez, R. y Pascoe-Chalke, M. (2012). CRUAM-MAC: A novel cognitive radio MAC protocol for dynamic spectrum access. IEEE Latin-America Conference on Communications, 1-6. https://doi.org/10.1109/LATINCOM.2012.6505997spa
dc.relation.referencesHernández-Sampieri, R., Fernández-Collado, C. y Baptista, P. (2006). Metodología de la investigación. McGraw-Hill.spa
dc.relation.referencesHernández, C., Giral, D. y Márquez, H. (2017). Evolutive algorithm for spectral handoff prediction in cognitive wireless networks. HIKARI Ltd, 10(14), 673-689. https://doi.org/10.12988/ces.2017.7766spa
dc.relation.referencesHernández, C., Giral, D. y Páez, I. (2015a). Benchmarking of the performance of spectrum mobility models in cognitive radio networks. IJAER, 10(21), 42189-42197.spa
dc.relation.referencesHernández, C., Giral, D. y Páez, I. (2015b). Hybrid algorithm for frequency channel selection in Wi-Fi networks. World Academy of Science, Engineering and Technology, 9(12), 1212-1215.spa
dc.relation.referencesHernández, C., Giral, D. y Salgado, C. (2020). Failed handoffs in collaborative Wi-Fi networks. Telkomnika, 18(2), 669-675.spa
dc.relation.referencesHernández, C., Giral, D. y Santa, F. (2015c). MCDM Spectrum Handover Models for Cognitive Wireless Networks. World Academy of Science, Engineering and Technology, 9(10), 679-682.spa
dc.relation.referencesHernández, C., Márquez, H. y Giral, D. (2017). Comparative evaluation of prediction models for forecasting spectral opportunities. IJET, 9(5), 3775-3782. https://doi.org/10.21817/ijet/2017/v9i5/170905055spa
dc.relation.referencesHernández, C., Pedraza, L. F. y Martínez, F. H. (2016a). Algoritmos para asignación de espectro en redes de radio cognitiva. Tecnura, 20(48), 69-88. https://doi.org/10.14483/udistrital.jour.tecnura.2016.2.a05spa
dc.relation.referencesHernández, C., Pedraza, L. F., Páez, I. y Rodríguez, E. (2015d). Análisis de la movilidad espectral en redes de radio cognitiva. Información Tecnológica, 26(6), 169-186.spa
dc.relation.referencesHernández, C., Pedraza, L. F. y Rodríguez, E. (2016b). Fuzzy feedback algorithm for the spectral handoff in cognitive radio networks. Revista Facultad de Ingeniería de la Universidad de Antioquia.spa
dc.relation.referencesHernández, C., Salcedo, O. y Pedraza, L. F. (2009). An ARIMA model for forecasting Wi-Fi data network traffic values. Ingeniería e Investigación, 29(2), 65-69.spa
dc.relation.referencesHernández, C., Salgado, C., López, H. y Rodríguez, E. (2015e). Multivariable algorithm for dynamic channel selection in cognitive radio networks. EURASIP Journal on Wireless Communications and Networking, 2015(1), 216. https://doi.org/10.1186/s13638-015-0445-8spa
dc.relation.referencesHernández, C., Salgado, C. y Salcedo, O. (2013). Performance of multivariable traffic model that allows estimating throughput mean values. Revista Facultad de Ingeniería Universidad de Antioquia, 67, 52-62. https://doi.org/http://doi.org/10.1186/s13638-015-0445-8spa
dc.relation.referencesHernández, C., Vásquez, H. y Páez, I. (2015f). Proactive spectrum handoff model with time series prediction. International Journal of Applied Engineering Research (IJAER), 10(21), 42259-42264.spa
dc.relation.referencesHoven, N., Tandra, R. y Sahai, A. (2005). Some fundamental limits on cognitive radio. Wireless Foundations EECS, Univ. of California, Berkeley.spa
dc.relation.referencesHöyhtyä, M., Mustonen, M., Sarvanko, H., Hekkala, A., Katz, M., Mämmelä, A., Kiviranta, M. y Kautio, A. (2008). Cognitive radio: An intelligent wireless communication system. In Research Report VTT-R-02219-08.spa
dc.relation.referencesHu, F., Chen, B., Zhai, X. y Zhu, C. (2016). Channel selection policy in MultiSU and Multi-PU cognitive radio networks with energy harvesting for internet of everything. Mobile Information Systems, 2016, 6024928. https://doi.org/10.1155/2016/6024928spa
dc.relation.referencesHuang, X., Han, T. y Ansari, N. (2014). On green energy powered cognitive radio networks. CoRR, abs/1405.5. http://arxiv.org/abs/1405.5747spa
dc.relation.referencesHübner, R. (2007). Strategic supply chain management in process industries: An application to specialty chemicals production network design (vol. 594). Springer Science & Business Media.spa
dc.relation.referencesIEEE. (2008). IEEE standard definitions and concepts for dynamic spectrum access: terminology relating to emerging wireless networks, system functionality, and spectrum management. En IEEE Std 1900.1-2008 (pp.1-62). https://doi.org/10.1109/IEEESTD.2008.4633734spa
dc.relation.referencesIEEE. (2008) Standards Coordinating Committee 41 on Dynamic Spectrum. IEEE standard definitions and concepts for dynamic spectrum access: terminology relating to emerging wireless networks, system functionality, and spectrum management. En IEEE Standard 1900.1-2008. https://doi.org/10.1109/IEEESTD.2008.4633734spa
dc.relation.referencesIftikhar, A., Rauf, Z., Ahmed Khan, F., Shoaib Ali, M. y Kakar, M. (2019). Bayesian game-based user behavior analysis for spectrum mobility in cognitive radios. Physical Communication, 32, 200-208. https://doi.org/10.1016/j.phycom.2018.12.002spa
dc.relation.referencesIssariyakul, T., Pillutla, L. S. y Krishnamurthy, V. (2009). Tuning radio resource in an overlay cognitive radio network for TCP: Greed isn’t good. IEEE Communications Magazine, 47(7), 57-63. https://doi.org/10.1109/MCOM.2009.5183473 Jayaweera, S. y Christodoulou, C. (2011). Radiobots: Architecture, algorithms and realtime reconfigurable antenna designs for autonomous, self-learning future cognitive radios.spa
dc.relation.referencesJi, Z. y Liu, K. J. R. (2007). Cognitive radios for dynamic spectrum access–dynamic spectrum sharing: A game theoretical overview. IEEE Communications Magazine, 45(5), 88-94. https://doi.org/10.1109/MCOM.2007.358854spa
dc.relation.referencesJiang, C, Chen, Y. y Liu, K. J. R. (2014a). Multi-channel sensing and access game: Bayesian social learning with negative network externality. IEEE Transactions on Wireless Communications, 13(4), 2176-2188. https://doi.org/10.1109/TWC.2014.022014.131209spa
dc.relation.referencesJiang, C, Chen, Y. y Liu, K. J. R. (2014b). Sequential multi-channel access game in distributed cognitive radio networks. 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 1247-1251. https://doi.org/10.1109/GlobalSIP.2014.7032322spa
dc.relation.referencesJiang, C., Chen, Y. y Liu, K. J. R. (2014). Multi-channel sensing and access game: Bayesian social learning with negative network externality. IEEE Transactions on Wireless Communications, 13(4), 2176-2188. https://doi.org/10.1109/TWC.2014.022014.131209spa
dc.relation.referencesJoda, R. y Zorzi, M. (2015). Decentralized heuristic access policy design for two cognitive secondary users under a primary type-I HARQ process. IEEE Transactions on Communications, 63(11), 4037-4049. https://doi.org/10.1109/TCOMM.2015.2480846spa
dc.relation.referencesKanodia, V., Sabharwal, A. y Knightly, E. (2004). MOAR: A multi-channel opportunistic auto-rate media access protocol for ad hoc networks. International Conference on Broadband Networks, 600-610.spa
dc.relation.referencesKaur, A., Kaur, A. y Sharma, S. (2018a). Cognitive decision engine design for CR based IoTs using differential evolution and bat algorithm. 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), 130-135. https://doi.org/10.1109/SPIN.2018.8474273spa
dc.relation.referencesKaur, A., Kaur, A. y Sharma, S. (2018b). PSO based multiobjective optimization for parameter adaptation in CR based IoTs. 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT), 1-7. https://doi.org/10.1109/CIACT.2018.8480298spa
dc.relation.referencesKaya, T. y Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy, 35(6), 2517-2527.spa
dc.relation.referencesKibria, M. R., Jamalipour, A. y Mirchandani, V. (2005). A location aware three-step vertical handoff scheme for 4G/B3G networks. Global Telecommunications Conference, 5, 2752-2756. https://doi.org/10.1109/GLOCOM.2005.1578260spa
dc.relation.referencesKim, H. y Shin, K. G. (2008). Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7(5), 533-545. https://doi.org/10.1109/ TMC.2007.70751spa
dc.relation.referencesKim, W., Kassler, A. J., Di Felice, M. y Gerla, M. (2010). Urban-X: Towards distributed channel assignment in cognitive multi-radio mesh networks. IFIP Wireless Days. https://doi.org/10.1109/WD.2010.5657733spa
dc.relation.referencesKondareddy, Y. R., Agrawal, P. y Sivalingam, K. (2008). Cognitive radio network setup without a common control channel. IEEE Military Communications Conference. https://doi.org/10.1109/MILCOM.2008.4753398spa
dc.relation.referencesKongsiriwattana, W. y Gardner-Stephen, P. (2017). Eliminating the high standby energy consumption of adhoc Wi-Fi. 2017-Janua, 1-7. https://doi.org/10.1109/GHTC.2017.8239229spa
dc.relation.referencesKrishnamurthy, S., Thoppian, M., Venkatesan, S. y Prakash, R. (2005). Control channel based MAC-layer configuration, routing and situation awareness for cognitive radio networks. Proceedings–IEEE Military Communications Conference MILCOM, 2005. https://doi.org/10.1109/MILCOM.2005.1605725spa
dc.relation.referencesKrizhevsky, A., Sutskever, I. y Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 1097-1105.spa
dc.relation.referencesKumar, K., Prakash, A. y Tripathi, R. (2016). Spectrum handoff in cognitive radio networks: A classification and comprehensive survey. Journal of Network and Computer Applications, 61(Supplement C), 161-188. https://doi.org/https://doi.org/10.1016/j.jnca.2015.10.008spa
dc.relation.referencesLahby, M., Leghris, C. y Adib, A. (2011). A hybrid approach for network selection in heterogeneous multi-access environments. International Conference on New Technologies, Mobility and Security, 1-5. https://doi.org/10.1109/NTMS.2011.5720658spa
dc.relation.referencesLee, W., y Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845-3857. https://doi.org/10.1109/T-WC.2008.070391spa
dc.relation.referencesLee, W. y Akyildiz, I. F. (2011). A spectrum decision framework for cognitive radio networks. IEEE Transactions on Mobile Computing, 10(2). 161-174 https://doi: 10.1109/TMC.2010.147.spa
dc.relation.referencesLehtomaki, J. J., Juntti, M., Saarnisaari, H. y Koivu, S. (2005). Threshold setting strategies for a quantized total power radiometer. IEEE Signal Processing Letters, 12(11), 796-799. https://doi.org/10.1109/LSP.2005.855521spa
dc.relation.referencesLertsinsrubtavee, A. y Malouch, N. (2016). Hybrid spectrum sharing through adaptive spectrum handoff and selection. IEEE Transactions on Mobile Computing, 15(11), 2781-2793.spa
dc.relation.referencesLi, X. y Zekavat, S. A. (2008). Traffic pattern prediction and performance investigation for cognitive radio systems. IEEE Wireless Communications and Networking Conference, 894-899. https://doi.org/10.1109/WCNC.2008.163spa
dc.relation.referencesLi, Y., Shen, H. y Wang, M. (2016). Optimization spectrum decision parameters in CR using autonomously search algorithm. International Conference on Signal Processing (ICSP), 1146-1151. https://doi.org/10.1109/ICSP.2016.7878007spa
dc.relation.referencesLópez, D. A., Trujillo, E. R. y Gualdrón, O. E. (2015). Elementos fundamentales que componen la radio cognitiva y asignación de bandas espectrales. Información Tecnológica, 26(1), 23-40. https://doi.org/10.4067/S0718-07642015000100004spa
dc.relation.referencesLópez, D. L. (2017). Implementación de un modelo predictor para la toma de decisiones en redes inalámbricas de radio cognitiva [Universidad Distrital Francisco José de Caldas]. http://doctoradoingenieria.udistrital.edu.co/index.php/es/investigacion/publicacionesspa
dc.relation.referencesMa, L., Shen, C. C. y Ryu, B. (2007). Single-radio adaptive channel algorithm for spectrum agile wireless ad hoc networks. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 547- 558. https://doi.org/10.1109/DYSPAN.2007.78spa
dc.relation.referencesMarinho, J. y Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147-164. https://doi.org/10.1007/s11276-011-0392-1spa
dc.relation.referencesMárquez, H., Hernández, C. y Giral, D. (2017). Channel availability prediction in cognitive radio networks using naive bayes. HIKARI Ltd, 10(12), 593-605. https://doi.org/10.12988/ces.2017.7758spa
dc.relation.referencesMartins, L. R. y Andrade, L. H. (2018). Analysis of machine learning algorithms for spectrum decision in cognitive radios. 2018 15th International Symposium on Wireless Communication Systems (ISWCS), 1-6. https://doi.org/10.1109/ISWCS.2018.8491060spa
dc.relation.referencesMasonta, M. T., Mzyece, M. y Ntlatlapa, N. (2013). Spectrum decision in cognitive radio networks: a survey. IEEE Communications Surveys & Tutorials, 15(3), 1088-1107. https://doi.org/10.1109/SURV.2012.111412.00160spa
dc.relation.referencesMatinmikko, M., Del-Ser, J., Rauma, T. y Mustonen, M. (2013). Fuzzy-logic based framework for spectrum availability assessment in cognitive radio systems. IEEE Journal on Selected Areas in Communications, 31(11), 2173-2184. https://doi.org/10.1109/JSAC.2013.131117spa
dc.relation.referencesMatlab. (2015). Matlab getting started guide. Matlab.spa
dc.relation.referencesMehbodniya, A., Kaleem, F., Yen, K. K. y Adachi, F. (2012). A fuzzy MADM ranking approach for vertical mobility in next generation hybrid networks. International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops, 262-267. https://doi.org/10.1109/ICUMT.2012.6459676spa
dc.relation.referencesMir, U., Merghem-Boulahia, L., Esseghir, M. y Gaïti, D. (2011). Dynamic spectrum sharing for cognitive radio networks using multiagent system. IEEE Conference on Consumer Communications and Networking, 658-663.spa
dc.relation.referencesMiranda, E. (2001). Improving subjective estimates using paired comparisons. IEEE Software, 18(1), 87-91. https://doi.org/10.1109/52.903173spa
dc.relation.referencesMitola, J. y Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13-18. https://doi.org/10.1109/98.788210spa
dc.relation.referencesNisan, N., Roughgarden, T., Tardos, E. y Vazirani, V. V. (2007). Algorithmic game theory (vol. 1). Cambridge University Press Cambridge.spa
dc.relation.referencesOrmond, O., Murphy, J. y Muntean, G. (2006). Utility-based intelligent network selection in beyond 3G systems. IEEE International Conference on Communications, 4, 1831-1836. https://doi.org/10.1109/ICC.2006.254986spa
dc.relation.referencesOyewobi, S. S. y Hancke, G. P. (2017). A survey of cognitive radio handoff schemes, challenges and issues for industrial wireless sensor networks (CR-IWSN). Journal of Network and Computer Applications, 97, 140-156. https://doi.org/https://doi.org/10.1016/j.jnca.2017.08.016spa
dc.relation.referencesOzger, M. y Akan, O. B. (2016). On the utilization of spectrum opportunity in cognitive radio networks. IEEE Communications Letters, 20(1), 157-160. https://doi.org/10.1109/LCOMM.2015.2504103spa
dc.relation.referencesPáez, I., Giral, D. y Hernández, C. (2015). Modelo AHP-VIKOR para handoff espectral en redes de radio cognitiva. Tecnura, 19(45), 29-39.spa
dc.relation.referencesPáez, I., Hernández, C. y Giral, D. (2017). Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva (1.ª ed.). Editorial UD.spa
dc.relation.referencesPankratev, D. A., Samsonov, A. A. y Stotckaia, A. D. (2019). Wireless data transfer technologies in a decentralized system. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 620-623. https://doi.org/10.1109/EIConRus.2019.8656671spa
dc.relation.referencesPatil, S. K. y Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ranking the solutions of Knowledge Management adoption in Supply Chain to overcome its barriers. Expert Systems with Applications, 41(2), 679-693. https://doi.org/10.1016/j.eswa.2013.07.093spa
dc.relation.referencesPedraza, L. F., Forero, F. y Páez, I. (2014). Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia. Ingenieria y Ciencia, 10(19), 127-143.spa
dc.relation.referencesPedraza, L. F., Hernández, C., Galeano, K., Rodríguez, E. y Páez, I. (2016). Ocupación espectral y modelo de radio cognitiva para Bogotá (1.ª ed.). Universidad Distrital Francisco José de Caldas.spa
dc.relation.referencesPetrova, M., Mahonen, P. y Osuna, A. (2010). Multi-class classification of analog and digital signals in cognitive radios using Support Vector Machines. International Symposium on Wireless Communication Systems, 986-990. https://doi.org/10.1109/ISWCS.2010.5624500spa
dc.relation.referencesPham, C., Tran, N. H., Do, C. T., Moon, S. Il y Hong, C. S. (2014). Spectrum handoff model based on hidden Markov model in cognitive radio networks. International Conference on Information Networking, 406-411.spa
dc.relation.referencesPla, V., Vidal, J. R., Martínez-Bauset, J. y Guijarro, L. (2010). Modeling and characterization of spectrum white spaces for underlay cognitive radio networks. IEEE International Conference on Communications. https://doi.org/10.1109/ICC.2010.5501788spa
dc.relation.referencesRahimian, N., Georghiades, C. N., Shakir, M. Z. y Qaraqe, K. A. (2014). On the probabilistic model for primary and secondary user activity for OFDMA-based cognitive radio systems: Spectrum occupancy and system throughput perspectives. IEEE Transactions on Wireless Communications, 13(1), 356-369. https://doi.org/10.1109/TWC.2013.120213.130658spa
dc.relation.referencesRamírez, C. y Ramos, V. M. (2013). On the Effectiveness of Multi-criteria Decision Mechanisms for Vertical Handoff. International Conference on Advanced Information Networking and Applications, 1157-1164. https://doi.org/10.1109/AINA.2013.114spa
dc.relation.referencesRamírez, C. y Ramos, V. M. (2010). Handover vertical: un problema de toma de decisión múltiple. Congreso Internacional sobre Innovación y Desarrollo Tecnológico.spa
dc.relation.referencesRamzan, M. R., Nawaz, N., Ahmed, A., Naeem, M., Iqbal, M. y Anpalagan, A. (2017). Multi-objective optimization for spectrum sharing in cognitive radio networks: A review. Pervasive and Mobile Computing, 41(Supplement C), 106-131. https://doi.org/https://doi.org/10.1016/j.pmcj.2017.07.010spa
dc.relation.referencesRizk, Y., Awad, M. y Tunstel, E. W. (2018). Decision making in multiagent systems: A survey. IEEE Transactions on Cognitive and Developmental Systems, 10(3), 514-529. https://doi.org/10.1109/TCDS.2018.2840971spa
dc.relation.referencesRodríguez, E., Ramírez, P., Carrillo, A. y Ernesto, C. (2011). Multiple attribute dynamic spectrum decision making for cognitive radio networks. International Conference on Wireless and Optical Communications Networks, 1-5. https://doi.org/10.1109/WOCN.2011.5872960spa
dc.relation.referencesRodríguez, A. B., Ramírez, L. J. y Chahuan, J. (2015). Nueva generación de heurísticas para redes de fibra óptica WDM (Wavelength División Multiplexing) bajo tráfico dinámico. Información Tecnológica, 26(5), 135-142.spa
dc.relation.referencesRoy, A., Midya, S., Majumder, K., Phadikar, S. y Dasgupta, A. (2017). Optimized secondary user selection for quality of service enhancement of Two-Tier multi-user Cognitive Radio Network: A game theoretic approach. Computer Networks, 123, 1-18. https://doi.org/10.1016/j.comnet.2017.05.002spa
dc.relation.referencesSaaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26. https://doi.org/10.1016/0377-2217(90)90057-Ispa
dc.relation.referencesSafavian, S. R. y Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man and Cybernetics, 21(3), 660-674. https://doi.org/10.1109/21.97458spa
dc.relation.referencesSalgado, C., Márquez, H. y Gómez, V. (2016a). Técnicas inteligentes en la asignación de espectro dinámica para redes inalámbricas cognitivas. Revista Tecnura, 20(49), 133-151. https://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a09spa
dc.relation.referencesSalgado, C., Mora, S. y Giral, D. (2016b). Collaborative algorithm for the spectrum allocation in distributed cognitive networks. IJET, 8(5), 2288- 2299. https://doi.org/10.21817/ijet/2016/v8i5/160805091spa
dc.relation.referencesSong, Q. y Jamalipour, A. (2005). A network selection mechanism for next generation networks. IEEE International Conference on Communications, 2, 1418-1422. https://doi.org/10.1109/ICC.2005.1494578spa
dc.relation.referencesSriram, K. y Whitt, W. (1986). Characterizing superposition arrival processes in packet multiplexers for voice and data. IEEE Journal on Selected Areas in Communications, 4(6), 833-846. https://doi.org/10.1109/JSAC.1986.1146402spa
dc.relation.referencesStevens, E., Martínez, J. D. y Pineda, U. (2012). Evaluation of vertical handoff decision algorithms based on MADM methods for heterogeneous wireless networks. Journal of Applied Research and Technology, 10(4), 534-548.spa
dc.relation.referencesStevens, E., Gallardo, R., Pineda, U. y Acosta, J. (2012). Application of MADM method VIKOR for vertical handoff in heterogeneous wireless networks. IEICE Transactions on Communications, 95(2), 599-602. https://doi.org/10.1587/transcom.E95.B.599spa
dc.relation.referencesStevens, E., Lin, Y. y Wong, V. W. S. (2008). An MDP-based vertical handoff decision algorithm for heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 57(2), 1243-1254. https://doi.org/10.1109/TVT.2007.907072spa
dc.relation.referencesStevens, E. y Wong, V. W. S. (2006). Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. IEEE Vehicular Technology Conference, 2, 947-951. https://doi.org/10.1109/VETECS.2004.1388970spa
dc.relation.referencesSutton, R. S. y Barto, A. G. (1998). Reinforcement learning: An introduction. IEEE Transactions on Neural Networks, 9(5), 1054. https://doi.org/10.1109/TNN.1998.712192spa
dc.relation.referencesTabassam, A. A. y Suleman, M. U. (2012). Game theory in wireless and cognitive radio networks–Coexistence perspective. 2012 IEEE Symposium on Wireless Technology and Applications (ISWTA), 177-181. https://doi.org/10.1109/ISWTA.2012.6373837spa
dc.relation.referencesTahir, M., Hadi Habaebi, M. e Islam, M. R. (2017). Novel distributed algorithm for coalition formation for enhanced spectrum sensing in cognitive radio networks. AEU–International Journal of Electronics and Communications, 77(Supplement C), 139-148. https://doi.org/https://doi.org/10.1016/j.aeue.2017.04.033spa
dc.relation.referencesTaj, M. I. y Akil, M. (2011). Cognitive radio spectrum evolution prediction using artificial neural networks based multivariate time series modelling. Wireless Conference Sustainable Wireless Technologies, 1-6.spa
dc.relation.referencesTanino, T., Tanaka, T. e Inuiguchi, M. (2003). Multi-objective programming and goal programming: Theory and applications (vol. 21). Springer Science & Business Media.spa
dc.relation.referencesThakur, P., Kumar, A., Pandit, S., Singh, G. y Satashia, S. N. (2017). Spectrum mobility in cognitive radio network using spectrum prediction and monitoring techniques. Physical Communication, (24), 1-8. https://doi.org/10.1016/j.phycom.2017.04.005spa
dc.relation.referencesTragos, E., Zeadally, S., Fragkiadakis, A. y Siris, V. (2013). Spectrum assignment in cognitive radio networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 15(3), 1108-1135. https://doi.org/10.1109/SURV.2012.121112.00047spa
dc.relation.referencesTrigui, E., Esseghir, M. y Merghem-Boulahia, L. (2012). Multi-agent systems negotiation approach for handoff in mobile cognitive radio networks. International Conference on New Technologies, Mobility and Security, 1-5. https://doi.org/10.1109/NTMS.2012.6208687spa
dc.relation.referencesTripathi, S., Upadhyay, A., Kotyan, S. y Yadav, S. (2019). Analysis and comparison of different fuzzy inference systems used in decision making for secondary users in cognitive radio network. Wireless Personal Communications, 104(3), 1175-1208. https://doi.org/10.1007/s11277-018-6075-9spa
dc.relation.referencesTsiropoulos, G., Dobre, O., Ahmed, M. y Baddour, K. (2016). Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys & Tutorials, 18(1), 824-847. https://doi.org/10.1109/COMST.2014.2362796spa
dc.relation.referencesValenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suárez, M. y Robert, F. (2010). Survey on spectrum utilization in Europe: Measurements, analyses and observations. International Conference on Cognitive Radio Oriented Wireless Networks, 230126, 2-6. https://doi.org/10.4108/ICST.CROWNCOM2010.9220spa
dc.relation.referencesVasudeva, A. y Sood, M. (2018). Survey on sybil attack defense mechanisms in wireless ad hoc networks. Journal of Network and Computer Applications, (120), 78-118. https://doi.org/https://doi.org/10.1016/j. jnca.2018.07.006spa
dc.relation.referencesWang, B. y Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5-23. https://doi.org/10.1109/JSTSP.2010.2093210spa
dc.relation.referencesWang, C., Chen, Y. y Liu, K. J. R. (2017). Hidden Chinese restaurant game: Grand information extraction for stochastic network learning. IEEE Transactions on Signal and Information Processing over Networks, 3(2), 330- 345. https://doi.org/10.1109/TSIPN.2017.2682799spa
dc.relation.referencesWang, J., Ghosh, M. y Challapali, K. (2011). Emerging cognitive radio applications: A survey. IEEE Communications Magazine. https://doi.org/10.1109/MCOM.2011.5723803spa
dc.relation.referencesWang, P., Ansari, J., Petrova, M. y Mähönen, P. (2016). CogMAC+: A decentralized MAC protocol for opportunistic spectrum access in cognitive wireless networks. Computer Communications, 79(Supplement C), 22-36. https://doi.org/https://doi.org/10.1016/j.comcom.2015.09.016spa
dc.relation.referencesWang, X., Wong, A. y Ho, P.-H. (2010). Dynamically optimized spatiotemporal prioritization for spectrum sensing in cooperative cognitive radio. Wireless Networks, 16(4), 889-901. https://doi.org/10.1007/s11276-009-0175-0spa
dc.relation.referencesWei, Q., Farkas, K., Prehofer, C., Mendes, P. y Plattner, B. (2006). Contextaware handover using active network technology. Computer Networks, 50(15), 2855-2872. https://doi.org/10.1016/j.comnet.2005.11.002spa
dc.relation.referencesWei, Y., Li, X., Song, M. y Song, J. (2008). Cooperation radio resource management and adaptive vertical handover in heterogeneous wireless networks. International Conference on Natural Computation, 5, 197-201. https://doi.org/10.1109/ICNC.2008.504spa
dc.relation.referencesWillkomm, D., Machiraju, S., Bolot, J. y Wolisz, A. (2008). Primary users in cellular networks: A large-scale measurement study. IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, 401-411. https://doi.org/10.1109/DYSPAN.2008.48spa
dc.relation.referencesWoods, W. A. (1986). Important issues in knowledge representation. Proceedings of the IEEE, 74(10), 1322-1334.spa
dc.relation.referencesWooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons.spa
dc.relation.referencesWu, Y., Yang, Q., Liu, X. y Kwak, K. (2016). Delay-Constrained optimal transmission with proactive spectrum handoff in cognitive radio networks. IEEE Transactions on Communications. https://doi.org/10.1109/TCOMM.2016.2561936spa
dc.relation.referencesXenakis, D., Passas, N. y Merakos, L. (2014). Multi-parameter performance analysis for decentralized cognitive radio networks. Wireless Networks, 20(4), 787-803. https://doi.org/10.1007/s11276-013-0635-4spa
dc.relation.referencesXu, G. y Lu, Y. (2006). Channel and modulation selection based on support vector machines for cognitive radio. International Conference on Wireless Communications, Networking and Mobile Computing, 4-7. https://doi.org/10.1109/WiCOM.2006.181spa
dc.relation.referencesYang, S. F. y Wu, J. S. (2008). A IEEE 802.21 handover design with QoS provision across WLAN and WMAN. International Conference on Communications, Circuits and Systems Proceedings, 548-552. https://doi.org/10.1109/ICCCAS.2008.4657833spa
dc.relation.referencesYang, S. J. y Tseng, W. C. (2013). Design novel weighted rating of multiple attributes scheme to enhance handoff efficiency in heterogeneous wireless networks. Computer Communications, 36(14), 1498-1514. https://doi.org/10.1016/j.comcom.2013.06.005spa
dc.relation.referencesYifei, W., Yinglei, T., Li, W., Mei, S. y Xiaojun, W. (2013). QoS provisioning energy saving dynamic access policy for overlay cognitive radio networks with hidden Markov channels. China Communications, 10(12), 92-101. https://doi.org/10.1109/CC.2013.6723882spa
dc.relation.referencesYonghui, C. (2010). Study of the bayesian networks. International Conference on E-Health Networking, Digital Ecosystems and Technologies, 1, 172-174.spa
dc.relation.referencesYoon, K. P. y Hwang, C.-L. (1995). Multiple attribute decision making: An introduction (vol. 104). Sage publications.spa
dc.relation.referencesYoussef, M. E., Nasim, S., Wasi, S., Khisal, U. y Khan, A. (2018). Efficient cooperative spectrum detection in cognitive radio systems using wavelet fusion. International Conference on Computing, Electronic and Electrical Engineering. https://doi.org/10.1109/ICECUBE.2018.8610981spa
dc.relation.referencesYu, X. y Xue, W. (2018). Joint Spectrum Allocation and Power Control for Cognitive Radio Networks Based on Potential Game BT–2018 International Symposium on Networks, Computers and Communications, ISNCC 2018, June 19, 2018– June 21, 2018. dbw Communication; iDirect; Nextant Applications a. https://doi.org/10.1109/ISNCC.2018.8530881spa
dc.relation.referencesZadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-Xspa
dc.relation.referencesZapata, J. A., Arango, M. D. y Adarme, W. (2012). Applying fuzzy extended analytical hierarchy (FEAHP) for selecting logistics software. Ingeniería e Investigación, 32(1), 94-99.spa
dc.relation.referencesZhang, B., Chen, Y., Wang, C. y Liu, K. J. R. (2012). Learning and decision making with negative externality for opportunistic spectrum access. 2012 IEEE Global Communications Conference (GLOBECOM), 1404-1409. https://doi.org/10.1109/GLOCOM.2012.6503310spa
dc.relation.referencesZhang, H., Nie, Y., Cheng, J., Leung, V. C. M. y Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications, 16(2), 730-743. https://doi.org/10.1109/TWC.2016.2628821spa
dc.relation.referencesZhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous networks. IEEE Wireless Communications and Networking Conference, 2, 653-658. https://doi.org/10.1109/WCNC.2004.1311263spa
dc.relation.referencesZhang, Y., Tay, W. P., Li, K. H., Esseghir, M. y Gaïti, D. (2016). Opportunistic spectrum access with temporal-spatial reuse in cognitive radio networks. IEEE International Conference on Acoustics, Speech and Signal Processing, 3661-3665.spa
dc.relation.referencesZhao, Y., Mao, S., Neel, J. O. y Reed, J. H. (2009). Performance evaluation of cognitive radios: Metrics, utility functions, and methodology. Proceedings of the IEEE, 97(4), 642-658. https://doi.org/10.1109/JPROC.2009.2013017spa
dc.relation.referencesZheng, H. y Cao, L. (2005). Device-centric spectrum management. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 56-65. https://doi.org/10.1109/DYSPAN.2005.1542617spa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.accessrightsOpenAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEspectro radioeléctricospa
dc.subjectRedes de radio cognitivaspa
dc.subjectAcceso dinámico al espectrospa
dc.subjectToma de decisión espectralspa
dc.subject.keywordRadio spectrumspa
dc.subject.keywordCognitive radio networksspa
dc.subject.keywordDynamic spectrum accessspa
dc.subject.keywordSpectral decision makingspa
dc.subject.lembComunicaciones inalámbricasspa
dc.subject.lembGestión del espectrospa
dc.subject.lembInterferencia de radiofrecuenciaspa
dc.subject.lembTecnologías de acceso al espectrospa
dc.subject.lembEspectro radioeléctricospa
dc.subject.lembRedes de radio cognitivasspa
dc.titleModelo de asignación espectral multiusuario para redes de radio cognitiva descentralizadasspa
dc.title.titleenglishMulti-user spectral allocation model for decentralized cognitive radio networksspa
dc.typebookspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
modelo_asignacion_internas_IMPRESION.pdf
Tamaño:
14.34 MB
Formato:
Adobe Portable Document Format
Descripción:
Modelo de asignación espectral

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: