Planeacion eficiente de sistemas de distribucion desbalanceados: Un enfoque metaheuristico para la implementacion de generacion fotovoltaica y D-STATCOMs

dc.contributor.advisorMontoya Giraldo, Oscar Danilo
dc.contributor.authorAvellaneda Gomez, Laura Sofia
dc.contributor.orcidMontoya Giraldo, Oscar Danilo [0000-0001-6051-4925]
dc.date.accessioned2025-12-16T16:45:51Z
dc.date.available2025-12-16T16:45:51Z
dc.date.created2025-11-14
dc.descriptionn la actualidad, la planeación de los sistemas eléctricos se enfrenta a importantes desafíos derivados del crecimiento acelerado, avances tecnológicos y disponibilidad de recursos naturales requeridos para la generación de energía eléctrica. Razones por las cuales, la eficiencia en la planeación es fundamental para garantizar sistemas eléctricos que sean económicamente viables, técnicamente eficientes y que generen un impacto ambiental cada vez menor. La literatura especializada ha abordado diversas perspectivas para mejorar la eficiencia de los sistemas eléctricos. Se han propuesto múltiples técnicas orientadas a reducir las pérdidas de potencia, minimizar el impacto ambiental, disminuir los costos económicos del sistema y mejorar su fiabilidad, entre otros aspectos. En este contexto, la integración de generación distribuida se ha presentado como una oportunidad para mejorar aspectos técnicos y económicos, al tiempo que contribuye a mitigar el impacto ambiental asociado a la generación eléctrica convencional. Dentro de investigaciones específicas que abordan estos desafíos, se destaca el problema de optimización en los sistemas de distribución desbalanceados a partir del dimensionamiento y localización de generación fotovoltaica y compensadores estáticos de potencia reactiva en distribución (D-STATCOM). En este contexto, el presente trabajo propone una metodología integral para la planificación de sistemas eléctricos de distribución desbalanceados, con el objetivo de optimizar tanto su desempeño técnico como su eficiencia económica. La metodología desarrollada incluye la evaluación del impacto de la integración de generación distribuida y D-STATCOM, empleando algoritmos especializados para resolver el flujo de potencia y determinar de manera eficiente la ubicación y tamaño de los elementos en la red. Para evaluar la efectividad de la metodología propuesta esta se aplica sobre sistemas presentes en la literatura especializada, los cuales se optimizan a partir de un enfoque mono objetivo, los cuales son: (i) costos totales de operación y (ii) pérdidas totales de energía. Para resolver el modelo propuesto, se implementaron cuatro metodologías maestro-esclavo basadas en algoritmos metaheurísticos. En la fase maestra, se aplicaron diferentes algoritmos de búsqueda, incluyendo el algoritmo de búsqueda por vórtices, el algoritmo de optimización mediante distribución normal generalizada, el método de Enjambre de Partículas y el algoritmo genético de Chu & Beasley. En la fase esclava, se utilizó una versión matricial del método de flujo de potencia basada en aproximaciones sucesivas para calcular los valores de las funciones objetivo y evaluar las restricciones técnicas y operativas definidas en el modelo matemático.
dc.description.abstractCurrently, the planning of electrical systems faces significant challenges arising from accelerated growth, technological advances, and the availability of natural resources required for electric power generation. For these reasons, efficiency in planning is essential to ensure electrical systems that are economically viable, technically efficient, and that produce an increasingly lower environmental impact. The specialized literature has addressed various perspectives to improve the efficiency of electrical systems. Multiple techniques have been proposed to reduce power losses, minimize environmental impact, lower the system’s economic costs, and improve its reliability, among other aspects. In this context, the integration of distributed generation has emerged as an opportunity to improve both technical and economic aspects, while contributing to the mitigation of the environmental impact associated with conventional power generation. Among specific research efforts addressing these challenges, the optimization problem in unbalanced distribution systems stands out, particularly in terms of the sizing and location of photovoltaic generation and static reactive power compensators in distribution (D-STATCOM). In this context, the present work proposes a comprehensive methodology for the planning of unbalanced distribution electrical systems, aiming to improve both the technical performance and the economic efficiency of the network. The proposed methodology includes the evaluation of the impact of integrating distributed generation and D-STATCOM, using algorithms to solve the power flow and determine the location and size of the elements within the network. To assess the effectiveness of the proposed methodology, it will be applied to systems reported in specialized literature, which will be optimized through a single-objective approach targeting: (i) total operating costs and (ii) total energy losses. To solve the proposed model, four master–slave methodologies based on metaheuristic algorithms were used. In the master stage, four different algorithms were implemented: Vortex Search Algorithm, Generalized Normal Distribution Optimization, Particle Swarm Optimization, and Chu \& Beasley Genetic Algorithm . In the slave stage, a matrix-based version of the successive approximations power flow method was employed to determine the value of the objective functions and to evaluate the technical and operational constraints defined in the mathematical model.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/100179
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAbdel-Mawgoud, H., Kamel, S., Rezk, H., Khurshaid, T., y cols. (2021). Optimal imple- mentation of photovoltaic and battery energy storage in distribution networks. Compu- ters, Materials & Continua, 69
dc.relation.referencesAldik, A., y Venkatesh, B. (2020). Reactive power planning using convex line-wise power balance equations for radial distribution systems. IET Generation, Transmission & Distribution, 14 (12), 2399–2406.
dc.relation.referencesAl-Jaafreh, M. A., y Mokryani, G. (2019). Planning and operation of lv distribution networks: A comprehensive review. IET Energy Systems Integration, 1 (3), 133–146
dc.relation.referencesAl-Jubori, W. K. S., y Hussain, A. N. (2020). Optimum reactive power compensation for distribution system using dolphin algorithm considering different load models. Interna- tional Journal of Electrical and Computer Engineering, 10 (5), 5032–5047
dc.relation.referencesAl-Shaalan, A. M. (2011). Essential aspects of power system planning in developing countries. Journal of King Saud University-Engineering Sciences, 23 (1), 27–32
dc.relation.referencesAnbuchandran, S., Babu, A., Thinakaran, M., y cols. (2024). A hybrid optimization for distributed generation and d-statcom placement in radial distribution network: a multi-faceted evaluation. Engineering Research Express, 6 (3), 035351.
dc.relation.referencesBC, S., A, U., y RS, G. (2024). Optimal planning of pv sources and d-statcom devices with network reconfiguration employing modified ant lion optimizer. Energies, 17 (10), 2238.
dc.relation.referencesCastiblanco-P´erez, C. M., Toro-Rodr´ıguez, D. E., Montoya, O. D., y Giral-Ram´ırez, D. A. (2021). Optimal placement and sizing of d-statcom in radial and meshed distribu- tion networks using a discrete-continuous version of the genetic algorithm. Electronics, 10 (12), 1452.
dc.relation.referencesCeron, J. A., G´omez-Luna, E., y Vasquez, J. C. (2025). Driving the energy transition in colombia for off-grid regions: Microgrids and non-conventional renewable energy sources. Energies, 18 (4), 1010.
dc.relation.referencesChillab, R. K., Jaber, A. S., Smida, M. B., y Sakly, A. (2023). Optimal dg location and sizing to minimize losses and improve voltage profile using garra rufa optimization. Sustainability, 15 (2), 1156.
dc.relation.referencesCortes-Caicedo, B., Grisales-Nore˜na, L., Montoya, O., Rodriguez-Cabal, M., y Rosero, J. (s.f.-a). Energy management system for the optimal operation of pv generators in distribution systems using the antlion optimizer: a colombian urban and rural ca- se study, sustainability 14 (23)(2022) 16083. URL https://www. mdpi. com/2071- 1050/14/23/16083 .
dc.relation.referencesCortes-Caicedo, B., Grisales-Nore˜na, L., Montoya, O., Rodriguez-Cabal, M., y Rosero, J. (s.f.-b). Energy management system for the optimal operation of pv generators in distribution systems using the antlion optimizer: a colombian urban and rural ca- se study, sustainability 14 (23)(2022) 16083. URL https://www. mdpi. com/2071- 1050/14/23/16083 .
dc.relation.referencesDash, S. K., Mishra, S., Abdelaziz, A. Y., Hong, J., y Geem, Z. W. (2022). Optimal plan- ning of multitype dgs and d-statcoms in power distribution network using an efficient parameter free metaheuristic algorithm. Energies, 15 (9), 3433
dc.relation.referencesDevikanniga, D., Vetrivel, K., y Badrinath, N. (2019). Review of meta-heuristic opti- mization based artificial neural networks and its applications. En Journal of physics: Conference series (Vol. 1362, p. 012074).
dc.relation.referencesDaz, A. V., Isaza, R. A. H., y Rend´on, R. A. G. (2022). Optimal planning of secon- dary power distribution systems considering renewable and storage sources: An energy management approach. TecnoL´ogicas(54), 2354.
dc.relation.referencesDo˘gan, B., y ¨Olmez, T. (2015a). A new metaheuristic for numerical function optimization: Vortex search algorithm. Information sciences, 293 , 125–145.
dc.relation.referencesDo˘gan, B., y ¨Olmez, T. (2015b). A new metaheuristic for numerical function optimization: Vortex search algorithm. Information sciences, 293 , 125–145.
dc.relation.referencesEhsan, A., y Yang, Q. (2018). Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Applied energy, 210 , 44–59.
dc.relation.referencesGanguly, S., Sahoo, N., y Das, D. (2010a). A novel multi-objective pso for electrical distribution system planning incorporating distributed generation. Energy Systems, 1 (3), 291–337.
dc.relation.referencesGanguly, S., Sahoo, N., y Das, D. (2010b). A novel multi-objective pso for electrical distribution system planning incorporating distributed generation. Energy Systems, 1 (3), 291–337
dc.relation.referencesGao, Z., Saxen, H., y Gao, C. (2013). Guest editorial: Special section on data-driven ap- proaches for complex industrial systems. IEEE Transactions on Industrial Informatics, 9 (4), 2210–2212.
dc.relation.referencesGarcıa-Pineda, L. P., y Montoya, O. D. (2023). Optimal reactive power compensation via d-statcoms in electrical distribution systems by applying the generalized normal distribution optimizer. Algorithms, 16 (1), 29.
dc.relation.referencesGil-Gonzalez, W. (2023). Optimal placement and sizing of d-statcoms in electrical dis- tribution networks using a stochastic mixed-integer convex model. Electronics, 12 (7), 1565.
dc.relation.referencesGiral-Ramırez, D. A., Rivas-Trujillo, E., Alarcon-Villamil, J. A., y Montoya Giraldo, O. D. (2022). Optimal integration of d-statcom in distribution grids for annual operating costs reduction via the discrete version sine-cosine algorithm.
dc.relation.referencesGuzman-Henao, J. A., Bola˜nos, R. I., Montoya, O. D., Grisales-Nore˜na, L. F., y Chamorro, H. R. (2024). On integrating and operating distributed energy resources in distribution networks: a review of current solution methods, challenges, and opportunities. IEEE Access, 12 , 55111–55133.
dc.relation.referencesHachemi, A. T., Sadaoui, F., Arif, S., Saim, A., Ebeed, M., Kamel, S., . . . Mohamed, E. A. (2023). Modified reptile search algorithm for optimal integration of renewable energy sources in distribution networks. Energy Science & Engineering, 11 (12), 4635–466
dc.relation.referencesHernandez-Callejo, L., Gallardo-Saavedra, S., y Alonso-G´omez, V. (2019). A review of photovoltaic systems: Design, operation and maintenance. Solar Energy, 188 , 426–440.
dc.relation.referencesHuang, C., Li, Y., y Yao, X. (2019). A survey of automatic parameter tuning methods for metaheuristics. IEEE transactions on evolutionary computation, 24 (2), 201–216.
dc.relation.referencesJordehi, A. R. (2015). Optimisation of electric distribution systems: A review. Renewable and Sustainable Energy Reviews, 51 , 1088–1100.
dc.relation.referencesKandasamy, M., Thangavel, R., Arumugam, T., Kumaravel, S., Aruchamy, S., Kim, W.- W., y Geem, Z. W. (2023). Strategic incorporation of dstatcom and distributed genera- tions in balanced and unbalanced radial power distribution networks considering time varying loads. Energy Reports, 9 , 4345–4359.
dc.relation.referencesKashem, M., Le, A. D., Negnevitsky, M., y Ledwich, G. (2006). Distributed generation for minimization of power losses in distribution systems. En 2006 ieee power engineering society general meeting (pp. 8–pp).
dc.relation.referencesKersting, W. H. (2018). Distribution system modeling and analysis. En Electric power generation, transmission, and distribution (pp. 26–1). CRC press.
dc.relation.referencesKumawat, M., Gupta, N., Jain, N., y Bansal, R. C. (2017). Optimally allocation of distributed generators in three-phase unbalanced distribution network. Energy Procedia, 142 , 749–754.
dc.relation.referencesLopez-Coronado, D., Ceja-Cerrato, I., Galv´an-S´anchez, V. A., Guti´errez-Robles, J. A., L´opez-de Alba, C. A., Ba˜nuelos-Cabral, E. S., . . . de Jes´us Nu˜no-Ay´on, J. (2021). Simulaci´on de redes el´ectricas con procesamiento paralelo mediante matlab. Revista Tecnolog´ıa en Marcha, ´ag–142.
dc.relation.referencesMaji, S., y Kayal, P. (2024). A simplified multi-objective planning approach for alloca- tion of distributed pv generators in unbalanced power distribution systems. Renewable Energy Focus, 48 , 100541.
dc.relation.referencesMathias-Neto, W. P., y Mantovani, J. R. S. (2016). A node-depth encoding-based tabu search algorithm for power distribution system restoration. Journal of Control, Auto- mation and Electrical Systems, 27 (3), 317–327.
dc.relation.referencesMohammedi, R. D., Kouzou, A., Mosbah, M., Souli, A., Rodriguez, J., y Abdelrahem, M. (2024). Allocation and sizing of dstatcom with renewable energy systems and load uncertainty using enhanced gray wolf optimization. Applied Sciences, 14 (2), 556
dc.relation.referencesMohiyodin, S. S., Patil, R. M., y Nagaraj, M. (2024). Northern goshawk optimization for optimal reactive power compensation in photovoltaic low-voltage radial distribution networks. Sustainable Operations and Computers, 5 , 206–215.
dc.relation.referencesMontoya, O. D., Fuentes, J. E., Moya, F. D., Barrios, J. A., y Chamorro, H. R. (2021). Reduction of annual operational costs in power systems through the optimal siting and sizing of statcoms. Applied Sciences, 11 (10), 4634.
dc.relation.referencesMontoya, O. D., Garces, A., y Gil-Gonzalez, W. (2023). Three-phase power flow tool for electric distribution grids: A julia implementation for electrical engineering students. Ingenier´ıa, 28 (3), 1–7.
dc.relation.referencesMontoya, O. D., Giraldo, J. S., Grisales-Nore˜na, L. F., Chamorro, H. R., y Alvarado- Barrios, L. (2021). Accurate and efficient derivative-free three-phase power flow method for unbalanced distribution networks. Computation, 9 (6), 61.
dc.relation.referencesMora-Burbano, J. A., Fonseca-Dıaz, C. D., y Montoya, O. D. (2022). Application of the ssa for optimal reactive power compensation in radial and meshed distribution using d-statcoms. Algorithms, 15 (10), 345.
dc.relation.referencesMumtahina, U., Alahakoon, S., y Wolfs, P. (2023). A literature review on the optimal pla- cement of static synchronous compensator (statcom) in distribution networks. Energies, 16 (17), 6122.
dc.relation.referencesMusaruddin, M., Tambi, T., Zulkaidah, W., Masikki, G. A. N., Lolok, A., Djohar, A., y Marwan, M. (2024). Optimizing network reconfiguration to reduce power loss and improve the voltage profile in the distribution system: A practical case study. e-Prime- Advances in Electrical Engineering, Electronics and Energy, 8 , 100599.
dc.relation.referencesMuslimin, Z., SUYUTI, A., PALANTEI, E., GUNADIN, I. C., y cols. (2020). A new perspective in power loss reduction of ninety two buses integrated d-statcom. Przeglad Elektrotechniczny, 96 (12).
dc.relation.referencesNguyen, L. D. L., Nguyen, P. K., Vo, V. C., Vo, N. D., Nguyen, T. T., y Phan, T. M. (2023). Applications of recent metaheuristic algorithms for loss reduction in distribution power systems considering maximum penetration of photovoltaic units. International Transactions on Electrical Energy Systems, 2023 (1), 9709608.
dc.relation.referencesPatino, J. E. S., Pareja, L. A. G., y Carmona, O. G. (2025). Optimal placement, sizing and operation of d-statcoms in power distribution systems using a mixed-integer linear programming model. Results in Engineering, 26 , 104749.
dc.relation.referencesPinson, P., Madsen, H., y cols. (2014). Benefits and challenges of electrical demand response: A critical review. Renewable and Sustainable Energy Reviews, 39 , 686–699.
dc.relation.referencesRahdan, P., Zeyen, E., Gallego-Castillo, C., y Victoria, M. (2024). Distributed photo- voltaics provides key benefits for a highly renewable european energy system. Applied Energy, 360 , 122721
dc.relation.referencesRincon-Miranda, A., Gantiva-Mora, G. V., y Montoya, O. D. (2023a). Simultaneous integration of d-statcoms and pv sources in distribution networks to reduce annual investment and operating costs. Computation, 11 (7), 145. Rinc´on-Miranda, A., Gantiva-Mora, G. V., y Montoya, O. D. (2023b). Simultaneous integration of d-statcoms and pv sources in distribution networks to reduce annual investment and operating costs. Computation,
dc.relation.referencesRobbins, B. A., Zhu, H., y Dom´ınguez-Garc´ıa, A. D. (2015). Optimal tap setting of voltage regulation transformers in unbalanced distribution systems. IEEE Transactions on Power Systems, 31 (1), 256–267.
dc.relation.referencesSaini, P., y Gidwani, L. (2022). An investigation for battery energy storage system insta- llation with renewable energy resources in distribution system by considering residential, commercial and industrial load models. Journal of Energy Storage, 45 , 103493
dc.relation.referencesSalam, I. U., Yousif, M., Numan, M., Zeb, K., y Billah, M. (2023). Optimizing distributed generation placement and sizing in distribution systems: a multi-objective analysis of power losses, reliability, and operational constraints. Energies, 16 (16), 5907.
dc.relation.referencesSalkuti, S. R. (2021). Minimization of losses in a distribution system with network re- configuration, distributed generation and d-statcom. International Journal of Advanced Technology and Engineering Exploration, 8 (85), 1557.
dc.relation.referencesSambaiah, K. S., y Jayabarathi, T. (2020). Loss minimization techniques for optimal operation and planning of distribution systems: A review of different methodologies. International Transactions on Electrical Energy Systems, 30 (2), e12230.
dc.relation.referencesSaxena, V., Manna, S., Rajput, S. K., Kumar, P., Sharma, B., Alsharif, M. H., y Kim, M.- K. (2024). Navigating the complexities of distributed generation: Integration, challenges, and solutions. Energy Reports, 12 , 3302–3322.
dc.relation.referencesSelim, A., Kamel, S., Jurado, F., Lopes, J. A. P., y Matos, M. (2021). Optimal setting of pv and battery energy storage in radial distribution systems using multi-objective criteria with fuzzy logic decision-making. IET generation, transmission & distribution, 15 (1), 135–14
dc.relation.referencesShaikh, R., Stojcevski, A., Seyedmahmoudian, M., y Chandran, J. (2024). A multi- objective approach for optimal sizing and placement of distributed generators and distri- bution static compensators in a distribution network using the black widow optimization algorithm. Sustainability, 16 (11), 4577.
dc.relation.referencesSilva, I. d. J., Rider, M. J., Romero, R., y Murari, C. A. (2006). Genetic algorithm of chu and beasley for static and multistage transmission expansion planning. En 2006 ieee power engineering society general meeting (pp. 7–pp).
dc.relation.referencesSirjani, R., y Jordehi, A. R. (2017). Optimal placement and sizing of distribution static compensator (d-statcom) in electric distribution networks: A review. Renewable and Sustainable Energy Reviews, 77 , 688–694.
dc.relation.referencesTrinh, H. T., y Nguyen, T. T. (2024). Optimal placement of distributed generations on distribution network for reducing power loss and improving feeder balance. TELKOM- NIKA (Telecommunication Computing Electronics and Control), 22 (2), 471–479.
dc.relation.referencesVerdejo, H., Pino, V., Kliemann, W., Becker, C., y Delpiano, J. (2020). Implementation of particle swarm optimization (pso) algorithm for tuning of power system stabilizers in multimachine electric power systems. Energies, 13 (8), 2093.
dc.relation.referencesWang, C., Song, G., Li, P., Ji, H., Zhao, J., y Wu, J. (2017). Optimal siting and sizing of soft open points in active electrical distribution networks. Applied energy, 189 , 301–309.
dc.relation.referencesWang, D., Tan, D., y Liu, L. (2018a). Particle swarm optimization algorithm: an overview. Soft computing, 22 (2), 387–408.
dc.relation.referencesWilson, J. (1997). A genetic algorithm for the generalised assignment problem. Journal of the Operational Research Society, 48 (8), 804–809.
dc.relation.referencesYıldırım, S¸., Bingol, M. S., y Savas, S. (2024). Tuning pid controller parameters of the dc motor with pso algorithm. International Review of Applied Sciences and Engineering, 15 (3), 281–286
dc.relation.referencesZhang, Y., Jin, Z., y Mirjalili, S. (2020a). Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic models. Energy Conversion and Management, 224 , 113301.
dc.relation.referencesZhang, Y., Jin, Z., y Mirjalili, S. (2020b). Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic models. Energy Conversion and Management, 224 , 113301.
dc.relation.referencesZheng, Y., Dong, Z. Y., Meng, K., Yang, H., Lai, M., y Wong, K. P. (2017). Multi- objective distributed wind generation planning in an unbalanced distribution system. CSEE Journal of power and energy systems, 3 (2), 186–195
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectPérdidas de potencia
dc.subjectGeneradores fotovoltaicos
dc.subjectMetodología maestro esclavo
dc.subjectAlgoritmos metaheurísticos
dc.subject.keywordPower losses
dc.subject.keywordPhotovoltaic generators
dc.subject.keywordMaster slave methodology
dc.subject.keywordUnbalanced distribution systems
dc.subject.lembMaestría en Ingeniería - Énfasis en Ingeniería Electrónica -- Tesis y disertaciones académicas
dc.titlePlaneacion eficiente de sistemas de distribucion desbalanceados: Un enfoque metaheuristico para la implementacion de generacion fotovoltaica y D-STATCOMs
dc.title.titleenglishEfficient planning of unbalanced distribution systems: A metaheuristic approach for the implementation of photovoltaic generation and D-STATCOMs
dc.typemasterThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeMonografía
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
AvellanedaGomezLauraSofia2025.pdf
Tamaño:
885.83 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
licencia de uso y publicacion .pdf
Tamaño:
2.48 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: