Contribución al conocimiento de la biofluorescencia en mariposas Ithomiini (Nymphalidae: Danainae): aportes a su historia evolutiva.

dc.contributor.advisorMahecha Jiménez, Oscar Javier
dc.contributor.authorCuitiva Arias, Angie Carolina
dc.contributor.orcidMahecha Jiménez, Oscar Javier [0000-0002-8682-0020]
dc.date.accessioned2024-10-28T23:21:24Z
dc.date.available2024-10-28T23:21:24Z
dc.date.created2024-08-09
dc.descriptionLas mariposas han desarrollado estrategias para comunicarse por medio de la luz, sustancias químicas, sonidos y vibraciones, medios que a su vez reducen la probabilidad de ataque y desempeñan un papel importante en la selección sexual. Dentro de esos mecanismos de comunicación se han estudiado los parches fluorescentes presentes en diversos organismos vivos, incluidas las mariposas. Este fenómeno, conocido en el campo de la biología como biofluorescencia, puede dar información sobre el estado fisiológico de los individuos, las formas de comunicación entre especies y las estrategias de defensa contra los depredadores. Sin embargo, los aspectos relacionados con la biofluorescencia en mariposas son en general menos estudiados que los de otros grupos y aunque se presentan algunas investigaciones, la información tiende a ser escasa o presenta datos con algunas inconsistencias que llevan a una interpretación sesgada sobre el alcance de la biofluorescencia. Esto dificulta determinar un origen preciso y contribuir a la historia evolutiva de la biofluorescencia en especies como los ithomiinos, que son importantes porque modelan los complejos de mimetismo batesiano y mülleriano a través de las señales aposemáticas que exhiben. Por esa razón, surge este trabajo con el objetivo de contribuir al conocimiento de la biofluorescencia en especies de mariposas Ithomiini (Nymphalidae: Danainae) en Colombia. Lo anterior se hizo mediante una revisión exhaustiva de la presencia del fenómeno en las especies de la tribu Ithomiini encontradas en colecciones entomológicas y recolectadas en campo. Con los datos obtenidos se generó a través de software especializado la reconstrucción filogenética del carácter y posteriormente se clasificaron los anillos miméticos según la incidencia de la biofluorescencia en las especies que los conformaban. Esto llevó a generar nuevos registros de especies biofluorescentes e identificar que la biofluorescencia se presenta como una homoplasia paralela, presente en diferentes patrones alares con coloración amarilla. Además, las observaciones llevaron a proponer una agrupación más cohesiva de los anillos miméticos en la tribu Ithomiini.
dc.description.abstractButterflies have developed strategies to communicate by means of light, chemicals, sounds and vibrations, which in turn reduce the probability of attack and play an important role in sexual selection. Within these communication mechanisms, fluorescent patches present in various living organisms, including butterflies, have been studied. This phenomenon, known in the field of biology as biofluorescence, can provide information on the physiological state of individuals, forms of interspecies communication and defense strategies against predators. However, aspects related to biofluorescence in butterflies are in general less studied than those of other groups and although some research is presented, the information tends to be scarce or presents data with some inconsistencies that lead to a biased interpretation about the extent of biofluorescence. This makes it difficult to determine a precise origin and to contribute to the evolutionary history of biofluorescence in species such as the ithomiines, which are important because they model the Batesian and Müllerian mimicry complexes through the aposematic signals they exhibit. For that reason, this work arises with the objective of contributing to the knowledge of biofluorescence in species of Ithomiini butterflies (Nymphalidae: Danainae) in Colombia. This was done through an exhaustive review of the presence of the phenomenon in species of the tribe Ithomiini found in entomological collections and collected in the field. With the data obtained, the phylogenetic reconstruction of the character was generated through specialized software and subsequently the mimetic rings were classified according to the incidence of biofluorescence in the species that conformed them. This led to generate new records of biofluorescent species and identify that biofluorescence occurs as a parallel homoplasy, present in different wing patterns with yellow coloration. In addition, the observations led to propose a more cohesive grouping of mimetic rings in the tribe Ithomiini.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/42402
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAardema, M. L., & Scriber, J. M. (2015). Ultraviolet Coloration in Tiger Swallowtail Butterflies (Papilio glaucusGroup, Papilionidae) with a Method for Objectively Quantifying Adult Butterfly Wing Wear. Journal Of the Lepidopterists’ Society, 69(1), 58-62. https://doi.org/10.18473/lepi.69i1.a4.
dc.relation.referencesAiello, A. & Brown, K.S. (2007). Mimetismo por ilusión en una mariposa nocturna de vuelo diurno y dimorfismo sexual de Dyschema jansoni (Lep. Arctiidae, Pericopinae) (in) Leigh et al.: Ecología y Evolución en los Trópicos, 105-107.
dc.relation.referencesAndrade-C, M. G., Campos-Salazar, L. R., González-Montaña, & Pulido-B, H. W. (2007). Santa María Mariposas alas y color.: guía de campo (1.a ed.). Universidad Nacional de Colombia.
dc.relation.referencesAndrade-C, M. G., Bañol, E. R. H., & Triviño, P. (2014). Técnicas y procesamiento para la recolección, preservación y montaje de Mariposas en estudios de biodiversidad y conservación. (Lepidoptera: Hesperioidea – Papilionoidea). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 37(144), 311.
dc.relation.referencesBEAST Developers. (2017). Effective Sample Size (ESS) | BEAST Documentation. https://beast.community/ess_tutorial.
dc.relation.referencesBeaulieu, J. M., J. C. Oliver, & B. C. O’Meara. (2020). corHMM: Analysis of binary character evolution. R package version 2.3.
dc.relation.referencesBeccaloni, G. W. (1997). Ecology, natural history and behaviour of Ithomiine butterflies and their mimics in Ecuador (Lepidoptera: Nymphalidae: Ithomiinae). Tropical Lepidoptera Research, 8(2), 103–124. https://journals.flvc.org/troplep/article/download/90103/86461
dc.relation.referencesBiomatters Ltd. (2003). Geneios (7.1.3) [Software].
dc.relation.referencesBouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., De Maio, N., Matschiner, M., Mendes, F. H. K., Müller, N. F., Ogilvie, H. A., Du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., . . . Drummond, A. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Computational Biology/PLoS Computational Biology, 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650.
dc.relation.referencesBrown, K. A. (1991). Conservation of Neotropical Environments: Insects as Indicators. En Elsevier eBooks (pp. 349-404). https://doi.org/10.1016/b978-0-12-181370-3.50020-8.
dc.relation.referencesChazot, N., Willmott, K. R., Endara, P. G. S., Toporov, A., Hill, R. I., Jiggins, C. D., & Elias, M. (2014). Mutualistic Mimicry and Filtering by Altitude Shape the Structure of Andean Butterfly Communities. ˜The American Naturalist, 183(1), 26-39. https://doi.org/10.1086/674100.
dc.relation.referencesChazot, N., Willmott, K. R., Lamas, G., Freitas, A. V. L., Piron‐Prunier, F., Arias, C. F., Mallet, J., De‐Silva, D. L., & Elias, M. (2019). Renewed diversification following Miocene landscape turnover in a Neotropical butterfly radiation. Global Ecology And Biogeography, 28(8), 1118-1132. https://doi.org/10.1111/geb.12919.
dc.relation.referencesCockayne, E. A. (1924). I. The distribution of fluorescent pigments in Lepidoptera. Transactions of the Royal Entomological Society of London, 72(1‐2), 1-19.
dc.relation.referencesConde, N. S., Domínguez, D., & Kattan, G. H. (2021). Mariposas Ithomiini (Nymphalidae) en un fragmento de bosque seco tropical del Valle del Cauca, Colombia. Biota Colombiana, 23(1), e1002. https://doi.org/10.21068/2539200x.1002.
dc.relation.referencesCronin, T. W., & Bok, M. J. (2016). Photoreception and vision in the ultraviolet. Journal Of Experimental Biology, 219(18), 2790-2801. https://doi.org/10.1242/jeb.128769.
dc.relation.referencesDe‐Silva, D. L., Mota, L. L., Chazot, N., Mallarino, R., Silva-Brandão, K. L., Piñerez, L. M. G., Freitas, A. V. L., Lamas, G., Joron, M., Mallet, J., Giraldo, C. H. C., Uribe, S., Särkinen, T., Knapp, S., Jiggins, C. D., Willmott, K. R., & Elias, M. (2017). North Andean origin and diversification of the largest ithomiine butterfly genus. Scientific Reports, 7(1). https://doi.org/10.1038/srep45966.
dc.relation.referencesDias, F. M. S., Casagrande, M. M., & Mielke, O. H. H. (2010). Alternative techniques to study characters of the genitalia in Lepidoptera. Neotropical Entomology/Neotropical Entomology, 39(6), 1044-1045. https://doi.org/10.1590/s1519-566x2010000600030.
dc.relation.referencesDoré, M., Willmott, K., Lavergne, S., Chazot, N., Freitas, A. V. L., Fontaine, C., & Elias, M. (2023). Mutualistic interactions shape global spatial congruence and climatic niche evolution in Neotropical mimetic butterflies. Ecology Letters, 26(6), 843-857. https://doi.org/10.1111/ele.14198.
dc.relation.referencesDrummond, A. J., Ho, S. y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed Phylogenetics and Dating with Confidence. PLoS Biology, 4(5), e88. https://doi.org/10.1371/journal.pbio.0040088.
dc.relation.referencesEndler, J. A., & Mappes, J. (2017). The current and future state of animal coloration research. Philosophical Transactions of the Royal Society B, 372(1724), 20160352. https://doi.org/10.1098/rstb.2016.0352.
dc.relation.referencesElias, M., & Joron, M. (2015). Mimicry in Heliconiusand Ithomiini butterflies: The profound consequences of an adaptation. BIO Web of Conferences, 4, 00008. https://doi.org/10.1051/bioconf/20150400008.
dc.relation.referencesEspeland, M., Breinholt, J., Willmott, K. R., Warren, A. D., Vila, R., Toussaint, E. F., Maunsell, S. C., Aduse-Poku, K., Talavera, G., Eastwood, R., Jarzyna, M. A., Guralnick, R., Lohman, D. J., Pierce, N. E., & Kawahara, A. Y. (2018). A Comprehensive and Dated Phylogenomic Analysis of Butterflies. CB/Current Biology, 28(5), 770-778.e5. https://doi.org/10.1016/j.cub.2018.01.061.
dc.relation.referencesEstrada, C., & Jiggins, C. D. (2004). Interspecific sexual attraction because of convergence in warning colouration: Is there a conflict between natural and sexual selection in mimetic species? Journal Of Evolutionary Biology, 21(3), 749-760. https://doi.org/10.1111/j.1420-9101.2008.01517.x.
dc.relation.referencesFinkbeiner, S. D., Fishman, D. A., Osorio, D., & Briscoe, A. D. (2017). Ultraviolet and yellow reflectance but not fluorescence is important for visual discrimination of conspecifics by Heliconius erato. The Journal of Experimental Biology. https://doi.org/10.1242/jeb.153593.
dc.relation.referencesFox, R. M. (1940). A Generic Review of the Ithomiinae (Lepidoptera, Nymphalidae). Trans. Am. Entomol. Soc.
dc.relation.referencesFox, R. M. (1956). Monograph of the Ithomiidae (Lepidoptera). Part 1. Bulletin of the AMNH ; V. 111, Article 1. http://hdl.handle.net/2246/1024.
dc.relation.referencesGauthier, J., Meier, J. I., Legeai, F., McClure, M., Whibley, A., Bretaudeau, A., Boulain, H., Parrinello, H., Mugford, S. T., Durbin, R., Zhou, C., McCarthy, S., Wheat, C. W., Piron-Prunier, F., Monsempes, C., François, M., Jay, P., Noûs, C., Persyn, E., . . . Elias, M. (2023). First chromosome scale genomes of ithomiine butterflies (Nymphalidae: Ithomiini): Comparative models for mimicry genetic studies. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13749.
dc.relation.referencesGiraldo, C. H. C., Willmott, K. R., Vila, R., & Uribe, S. (2013). Ithomiini Butterflies (Lepidoptera: Nymphalidae) of Antioquia, Colombia. Neotropical Entomology, 42(2), 146-157. https://doi.org/10.1007/s13744-012-0102-4.
dc.relation.referencesGiraldo, C., Vega, P., & Arango, C. M. (2016). Un frágil tesoro: las mariposas Colombianas. https://doi.org/10.12804/ll9789587387889.
dc.relation.referencesGray, R. D., & Karlsson, C. (2022). 101 years of biofluorescent animal studies: trends in literature, novel hypotheses, and best practices moving forward. EcoEvoRxiv. https://doi.org/10.32942/osf.io/ub6yn.
dc.relation.referencesHakanson, E. C., Hakanson, K. J., Anich, P. S., & Martin, J. G. (2022). Techniques for documenting and quantifying biofluorescence through digital photography and color quantization. Journal of Photochemistry and Photobiology, 12, 100149. https://doi.org/10.1016/j.jpap.2022.100149.
dc.relation.referencesHarmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2007). GEIGER: investigating evolutionary radiations. Bioinformatics, 24(1), 129-131. https://doi.org/10.1093/bioinformatics/btm538.
dc.relation.referencesImafuku, M., Hirose, Y., & Takeuchi, T. (2002). Wing Colors of Chrysozephyrus Butterflies (Lepidoptera;Lycaenidae): Ultraviolet Reflection by Males. Zoological Science, 19(2), 175-183. https://doi.org/10.2108/zsj.19.175.
dc.relation.referencesJohnsen, S., Kelber, A., Warrant, E., Sweeney, A. M., Widder, E. A., Lee, R. L., & Hernández-AndréS, J. (2006). Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor. Journal Of Experimental Biology, 209(5), 789-800. https://doi.org/10.1242/jeb.02053.
dc.relation.referencesKatoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology And Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010.
dc.relation.referencesKemp, D. J., & Macedonia, J. M. (2006). Structural ultraviolet ornamentation in the butterfly Hypolimnas bolina L. (Nymphalidae): visual, morphological and ecological properties. Australian Journal of Zoology, 54(4), 235. https://doi.org/10.1071/zo06005.
dc.relation.referencesKemp, D. J., & Rutowski, R. L. (2007). Condition dependence, quantitative genetics, and the potential signal content of iridescent ultraviolet butterfly coloration. Evolution, 61(1), 168–183. https://doi.org/10.1111/j.1558-5646.2007.00014.x.
dc.relation.referencesKemp, D. J. (2006). Heightened phenotypic variation and age-based fading of ultraviolet butterfly wing coloration. Evolutionary Ecology Research, 8(3), 515–527. https://www.public.asu.edu/~atrlr/rutowski_lab_archive/pdfs/Kemp,%20DJ%20(2006).pdf.
dc.relation.referencesLagorio, M. G., Cordon, G. B., & Iriel, A. (2015). Reviewing the relevance of fluorescence in biological systems. Photochemical & Photobiological Sciences, 14(9), 1538-1559.
dc.relation.referencesLondoño, P., & Giraldo, C. (2016). Un frágil tesoro: las mariposas colombianas. Editorial Universidad del Rosario. https://doi.org/10.12804/LL9789587387889.
dc.relation.referencesMarshall, N. J., & Johnsen, S. (2017). Fluorescence as a means of colour signal enhancement. Philosophical Transactions of the Royal Society B, 372(1724), 20160335. https://doi.org/10.1098/rstb.2016.0335.
dc.relation.referencesMcClure, M., Clerc, C., Desbois, C., Meichanetzoglou, A., Cau, M., Bastin-Héline, L., Bacigalupo, J., Houssin, C., Pinna, C., Nay, B., Llaurens, V., Berthier, S., Andraud, C., Gomez, D., & Elias, M. (2019). Why has transparency evolved in aposematic butterflies? Insights from the largest radiation of aposematic butterflies, the Ithomiini. Proceedings of the Royal Society B: Biological Sciences, 286(1901), 20182769. https://doi.org/10.1098/rspb.2018.2769.
dc.relation.referencesMedina, I., Vega‐Trejo, R., Wallenius, T., Symonds, M. R. E., & Stuart‐Fox, D. (2020). From cryptic to colorful: Evolutionary decoupling of larval and adult color in butterflies. Evolution Letters, 4(1), 34-43. https://doi.org/10.1002/evl3.149.
dc.relation.referencesMouchet, S. R., Verstraete, C., Bokic, B., Mara, D., Dellieu, L., Orr, A. G., Deparis, O., Van Deun, R., Verbiest, T., Vukusic, P., & Kolaric, B. (2023). Revealing natural fluorescence in transparent insect wings by linear and nonlinear optical techniques. Journal of Luminescence, 254, 119490. https://doi.org/10.1016/j.jlumin.2022.119490.
dc.relation.referencesMuriel, S. B., & Kattan, G. H. (2009). Effects of Patch Size and Type of Coffee Matrix on Ithomiine Butterfly Diversity and Dispersal in Cloud-Forest Fragments. Conservation Biology, 23(4), 948-956. https://doi.org/10.1111/j.1523-1739.2009.01213.x.
dc.relation.referencesNijhout, H. F. (2010). Molecular and Physiological Basis of Colour Pattern Formation. En Advances in insect physiology (pp. 219-265). https://doi.org/10.1016/s0065-2806(10)38002-7.
dc.relation.referencesOlofsson, M., Vallin, A., Jakobsson, S., & Wiklund, C. (2010). Marginal Eyespots on Butterfly Wings Deflect Bird Attacks Under Low Light Intensities with UV Wavelengths. PLOS ONE, 5(5), e10798. https://doi.org/10.1371/journal.pone.0010798.
dc.relation.referencesOtaki, J. M. (2017). Self-Similarity, Distortion Waves, and the Essence of Morphogenesis: A Generalized View of Color Pattern Formation in Butterfly Wings. En Springer eBooks (pp. 119-152). https://doi.org/10.1007/978-981-10-4956-9_7.
dc.relation.referencesParadis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics, 20(2), 289-290. https://doi.org/10.1093/bioinformatics/btg412.
dc.relation.referencesPecháček, P., Stella, D., & Kleisner, K. (2019). A morphometric analysis of environmental dependences between ultraviolet patches and wing venation patterns in Gonepteryx butterflies (Lepidoptera, Pieridae). Evolutionary Ecology, 33(1), 89-110. https://doi.org/10.1007/s10682-019-09969-0Phillips, L. S. (1959). Fluorescence in the colors of certain Lepidoptera observed under ultraviolet light. Journal of the Lepidopterists' Society, 13(2), 73-77.
dc.relation.referencesPennell, M. W., Eastman, J. M., Slater, G. J., Brown, J. W., Uyeda, J. C., FitzJohn, R. G., Alfaro, M. E., & Harmon, L. J. (2014). geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics, 30(15), 2216-2218. https://doi.org/10.1093/bioinformatics/btu181.
dc.relation.referencesPhillips, L. S. (1959). Fluorescence in the colors of certian Lepidoptera observed under ultraviolet light. Journal Of The Lepidopterists’ Socuty. http://images.peabody.yale.edu/lepsoc/jls/1950s/1959/1959-13(2)73-Phillips.pdf.
dc.relation.referencesPinna, C. S., Vilbert, M., Borensztajn, S., De Marcillac, W. D., Piron-Prunier, F., Pomerantz, A., Patel, N. H., Berthier, S., Andraud, C., Gomez, D., & Elias, M. (2021). Mimicry can drive convergence in structural and light transmission features of transparent wings in Lepidoptera. eLife, 10. https://doi.org/10.7554/elife.69080.
dc.relation.referencesPinheiro, C., Freitas, A., Campos, V., Penz, C. & De Vries, P.J. (2016). Both palatable and unpalatable Butterflies use bright colors to signal dificulty of capture to predators. Neotrop. Ent., 45, 107-113.
dc.relation.referencesRambaut, A. (2009). FigTree. Tree figure drawing tool [Software]. https://ci.nii.ac.jp/naid/10029324212/.
dc.relation.referencesRambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5), 901-904. https://doi.org/10.1093/sysbio/syy032.
dc.relation.referencesRamos, C. (2016). Los alcances de una investigación. CienciAmérica, 9(3). https://dialnet.unirioja.es/servlet/articulo?codigo=7746475.
dc.relation.referencesRawson, G. E. (1967). Study pf fluorescent pigments in Lepidoptera by means of paper partition chromatography. Journal of the Lepidopterists’ Society, 22(1).
dc.relation.referencesReinhold, L. M., Rymer, T. L., Helgen, K. M., & Wilson, D. T. (2023). Photoluminescence in mammal fur: 111 years of research. Journal Of Mammalogy, 104(4), 892-906. https://doi.org/10.1093/jmammal/gyad027.
dc.relation.referencesRevell, L. J., Mahler, D. L., Peres-Neto, P. R., & Redelings, B. D. (2011). A new phylogenetic method for identifying exceptional phenotypic diversification. Evolution, 66(1), 135-146. https://doi.org/10.1111/j.1558-5646.2011.01435.x.
dc.relation.referencesRodrigues, M. S., Morelli, K. A., & Jansen, A. M. (2017). Cytochrome c oxidase subunit 1 gene as a DNA barcode for discriminating Trypanosoma cruzi DTUs and closely related species. Parasites & Vectors, 10(1). https://doi.org/10.1186/s13071-017-2457-1.
dc.relation.referencesRojas, B., Burdfield-Steel, E., De Pasqual, C., Gordon, S., Hernández, L., Mappes, J., Nokelainen, O., Rönkä, K., & Lindstedt, C. (2018). Multimodal Aposematic Signals and Their Emerging Role in Mate Attraction. Frontiers In Ecology And Evolution, 6. https://doi.org/10.3389/fevo.2018.00093.
dc.relation.referencesRowland, H. M., Ihalainen, E., Lindström, L., Mappes, J., & Speed, M. P. (2007). Co-mimics have a mutualistic relationship despite unequal defences. Nature, 448(7149), 64-67. https://doi.org/10.1038/nature05899
dc.relation.referencesRuxton, G. D., Sherratt, T. N., & Speed, M. P. (2004). Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry.
dc.relation.referencesSantacruz, P. G., Despland, E., & Giraldo, C. H. C. (2019). Ciclo de vida y enemigos naturales de Mechanitis menapis mantineus (Lepidoptera: Ithomiini). Revista De Biología Tropical, 67(6). https://doi.org/10.15517/rbt.v67i6.33654.
dc.relation.referencesSalazar, J.A. (1991). Algunos papilionidos miméticos de Colombia (Lep. Papilionidae). SHILAP, 19 (74), 93-110.
dc.relation.referencesSalazar, J., Hahn-Von-Hessberg, C. M., & Grajales-Quintero, A. (2020). beobachtungen an einer kolonie von Ithomiinae (Lepidoptera, Nymphalidae) in einem waldstück der westkordillere Kolumbiens : liste der gattungen und arten und der damit verbundenen mimetischen komplexen. Boletin cientifico Museo de Historia Natural Universidad de Caldas, 24(1), 197-230. https://doi.org/10.17151/bccm.2020.24.1.11.
dc.relation.referencesSchliep, K. P. (2011). Phangorn: Phylogenetic analysis in R. Bioinformatics 27:592–93.
dc.relation.referencesScoble, M. J. (1992). The Lepidoptera: Form, Function, and Diversity. Oxford University Press, USA.
dc.relation.referencesShawkey, M. D., & Hill, G. E. (2005). Carotenoids need structural colours to shine. Biology Letters, 1(2), 121-124. https://doi.org/10.1098/rsbl.2004.0289.
dc.relation.referencesShawkey, M. D., Morehouse, N. I., & Vukusic, P. (2009). A protean palette: colour materials and mixing in birds and butterflies. Journal Of The Royal Society Interface, 6(suppl_2). https://doi.org/10.1098/rsif.2008.0459.focus.
dc.relation.referencesSherratt, T. N. (2008). The evolution of Müllerian mimicry. Naturwissenschaften, 95(8). https://doi.org/10.1007/s00114-008-0403-y.
dc.relation.referencesSilberglied, R. E. (1984). Visual communication and sexual selection among butterflies. In Academic Press eBooks. https://repository.si.edu/handle/10088/34435.
dc.relation.referencesSourakov, A. (2015). Studying Lepidoptera in different lights. News Of The Lepidopterists’ Society, 59(2). https://www.floridamuseum.ufl.edu/wp-content/uploads/sites/109/2020/03/Sourakov-LepSoc-News-UV-fluorescence-2017-59-2.pdf.
dc.relation.referencesStavenga, D. G., Leertouwer, H. L., & Arikawa, K. (2023). Butterfly wing translucence enables enhanced visual signaling. Insects, 14(3), 234. https://doi.org/10.3390/insects14030234.
dc.relation.referencesStelbrink, P., Pinkert, S., Brunzel, S., Kerr, J. T., Wheat, C. W., Brandl, R., & Zeuss, D. (2019). Colour lightness of butterfly assemblages across North America and Europe. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-018-36761-x.
dc.relation.referencesStella, D., Pecháček, P., Meyer-Rochow, V. B., & Kleisner, K. (2017). UV reflectance is associated with environmental conditions in Palaearctic Pieris napi(Lepidoptera: Pieridae). Insect Science, 25(3), 508–518. https://doi.org/10.1111/1744-7917.12429.
dc.relation.referencesStella, D., Fric, Z., Rindoš, M., Kleisner, K., & Pecháček, P. (2018). Distribution of Ultraviolet Ornaments in Colias Butterflies (Lepidoptera: Pieridae). Environmental Entomology, 47(5), 1344–1354. https://doi.org/10.1093/ee/nvy111.
dc.relation.referencesStella, D., & Kleisner, K. (2022). Visible beyond Violet: How Butterflies Manage Ultraviolet. Insects, 13(3), 242. https://doi.org/10.3390/insects13030242.
dc.relation.referencesTeng, D., & Zhang, W. (2024). The diversification of butterfly wing patterns: progress and prospects. Current Opinion In Insect Science, 61, 101137. https://doi.org/10.1016/j.cois.2023.101137.
dc.relation.referencesTilley, R. J. D. (2011). Colour and the Optical Properties of Materials: An Exploration of the Relationship Between Light, the Optical Properties of Materials and Colour (2.a ed.).
dc.relation.referencesToussaint, S. L., Ponstein, J., Thoury, M., Métivier, R., Kalthoff, D. C., Habermeyer, B., Guilard, R., Bock, S., Mortensen, P., Sandberg, S., Gueriau, P., & Amson, E. (2022). Fur glowing under ultraviolet: in situ analysis of porphyrin accumulation in the skin appendages of mammals. Integrative Zoology, 18(1), 15-26. https://doi.org/10.1111/1749-4877.12655.
dc.relation.referencesTrifinopoulos, J., Nguyen, L., Von Haeseler, A., & Minh, B. Q. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44(W1), W232-W235. https://doi.org/10.1093/nar/gkw256.
dc.relation.referencesValeur, B., & Berberan-Santos, M. N. (2011). A Brief History of Fluorescence and Phosphorescence before the Emergence of Quantum Theory. Journal of Chemical Education, 88(6), 731-738. https://doi.org/10.1021/ed100182h.
dc.relation.referencesVélez, J., & Ríos-Málaver, I. C. (2018). Colombia, país de mariposas (1.a ed.). Villegas editores.
dc.relation.referencesVukusic, P., & Hooper, I. (2005). Directionally Controlled Fluorescence Emission in Butterflies. Science, 310(5751), 1151. https://doi.org/10.1126/science.1116612.
dc.relation.referencesWelch, V., Van Hooijdonk, E., Intrater, N., & Vigneron, J. (2012). Fluorescence in insects. In Proceedings of SPIE. SPIE. https://doi.org/10.1117/12.929547.
dc.relation.referencesWijnen, B., Leertouwer, H., & Stavenga, D. G. (2007). Colors and pterin pigmentation of pierid butterfly wings. Journal of Insect Physiology, 53(12), 1206–1217. https://doi.org/10.1016/j.jinsphys.2007.06.016.
dc.relation.referencesWiley, E. O., & Lieberman, B. S. (2011). Phylogenetics: Theory and Practice of Phylogenetic Systematics. John Wiley & Sons.
dc.relation.referencesWillmott, K. R., & Freitas, A. V. L. (2006). Higher-level phylogeny of the Ithomiinae (Lepidoptera: Nymphalidae): classification, patterns of larval hostplant colonization and diversification. Cladistics, 22(4), 297–368. https://doi.org/10.1111/j.1096-0031.2006.00108.x.
dc.relation.referencesWillmott, K. R., Lamas, G., Hall, J. F., Mota, L. L., & Kell, T. (2020). The common, the rare, and the lost: Descriptions of twelve new species and three new subspecies of equatorial Ithomiini (Lepidoptera, Nymphalidae, Danainae). Tropical Lepidoptera Research, 1–49. https://doi.org/10.5281/zenodo.3990663.
dc.relation.referencesYeager, J., & Barnett, J. B. (2021). The influence of ultraviolet reflectance differs between conspicuous aposematic signals in neotropical butterflies and poison frogs. Ecology And Evolution, 11(20), 13633-13640. https://doi.org/10.1002/ece3.7942.
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectFotoluminiscencia
dc.subjectReconstrucción filogenética
dc.subjectPatrones alares
dc.subjectEvolución morfológica
dc.subject.keywordPhotoluminescence
dc.subject.keywordPhylogenetic reconstruction
dc.subject.keywordWing patterns
dc.subject.keywordMorphological evolution
dc.subject.lembLicenciatura en Biología -- Tesis y disertaciones académicas
dc.subject.lembBiofluorescencia - Mariposas - Filogenia
dc.subject.lembComunicación animal - Señales visuales - Evolución
dc.subject.lembMimetismo - Mariposas - Coloración
dc.subject.lembEntomología - Sistemática - Biodiversidad
dc.titleContribución al conocimiento de la biofluorescencia en mariposas Ithomiini (Nymphalidae: Danainae): aportes a su historia evolutiva.
dc.title.titleenglishContribution to the knowledge of biofluorescence in Ithomiini butterflies (Nymphalidae: Danainae): contributions to their evolutionary history.
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Trabajo de grado
Tamaño:
33.74 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y autorización
Tamaño:
211.95 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: