Using grip strength as a cardiovascular risk indicator based on hybrid algorithms

dc.contributor.advisorGaona García, Paulo Alonsospa
dc.contributor.authorBareño Castellanos, Edvard Frederickspa
dc.contributor.authorMontenegro Marin, Carlos Enriquespa
dc.date.accessioned2022-02-07T19:07:54Z
dc.date.available2022-02-07T19:07:54Z
dc.date.created2021-05-06spa
dc.descriptionThis article shows the application and design of a hybrid algorithm capable of classifying people into risk groups using data such as prehensile strength, body mass index and percentage of fat. The implementation was done on Python and proposes a tool to help make medical decisions regarding the cardiovascular health of patients. The data were taken in a systematic way, k-means and c-means algorithms were used for the classification of the data, for the prediction of new data two vectorial support machines were used, one for the k-means and the other for the c-means, obtaining as a result a 100% of precision in the vectorial support machine with c-means and a 92% in the one of k-means.spa
dc.description.abstractThis article shows the application and design of a hybrid algorithm capable of classifying people into risk groups using data such as prehensile strength, body mass index and percentage of fat. The implementation was done on Python and proposes a tool to help make medical decisions regarding the cardiovascular health of patients. The data were taken in a systematic way, k-means and c-means algorithms were used for the classification of the data, for the prediction of new data two vectorial support machines were used, one for the k-means and the other for the c-means, obtaining as a result a 100% of precision in the vectorial support machine with c-means and a 92% in the one of k-means.spa
dc.format.mimetypepdfspa
dc.identifier.urihttp://hdl.handle.net/11349/28228
dc.language.isospaspa
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional*
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBody Mass Indexspa
dc.subjectC-Meansspa
dc.subjectK-Meansspa
dc.subjectPercentage f Fatspa
dc.subjectPrehensile Strengthspa
dc.subjectRisk Indicatorspa
dc.subjectSupport Vector Machinespa
dc.subject.keywordBody Mass Indexspa
dc.subject.keywordC-Meansspa
dc.subject.keywordK-Meansspa
dc.subject.keywordPercentage f Fatspa
dc.subject.keywordPrehensile Strengthspa
dc.subject.keywordRisk Indicatorspa
dc.subject.keywordSupport Vector Machine.spa
dc.subject.lembIngeniería de Sistemas - Tesis y disertaciones académicasspa
dc.subject.lembEnfermedades cardiovasculares - Prevenciónspa
dc.subject.lembAlgoritmos híbridosspa
dc.subject.lembMáquinas de soporte vectorialspa
dc.subject.lembAnálisis de datosspa
dc.titleUsing grip strength as a cardiovascular risk indicator based on hybrid algorithmsspa
dc.title.titleenglishUsing grip strength as a cardiovascular risk indicator based on hybrid algorithmsspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.degreeProducción Académicaspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
ip2021_05_04.pdf
Tamaño:
1.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Articulo Principal
No hay miniatura disponible
Nombre:
Licencia de uso y publicacion editable (1).pdf
Tamaño:
174.4 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia en formato pdf

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: