Diseño de un controlador de dos etapas para el balanceo y la estabilización el péndulo de Furuta
Fecha
Autor corporativo
Título de la revista
ISSN de la revista
Título del volumen
Editor
Compartir
Director
Altmetric
Resumen
Control systems are essential for managing variables within dynamic systems, ensuring stability and performance according to criteria such as response time, reference accuracy, and disturbance rejection. This study focuses on designing a two-stage control strategy to stabilize the Furuta Pendulum in its upright position. The proposed approach integrates a Model Predictive Control (MPC) scheme with a swing-up and energy-based lifting technique, and is applied to a physical QUANSER inverted pendulum setup. The paper outlines the mathematical modeling process of the system and details how this model is incorporated into the MPC framework. To assess the effectiveness of the proposed controller, a comparative analysis is conducted against a traditional state feedback controller, both implemented on the same experimental platform. The controllers are tested under standardized reference inputs and disturbance scenarios, with performance evaluated through graphical analysis and the Integral Time Absolute Error (ITAE) index. Results demonstrate that the MPC-based control strategy outperforms the state feedback controller in terms of response speed, tracking precision, and steady-state accuracy. Notably, the MPC exhibits significant advantages during controller switching scenarios, highlighting its robustness and adaptability—features that are not achievable with the conventional state feedback approach.
