Determinación de la eficiencia de bioadsorción de cromo hexavalente a partir de la biomasa de retamo espinoso (Ulex europaeus), mejorado con cloruro férrico

dc.contributor.advisorGuerra Rodríguez, Jayerth
dc.contributor.authorGonzález Neira, Wendy Tatiana
dc.date.accessioned2024-12-17T21:06:56Z
dc.date.available2024-12-17T21:06:56Z
dc.date.created2024-09-09
dc.descriptionEl cromo hexavalente es un metal pesado que se caracteriza por ser altamente tóxico, ya que tiene la capacidad de bioacumularse en el suelo y en diversas especies vegetales, que son fuente alimenticia de la población, provocando múltiples problemas de salud como cáncer, dermatitis, asma, entre otros. Es por ello que la bioadsorción surge como una alternativa frente a los costos de operación de tecnologías convencionales como la osmosis inversa. Además, esta técnica permite dar una utilidad a especies vegetales que se encuentran catalogadas como especies invasoras, este el caso del retamo espinoso (Ulex europaeus), que debió a su rápida propagación y adaptación al clima del trópico ha provocado el desplazamiento de especies, la reducción de la biodiversidad, entre otros problemas medioambientales. Por lo tanto, en el presente estudio se determinó que la capacidad de adsorción máxima de Cr(VI) en el retamo espino es de 303,0303 mg/g, haciendo uso de biomasa sin tratamiento y sin semilla, a un pH 2, un tiempo de contacto de 2 horas, una dosis de 0,3 g de adsorbente. Adicionalmente, el mayor porcentaje de adsorción fue de 52,983% a una concentración de 138 mg/L, bajo las condiciones mencionadas anteriormente. El modelo cinético de mayor ajuste fue el modelo de pseudo-segundo orden, y la isoterma que representa el proceso de adsorción fue la de Langmuir. Finalmente, en la prueba continua se alcanzó un porcentaje de remoción de 99,114% a los 60 minutos de iniciada la prueba, y el punto de saturación de la biomasa se presentó después de tratar un volumen de 28 mL.
dc.description.abstractHexavalent chromium is a heavy metal that is highly toxic, as it has the capacity to bioaccumulate in the soil and in various plant species, which are a food source for the population, causing multiple health problems such as cancer, dermatitis, asthma, among others. This is why bioadsorption emerges as an alternative to the operating costs of conventional technologies such as reverse osmosis. In addition, this technique allows giving a utility to plant species that are cataloged as invasive species, such as the case of the thorny broom (Ulex europaeus), which due to its rapid spread and adaptation to the tropical climate has caused the displacement of species, the reduction of biodiversity, among other environmental problems. Therefore, in the present study it was determined that the maximum adsorption capacity of Cr(VI) on hawthorn broom is 303,0303 mg/g, making use of untreated and seedless biomass, at pH 2, a contact time of 2 hours, a dose of 0,3 g of adsorbent. Additionally, the highest adsorption percentage was 52,983% at a concentration of 138 mg/L, under the aforementioned conditions. The best fitting kinetic model was the pseudo-second order model, and the isotherm representing the adsorption process was the Langmuir isotherm. Finally, in the continuous test, a removal rate of 99,114% was reached 60 minutes after the start of the test, and the biomass saturation point was reached after treating a volume of 28 mL of biomass.
dc.identifier.urihttp://hdl.handle.net/11349/92060
dc.relation.referencesAbril, R. A., Chávez de Rebisso, M., & Ramirez, L. M. (2017). ABSORCION DE CROMO HEXAVALENTE EN SOLUCIONES ACUOSAS USANDO QUITOSAN EXTRAIDO DE Emerita análoga (MUY MUY). https://doi.org/10.35286/veritas.v10i1.49
dc.relation.referencesAcosta Arguello, H. A., Barraza Yance, C. A., & Albis Arrieta, A. R. (2017). Adsorption of chromium (VI) using cassava peel (Manihot esculenta) as biosorbent: A kinetic study. Ingeniería y Desarrollo, 35(1), 58–76. https://doi.org/10.14482/inde.35.1.8943
dc.relation.referencesAigbe, U. O., & Osibote, O. A. (2020). A review of hexavalent chromium removal from aqueous solutions by sorption technique using nanomaterials. Journal of Environmental Chemical Engineering, 8(6), 104503. https://doi.org/10.1016/j.jece.2020.104503
dc.relation.referencesAlbadarin, A. B., Al-Muhtaseb, A. H., Al-laqtah, N. A., Walker, G. M., Allen, S. J., & Ahmad, M. N. M. (2011). Biosorption of toxic chromium from aqueous phase by lignin: mechanism, effect of other metal ions and salts. Chemical Engineering Journal, 169(1–3), 20–30. https://doi.org/10.1016/j.cej.2011.02.044
dc.relation.referencesAlbis Arrieta, A. R., Ortiz Toro, osé D., & Martínez De la Rosa, J. E. (2017a). Remoción de cromo hexavalente de soluciones acuosas usando cáscara de yuca (Manihot esculenta): Experimentos en columna. INGE CUC, 13(1), 42–52. https://doi.org/10.17981/ingecuc.13.1.2017.04
dc.relation.referencesAlbis Arrieta, A. R., Ortiz Toro, osé D., & Martínez De la Rosa, J. E. (2017b). Remoción de cromo hexavalente de soluciones acuosas usando cáscara de yuca (Manihot esculenta): Experimentos en columna. INGE CUC, 13(1), 42–52. https://doi.org/10.17981/ingecuc.13.1.2017.04
dc.relation.referencesAlmeida, J. C., Cardoso, C. E. D., Tavares, D. S., Freitas, R., Trindade, T., Vale, C., & Pereira, E. (2019). Chromium removal from contaminated waters using nanomaterials – A review. TrAC Trends in Analytical Chemistry, 118, 277–291. https://doi.org/10.1016/j.trac.2019.05.005
dc.relation.referencesAlmomani, F., Abdelbar, A., & Ghanimeh, S. (2023). A Review of the Recent Advancement of Bioconversion of Carbon Dioxide to Added Value Products: A State of the Art. Sustainability, 15(13), 10438. https://doi.org/10.3390/su151310438
dc.relation.referencesAl-Senani, G. M., & Al-Fawzan, F. F. (2018). Adsorption study of heavy metal ions from aqueous solution by nanoparticle of wild herbs. Egyptian Journal of Aquatic Research, 44(3), 187–194. https://doi.org/10.1016/j.ejar.2018.07.006
dc.relation.referencesAmoquimicos. (2019). Cloruro férrico o cloruro de hierro : características, usos y medidas de seguridad. https://www.amoquimicos.com/noticias/propiedades-del-cloruro-ferrico
dc.relation.referencesAreti, H. A., Jabesa, A., Daba, B. J., & Jibril, D. (2024). Response surface method based parametric optimization of Cr(VI) removal from tannery wastewater using a mixed banana peel and corn cob activated carbon: Kinetic and isotherm modeling studies. Journal of Water Process Engineering, 59, 104977. https://doi.org/10.1016/j.jwpe.2024.104977
dc.relation.referencesArias Espana, V. A., Rodriguez Pinilla, A. R., Bardos, P., & Naidu, R. (2018). Contaminated land in Colombia: A critical review of current status and future approach for the management of contaminated sites. Science of The Total Environment, 618, 199–209. https://doi.org/10.1016/j.scitotenv.2017.10.245
dc.relation.referencesArias, M. F., & Granja, D. E. (2018). Evaluación de la fibra de coco (cocos nucifera) como material adsorbente de cromo hexavalente (cr 6+ ) a escala de laboratorio. https://web.archive.org/web/20180429165943id_/http:/www.umariana.edu.co/ojs editorial/index.php/libroseditorialunimar/article/viewFile/1324/128
dc.relation.referencesAtkins, P., & Julio de Paula. (2006). Physical Chemistry. http://www.rnlkwc.ac.in/pdf/study material/chemistry/Peter_Atkins__Julio_de_Paula__Physical_Chemistry__1_.pdf
dc.relation.referencesAtsar, F. S., Kukwa, D., Wuana, R. A., & Arwenyo, B. (2021). Kinetics and Thermodynamic Studies: Adsorption of Pb, Cr and Ni Ions from Spent Lubrication Oil (SLO) Using Acid Modified Clay. American Journal of Analytical Chemistry, 12(05), 109–120. https://doi.org/10.4236/ajac.2021.125009
dc.relation.referencesBashyal, J. (2023). Beer-Lambert Law: Statement, Derivation, Applications, Limitations. https://scienceinfo.com/beer-lambert-law-statement/
dc.relation.referencesBenitez-Campo, N. (2011). PRODUCCIÓN LIMPIA Y BIORREMEDIACIÓN PARA DISMINUCIÓN DE LA CONTAMINACIÓN POR CROMO EN LA INDUSTRIA DE CURTIEMBRES. Ambiente y Sostenibilidad, 1, 25–31.
dc.relation.referencesBoukarma, L., Aziam, R., Aboussabek, A., El Qdhy, S., Zerbet, M., Sinan, F., & Chiban, M. (2024). Novel insights into crystal violet dye adsorption onto various macroalgae: Comparative study, recyclability and overview of chromium (VI) removal. Bioresource Technology, 394, 130197. https://doi.org/10.1016/j.biortech.2023.130197
dc.relation.referencesBravo, L. M. (2020). Efecto del pH en la adsorción de cromo hexavalente por la pectina de Citrus reticulata en soluciones sintéticas. https://repositorio.upn.edu.pe/bitstream/handle/11537/25091/Bravo%20Zapata%2c%20Luci a%20Mariibel.pdf?sequence=13&isAllowed=y
dc.relation.referencesCAR. (2019). Plan de prevención, manejo y control de las especies de retamo espinoso (Ulex europaeus) y retamo liso (Genista monspessulana) en la jurisdicción CAR.
dc.relation.referencesCarreño, U. F. (2022). DISEÑO DE MATERIALES COMPUESTOS DE CELULOSA BACTERIANA Y CELULOSA DE E CRASSIPES MODIFICADOS CON CLORURO DE HIERRO Y DISULFURO DE CARBONO PARA LA REMOCIÓN DE CROMO (VI).
dc.relation.referencesChávez-Sifontes, M., & Domine, M. E. (2013). LIGNINA, ESTRUCTURA Y APLICACIONES: MÉTODOS DE DESPOLIMERIZACIÓN PARA LA OBTENCIÓN DE DERIVADOS AROMÁTICOS DE INTERÉS INDUSTRIAL. En Av. cien. ing (Vol. 4, Número 4). Chávez-Sifontes & Domine. http://www.exeedu.com/publishing.cl/av_cienc_ing/15
dc.relation.referencesCherif, H., Benmaamar, Z., & Benkortbi. (2023). Thermodinamic and kinetic study of the improvement of the absorption efficiency of Hexavalent chromium (VI) ions by encapsulated modified prickly pear peel. Algerian Journal of Environmental Science and Technology.
dc.relation.referencesChoppala, G., Bolan, N., & Park, J. H. (2013). Chromium Contamination and Its Risk Management in Complex Environmental Settings (pp. 129–172). https://doi.org/10.1016/B978-0-12-407686-0.00002-6
dc.relation.referencesCrail, C., & Allen, S. (2023). Learn The Pros And Cons Of Reverse Osmosis Water Filtration Systems. https://www.forbes.com/home-improvement/home/reverse-osmosis-water-pros cons
dc.relation.referencesDe Jong, E., & Gosselink, R. J. A. (2014). Lignocellulose-Based Chemical Products. En Bioenergy Research: Advances and Applications (pp. 277–313). Elsevier. https://doi.org/10.1016/B978-0-444-59561-4.00017-6
dc.relation.referencesDev, V. V., Nair, K. K., Baburaj, G., & Krishnan, K. A. (2022). Pushing the boundaries of heavy metal adsorption: A commentary on strategies to improve adsorption efficiency and modulate process mechanisms. Colloid and Interface Science Communications, 49, 100626. https://doi.org/10.1016/j.colcom.2022.100626
dc.relation.referencesDima, J. B., & Zaritzky, N. (2016). EFECTIVIDAD DE LAS MICRO/NANOPARTÍCULAS DE QUITOSANO OBTENIDAS DE RESIDUOS PESQUEROS EN LA ADSORCIÓN DE CROMO HEXAVALENTE. http://sedici.unlp.edu.ar/bitstream/handle/10915/98992/Documento_completo.pdf PDFA.pdf?sequence=1&isAllowed=
dc.relation.referencesDjellabi, R., Su, P., Elimian, E. A., Poliukhova, V., Nouacer, S., Abdelhafeez, I. A., Abderrahim, N., Aboagye, D., Andhalkar, V. V., Nabgan, W., Rtimi, S., & Contreras, S. (2022). Advances in photocatalytic reduction of hexavalent chromium: From fundamental concepts to materials design and technology challenges. Journal of Water Process Engineering, 50, 103301. https://doi.org/10.1016/j.jwpe.2022.103301
dc.relation.referencesDuffus, J. H. (2002). “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74(5), 793–807. https://doi.org/10.1351/pac200274050793
dc.relation.referencesEggs, N., Salvarezza, S., Azario, R., Fernández, N., & García, M. (2012). ADSORCIÓN DE CROMO HEXAVALENTE EN LA CÁSCARA DE ARROZ MODIFICADA QUÍMICAMENTE. http://www.exeedu.com/publishing.cl/av_cienc_ing/141
dc.relation.referencesEstepa, A. C., & López, S. A. (2021). ANÁLISIS DE LA TECNOLOGÍA DE BIOEXTRUSIÓN PARA LA DISPOSICIÓN FINAL 1 DE RESIDUOS DE RETAMO ESPINOSO (ULEX EUROPAEUS) EN COLOMBIA. https://repository.udistrital.edu.co/bitstream/handle/11349/26108/EstepaSanchezAndresCa milo2021.pdf?sequence=1&isAllowed=y
dc.relation.referencesEuropean Food Safety Authority. (2014). Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA Journal, 12(3). https://doi.org/10.2903/j.efsa.2014.3595
dc.relation.referencesExperimentos Científicos. (s/f). Espectro Luz Visible. Recuperado el 6 de mayo de 2024, de https://www.experimentoscientificos.es/espectro-electromagnetico/espectro-luz-visible/
dc.relation.referencesEze, S., Igwe, J., & Dipo, D. (2013). Effect of particle size on adsorption of heavy metals using chemically modified and unmodified fluted pumpkin and broad-leafed pumpkin pods. International Journal of Biological and Chemical Sciences, 7(2). https://doi.org/10.4314/ijbcs.v7i2.40
dc.relation.referencesGelambi, M. (2024). Lignina. https://www.lifeder.com/lignina/
dc.relation.referencesGholizadeh, A., Kermani, M., Gholami, M., & Farzadkia, M. (2013). Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: comparative study. Journal of Environmental Health Science and Engineering, 11(1), 29. https://doi.org/10.1186/2052-336X-11-29
dc.relation.referencesGlobal Invasive Species Database. (2023). Ulex europaeus. http://www.iucngisd.org/gisd/species.php?sc=69
dc.relation.referencesGómez, katalina J., & Quevedo, N. R. (2020). Evaluación del biochar obtenido por pirólisis del retamo espinoso para remover cromo del agua. https://ciencia.lasalle.edu.co/ing_ambiental_sanitariafromhttps://ciencia.lasalle.edu.co/ing_a mbiental_sanitaria/1866
dc.relation.referencesGonzález, M. R., & Gutierrez, M. G. (2014). ESTUDIO DE ADSORCIÓN DE CROMO HEXAVALENTE EN BENTONITA TERMOACTIVADA EN LECHOS AGITADOS. https://core.ac.uk/download/pdf/250142639.pdf
dc.relation.referencesGonzález, M., & Silva, J. (2023). SÍNTESIS DE NANOPARTÍCULAS DE MAGNETITA RECUBIERTAS DE QUITOSANO PARA LA ADSORCIÓN DE CROMO HEXAVALENTE. Perfiles, 1(29), 78–89. https://doi.org/10.47187/perf.v1i29.208
dc.relation.referencesGonzalez, M., & Silva, J. (2023). Synthesis of chitosan-coated magnetite nanoparticles for hexavalent chromium adsorption. Número, 29, 31. https://doi.org/10.47187/perf.v1i29.208
dc.relation.referencesGregersen, E. (2024). chromium. Enciclopedia Britannica. https://www.britannica.com/science/chromium
dc.relation.referencesGutiérrez, A. (2019). Estudio de distintas variables para una óptima adsorción de derivados del ácido benzoico [Universidad da Coruña]. https://ruc.udc.es/dspace/bitstream/handle/2183/24457/MesiasGutierrez_Andres_TFG_2019 .pdf?sequence=2&isAllowed=y
dc.relation.referencesHarvey, D. (2024). Spectroscopy Based on Absorption. Northeastern University. https://chem.libretexts.org/Courses/Northeastern_University/10%3A_Spectroscopic_Metho ds/10.2%3A_Spectroscopy_Based_on_Absorption
dc.relation.referencesHernández, C. B., & Triviño, L. M. (2016). EVALUACIÓN DE LA CAPACIDAD DE BIOADSORCIÓN DE Pb (II) Y Cd (II) PRESENTES EN SOLUCIONES SINTÉTICAS INDEPENDIENTES EMPLEANDO RETAMO ESPINOSO (Ulex europaeus) COMO ADSORBENTE.
dc.relation.referencesHokkanen, S., Repo, E., Lou, S., & Sillanpää, M. (2015). Removal of arsenic(V) by magnetic nanoparticle activated microfibrillated cellulose. Chemical Engineering Journal, 260, 886– 894. https://doi.org/10.1016/j.cej.2014.08.093
dc.relation.referencesHosseini, S. A., Samani, M. R., & Toghraie, D. (2021). Investigating the hexavalent chromium removal from aqueous solution applying bee carcasses and corpses modified with Polyaniline. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-97518-7
dc.relation.referencesHossini, H., Shafie, B., Niri, A. D., Nazari, M., Esfahlan, A. J., Ahmadpour, M., Nazmara, Z., Ahmadimanesh, M., Makhdoumi, P., Mirzaei, N., & Hoseinzadeh, E. (2022). A comprehensive review on human health effects of chromium: insights on induced toxicity. Environmental Science and Pollution Research, 29(47), 70686–70705. https://doi.org/10.1007/s11356-022-22705-6
dc.relation.referencesHu, H., & Xu, K. (2019). Physicochemical technologies for HRPs and risk control. En High-Risk Pollutants in Wastewater (pp. 169–207). Elsevier. https://doi.org/10.1016/B978-0-12- 816448-8.00008-3
dc.relation.referencesHuamán, B., & Juarez, Y. (2021). Uso de cáscaras vegetales como bioadsorbentes para la eliminación de metales pesados en aguas contaminadas: Una revisión sistemática de los últimos 5 años. https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/84847/Huam%c3%a1n_LBM Juarez_CY-SD.pdf?sequence=1&isAllowed=y
dc.relation.referencesIfthikar, J., Shahib, I. I., Jiang, W., Senthilnithy, R., Elkhlifi, Z., Wang, J., & Chen, Z. (2023). Review on technologies for the development of effective and practical chromate removal from wastewaters. Journal of Environmental Chemical Engineering, 11(5), 110735. https://doi.org/10.1016/j.jece.2023.110735
dc.relation.referencesInfante, E. F., Dulfo, C. P., Dicen, G. P., Hseu, Z.-Y., & Navarrete, I. A. (2021). Bioaccumulation and human health risk assessment of chromium and nickel in paddy rice grown in serpentine soils. Environmental Science and Pollution Research, 28(14), 17146– 17157. https://doi.org/10.1007/s11356-020-12176-y
dc.relation.referencesInstituto Humboldt. (s/f). Retamo espinoso (Ulex europaeus). Recuperado el 26 de agosto de 2023, de http://repository.humboldt.org.co/handle/20.500.11761/3324
dc.relation.referencesJiang, J., Shi, Y., Ma, N. L., Ye, H., Verma, M., Ng, H. S., & Ge, S. (2024). Utilizing adsorption of wood and its derivatives as an emerging strategy for the treatment of heavy metal contaminated wastewater. Environmental Pollution, 340, 122830. https://doi.org/10.1016/j.envpol.2023.122830
dc.relation.referencesJustin, T. (2021). UV-Vis Spectroscopy: Principle, Strengths and Limitations and Applications. https://www.technologynetworks.com/analysis/articles/uv-vis-spectroscopy-principle strengths-and-limitations-and-applications-3498
dc.relation.referencesKahu, S., Shekhawat, A., Saravanan, D., & Jugade, R. (2016). Ionic solid-impregnated sulphate crosslinked chitosan for effective adsorption of hexavalent chromium from effluents. International Journal of Environmental Science and Technology, 13(9), 2269–2282. https://doi.org/10.1007/s13762-016-1059-3
dc.relation.referencesKarimi-Maleh, H., Ayati, A., Ghanbari, S., Orooji, Y., Tanhaei, B., Karimi, F., Alizadeh, M., Rouhi, J., Fu, L., & Sillanpää, M. (2021). Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review. Journal of Molecular Liquids, 329, 115062. https://doi.org/10.1016/j.molliq.2020.115062
dc.relation.referencesKuddus, M. (2018). Bioremediation: Advances in Research and Applications (Nova, Ed.).
dc.relation.referencesKumar, D., Pandey, L. K., & Gaur, J. P. (2016a). Metal sorption by algal biomass: From batch to continuous system. Algal Research, 18, 95–109. https://doi.org/10.1016/j.algal.2016.05.026
dc.relation.referencesKumar, D., Pandey, L. K., & Gaur, J. P. (2016b). Metal sorption by algal biomass: From batch to continuous system. Algal Research, 18, 95–109. https://doi.org/10.1016/j.algal.2016.05.026
dc.relation.referencesKumar, V., & Dwivedi, S. K. (2021). A review on accessible techniques for removal of hexavalent Chromium and divalent Nickel from industrial wastewater: Recent research and future outlook. Journal of Cleaner Production, 295, 126229. https://doi.org/10.1016/j.jclepro.2021.126229
dc.relation.referencesKunz Lazzari, L., Perondi, D., Zattera, A. J., & Campomanes Santana, R. M. (2021). Cellulose/Biochar Cryogels: A Study of Adsorption Kinetics and Isotherms. Langmuir, 37(10), 3180–3188. https://doi.org/10.1021/acs.langmuir.1c00123
dc.relation.referencesL.C. Passos, M., & M.F.S. Saraiva, M. L. (2019). Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies. Measurement, 135, 896–904. https://doi.org/10.1016/j.measurement.2018.12.045
dc.relation.referencesLema, K. L., & Pérez, A. M. (2021). Evaluación de la capacidad de adsorción de cromo hexavalente en aguas sintéticas mediante el uso de la cáscara de naranja (Citrus Sinensis) y cáscara de limón (Citrus Limon). Universidad Central Del Ecuador.
dc.relation.referencesLema, K., & Pérez, A. (2021). Evaluación de la capacidad de adsorción de cromo hexavalente en aguas sintéticas mediante el uso de la cáscara de naranja (Citrus Sinensis) y cáscara de limón (Citrus Limon) [Universidad Central del Ecuador]. https://www.dspace.uce.edu.ec/server/api/core/bitstreams/da139242-73f7-4f83-b462- 0f4be33b70a0/content
dc.relation.referencesLi, J., Dong, X., Liu, X., Xu, X., Duan, W., Park, J., Gao, L., & Lu, Y. (2022). Comparative Study on the Adsorption Characteristics of Heavy Metal Ions by Activated Carbon and Selected Natural Adsorbents. Sustainability, 14(23), 15579. https://doi.org/10.3390/su142315579
dc.relation.referencesLifeder. (s/f). Ley de Beer-Lambert. Recuperado el 19 de marzo de 2024, de https://www.lifeder.com/ley-de-beer-lambert/
dc.relation.referencesLimousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthès, V., & Krimissa, M. (2007). Sorption isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry, 22(2), 249–275. https://doi.org/10.1016/j.apgeochem.2006.09.010
dc.relation.referencesLin, S., Yang, H., Na, Z., & Lin, K. (2018). A novel biodegradable arsenic adsorbent by immobilization of iron oxyhydroxide (FeOOH) on the root powder of long-root Eichhornia crassipes. Chemosphere, 192, 258–266. https://doi.org/10.1016/j.chemosphere.2017.10.163
dc.relation.referencesLondoño Franco, L. F., Londoño Muñoz, P. T., & Muñoz Garcia, F. G. (2016). LOS RIESGOS DE LOS METALES PESADOS EN LA SALUD HUMANA Y ANIMAL. Biotecnoloía en el Sector Agropecuario y Agroindustrial, 14(2), 145. https://doi.org/10.18684/BSAA(14)145-153
dc.relation.referencesLópez Hernández, M., & Lacayo Romero, M. (2020a). Remoción de cromo hexavalente en aguas contaminadas utilizando cáscara de plátano (Musa paradisiaca) como adsorbente. Revista Torreón Universitario, 8(23), 73–83. https://doi.org/10.5377/torreon.v8i23.9534
dc.relation.referencesLópez Hernández, M., & Lacayo Romero, M. (2020b). Remoción de cromo hexavalente en aguas contaminadas utilizando cáscara de plátano (Musa paradisiaca) como adsorbente. Revista Torreón Universitario, 8(23), 73–83. https://doi.org/10.5377/torreon.v8i23.9534
dc.relation.referencesLosada, L. A., Sotto, M. A., & Artunduaga, O. F. (2015). REMOCIÓN DE CROMO HEXAVALENTE UTILIZANDO CÁSCARA DE MORINGA OLEIFERA COMO BIO ADSORBENTE. https://revistas.sena.edu.co/index.php/rnova/article/view/189/222
dc.relation.referencesMichalak, I., Chojnacka, K., & Witek-Krowiak, A. (2013). State of the Art for the Biosorption Process—a Review. Applied Biochemistry and Biotechnology, 170(6), 1389–1416. https://doi.org/10.1007/s12010-013-0269-0
dc.relation.referencesMilquez-Sanabria, H. (2017). Producción y caracterización de carbón activado a Partir de retamo esPinoso (Ulex Europaeus) (Vol. 11, Número 2).
dc.relation.referencesMinisterio de Ambiente y Desarrollo sostenible. (2018). Resolución 894 de 2018.
dc.relation.referencesMinisterio para la transición ecológica y el reto demográfico. (2022, abril 13). Metales pesados. https://www.aesan.gob.es/AECOSAN/web/seguridad_alimentaria/subdetalle/metales_pesad os.htm
dc.relation.referencesMohanty, S., Benya, A., Hota, S., Kumar, M. S., & Singh, S. (2023). Eco-toxicity of hexavalent chromium and its adverse impact on environment and human health in Sukinda Valley of India: A review on pollution and prevention strategies. Environmental Chemistry and Ecotoxicology, 5, 46–54. https://doi.org/10.1016/j.enceco.2023.01.002
dc.relation.referencesMollindeo, A., & Huanca, A. (2020). Adsorción de cromo hexavalente de lechos acuáticos utilizando biomasa de pepa de palta (Persea americana Mill) [Universidad Maria Auxiliadora]. https://repositorio.uma.edu.pe/bitstream/handle/20.500.12970/656/tesis.pdf?sequence=1
dc.relation.referencesMonga, A., Fulke, A. B., & Dasgupta, D. (2022). Recent developments in essentiality of trivalent chromium and toxicity of hexavalent chromium: Implications on human health and 135 remediation strategies. Journal of Hazardous Materials Advances, 7, 100113. https://doi.org/10.1016/j.hazadv.2022.100113
dc.relation.referencesMonroy-Avila, E. F., Echavarria-Pedraza, M. C., & Gómez-Aguilar, D. L. (2021). Diseño y validación de un sistema de adsorción de cromo hexavalente en efluentes de curtiembre usando cáscara de naranja y salvado de trigo. Tecnología y ciencias del agua, 12(3), 01–31. https://doi.org/10.24850/j-tyca-2021-03-01
dc.relation.referencesMuñiz, J. A. (2016). Eficiencia del biosorbente de coronta de maíz para la adsorción del Cromo Hexavalente en aguas residuales de la industria Curtiembre Huachipa - 2016. Universidad César Vallejo.
dc.relation.referencesMuñoz, M. X. (2021). Adsorción de cromo hexavalente en solución acuosa empleando un compósito organoarcilla-alginato y su potencial aplicación en un efluente de curtiembre: caso de estudio municipio de Belén-Nariño. https://repositorio.unal.edu.co/bitstream/handle/unal/80919/1085938630.2021.pdf?sequence =4&isAllowed=y
dc.relation.referencesMushtaq, Z., Liaquat, M., Nazir, A., Liaquat, R., Iftikhar, H., Anwar, W., & Itrat, N. (2022). Potential of plant growth promoting rhizobacteria to mitigate chromium contamination. Environmental Technology & Innovation, 28, 102826. https://doi.org/10.1016/j.eti.2022.102826
dc.relation.referencesMuthukumaravel, K., & Rajaraman, P. (2013). A STUDY ON THE TOXICITY OF CHROMIUM ON THE HISTOLOGY OF GILL AND LIVER OF FRESHWATER FISH LABEO ROHITA. En INTERNATIONAL JOURNAL OF PURE AND APPLIED ZOOLOGY (Vol. 1, Número 2). http://www.ijpaz.com
dc.relation.referencesNational Center for Biotechnology Information. (2024). Ferric Chloride. https://pubchem.ncbi.nlm.nih.gov/compound/Ferric-Chloride
dc.relation.referencesNilapwar, S. M., Nardelli, M., Westerhoff, H. V., & Verma, M. (2011). Absorption Spectroscopy (pp. 59–75). https://doi.org/10.1016/B978-0-12-385118-5.00004-9
dc.relation.referencesNizam, T., Krishnan, K. A., Joseph, A., & Krishnan, R. R. (2024a). Isotherm, kinetic and thermodynamic modelling of liquid phase adsorption of the heavy metal ions Zn(II), Pb(II) and Cr(VI) onto MgFe2O4 nanoparticles. Groundwater for Sustainable Development, 25, 101120. https://doi.org/10.1016/j.gsd.2024.101120
dc.relation.referencesNizam, T., Krishnan, K. A., Joseph, A., & Krishnan, R. R. (2024b). Isotherm, kinetic and thermodynamic modelling of liquid phase adsorption of the heavy metal ions Zn(II), Pb(II) and Cr(VI) onto MgFe2O4 nanoparticles. Groundwater for Sustainable Development, 25, 101120. https://doi.org/10.1016/j.gsd.2024.101120
dc.relation.referencesOlasehinde, E. F., Abegunde, S. M., & Adebayo, M. A. (2020). Adsorption isotherms, kinetics and thermodynamic studies of methylene blue dye removal using raphia taedigera seed activated carbon. Caspian Journal of Environmental Sciences, 18(4), 329–344. https://doi.org/10.22124/cjes.2020.4279
dc.relation.referencesOMS. (2011). ARMONIZACION DE LOS ESTANDARES DE AGUA POTABLE EN LAS AMERICAS.
dc.relation.referencesOsorio Castiblanco, D. F. (2019). ANÁLISIS DE PLASTICIDAD FUNCIONAL DEL RETAMO ESPINOSO (Ulex europaeus) A LO LARGO DE UN GRADIENTE ALTITUDINAL Y COMPARACIÓN DE SUS PROPIEDADES FÍSICO-BIOQUÍMICAS CON EL RETAMO LISO (Genista monspessulana) [Universidad de los Andes]. https://repositorio.uniandes.edu.co/server/api/core/bitstreams/e64b90a8-c840-4349-b0c5- 2b3ef521cb7e/content
dc.relation.referencesPabón, S. E., Benítez, R., Sarria- Villa, R. A., & Gallo, J. A. (2018). Contaminación del agua por metales pesados, métodos de análisis y tecnologías de remoción. Una revisión. http://www.scielo.org.co/pdf/ecei/v14n27/1909-8367-ecei-14-27-9.pdf
dc.relation.referencesPájaro, Y., & Díaz, F. (2012). REMOCIÓN DE CROMO HEXAVALENTE DE AGUAS CONTAMINADAS USANDO QUITOSANO OBTENIDO DE EXOESQUELETO DE CAMARÓN (Vol. 41, Número 2). http://www.scielo.org.co/pdf/rcq/v41n2/v41n2a8.pdf
dc.relation.referencesPan, X., Hu, J., Xia, W., Zhang, B., Liu, W., Zhang, C., Yang, J., Hu, C., Zhou, A., Chen, Z., Cao, J., Zhang, Y., Wang, Y., Huang, Z., Lv, B., Song, R., Zhang, J., Xu, S., & Li, Y. (2017). Prenatal chromium exposure and risk of preterm birth: A cohort study in Hubei, China. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-03106-z
dc.relation.referencesPawar, S., Theodore, T., & Hiremath, P. G. (2019). SYNTHESIS OF HYDROXYAPATITE FROM AVOCADO FRUIT PEEL AND ITS APPLICATION FOR HEXAVALENT CHROMIUM REMOVAL FROM AQUEOUS SOLUTIONS - ADSORPTION ISOTHERMS AND KINETICS STUDY. Rasayan Journal of Chemistry, 12(04), 1964– 1972. https://doi.org/10.31788/RJC.2019.1245425
dc.relation.referencesPei, Y. Y., & Liu, J. Y. (2011). Adsorption of Pb in Wastewater Using Adsorbent Derived from Grapefruit Peel. Advanced Materials Research, 391–392, 968–972. https://doi.org/10.4028/www.scientific.net/AMR.391-392.968
dc.relation.referencesPerez, J. (2021). Espectrofotometria. https://definicion.de/espectrofotometria/
dc.relation.referencesPicazo Rodríguez, N. G., Carrillo Pedroza, F. R., Soria Aguilar, M. de J., Baltierra Costeira, G., & González Zamarripa, G. (2022a). ADSORCIÓN DE CROMO MEDIANTE EL USO DE RESIDUOS MINERO-METALÚRGICOS COMO ADSORBENTES DE BAJO COSTO. EPISTEMUS, 15(31). https://doi.org/10.36790/epistemus.v15i31.195
dc.relation.referencesPicazo Rodríguez, N. G., Carrillo Pedroza, F. R., Soria Aguilar, M. de J., Baltierra Costeira, G., & González Zamarripa, G. (2022b). ADSORCIÓN DE CROMO MEDIANTE EL USO DE RESIDUOS MINERO-METALÚRGICOS COMO ADSORBENTES DE BAJO COSTO. EPISTEMUS, 15(31). https://doi.org/10.36790/epistemus.v15i31.195
dc.relation.referencesPichardo, B. (2017). EVALUACIÓN DEL ÓXIDO DE GRAFENO MAGNÉTICO GO-(Fe3O4) COMO ADSORBENTE DE CROMO HEXAVALENTE (Cr 6+ ).
dc.relation.referencesPrasad, S., Yadav, K. K., Kumar, S., Gupta, N., Cabral-Pinto, M. M. S., Rezania, S., Radwan, N., & Alam, J. (2021). Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. Journal of Environmental Management, 285, 112174. https://doi.org/10.1016/j.jenvman.2021.112174
dc.relation.referencesPutro, J. N., Kurniawan, A., Ismadji, S., & Ju, Y.-H. (2017). Nanocellulose based biosorbents for wastewater treatment: Study of isotherm, kinetic, thermodynamic and reusability. Environmental Nanotechnology, Monitoring & Management, 8, 134–149. https://doi.org/10.1016/j.enmm.2017.07.002
dc.relation.referencesQi, J., Li, B., Zhou, P., Su, X., Yang, D., Wu, J., Wang, Z., & Liang, X. (2023). Study on adsorption of hexavalent chromium by composite material prepared from iron-based solid wastes. Scientific Reports, 13(1), 135. https://doi.org/10.1038/s41598-023-27414-9
dc.relation.referencesRahaman, Md. H., Islam, Md. A., Islam, Md. M., Rahman, Md. A., & Alam, S. M. N. (2021). Biodegradable composite adsorbent of modified cellulose and chitosan to remove heavy metal ions from aqueous solution. Current Research in Green and Sustainable Chemistry, 4, 100119. https://doi.org/10.1016/j.crgsc.2021.100119
dc.relation.referencesRamraj, S. M., Kubaib, A., Imran, P. M., & Thirupathy, M. K. (2023). Utilizing Sida Acuta leaves for low-cost adsorption of chromium (VI) heavy metal with activated charcoal. Journal of Hazardous Materials Advances, 11, 100338. https://doi.org/10.1016/j.hazadv.2023.100338
dc.relation.referencesRios, D. L. (2022). FORMULACIÓN DE PROTOCOLO DE CONTROL Y SEGUIMIENTO DEL RETAMO ESPINOSO (Ulex europaeus L.) PARA EL MUNICIPIO DE DUITAMA, BOYACÁ. https://repositorio.uptc.edu.co/bitstream/handle/001/8718/Seguimiento_y_control_retamo_e spinoso.pdf;jsessionid=A9C0444BFA25A4FE8315D2468148CDEE?sequence=1
dc.relation.referencesRoberts, J., & Florentine, S. (2021a). Biology, distribution and control of the invasive species Ulex europaeus (Gorse): A global synthesis of current and future management challenges and research gaps. En Weed Research (Vol. 61, Número 4, pp. 272–281). John Wiley and Sons Inc. https://doi.org/10.1111/wre.12491
dc.relation.referencesRoberts, J., & Florentine, S. (2021b). Biology, distribution and control of the invasive species Ulex europaeus (Gorse): A global synthesis of current and future management challenges and research gaps. En Weed Research (Vol. 61, Número 4, pp. 272–281). John Wiley and Sons Inc. https://doi.org/10.1111/wre.12491
dc.relation.referencesRojas Villalva, Y., & Zarate Vasquez, C. (2015). EFECTO DEL pH Y EL TIEMPO DE CONTACTO EN LA ADSORCIÓN DE CROMO HEXAVALENTE EN SOLUCIÓN ACUOSA UTILIZANDO MONTMORILLONITA COMO ADSORBENTE”. https://repositorio.uncp.edu.pe/bitstream/handle/20.500.12894/1012/Rojas%20Villalva%20 Yelitsa%20%2b.pdf?sequence=1&isAllowed=y
dc.relation.referencesRoyal Botanic Gardens. (s/f). Ulex europaeus L. Recuperado el 26 de agosto de 2023, de https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:524298-1/images
dc.relation.referencesSaleh, T. A. (2022). Isotherm models of adsorption processes on adsorbents and nanoadsorbents. En Interface Science and Technology (Vol. 34, pp. 99–126). https://doi.org/10.1016/B978- 0-12-849876-7.00009-9
dc.relation.referencesSánchez, C. (2020). PUESTA A PUNTO DE UN NUEVO MÉTODO DE ANÁLISIS POR INYECCIÓN EN FLUJO (FIA) PARA LA DETERMINACIÓN DE CROMO HEXAVALENTE [Universidad Politécnica de Madrid]. https://oa.upm.es/64688/1/TFG_CRISTINA_SANCHEZ_RODRIGUEZ.pdf
dc.relation.referencesSchaller, C. (2022). 8.1: Absorbance. En Structure & Reactivity V: Reactivity in Organic, Biological and Inorganic Chemistry 3. College of Saint Benedict/Saint John’s University. https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_Structure_and_Rea ctivity_in_Organic_Biological_and_Inorganic_Chemistry_(Schaller)/V%3A__Reactivity_i n_Organic_Biological_and_Inorganic_Chemistry_3/08%3A_Photochemical_Reactions/8.0 1%3A_Absorbance#title
dc.relation.referencesSecretaria Distrital de Ambiente. (2014). Lineamientos para el control retamo liso (Genista monspessulana) y espinoso (Ulex europaeus) en el Distrito Capital. https://nuevo.ambientebogota.gov.co/documents/10184/412485/Lineamientos+Control+reta mos+liso+y+espinoso.pdf/1638e4d4-a444-485f-b721-1360be1629b7
dc.relation.referencesSenanu, L. D., Kranjac-Berisavljevic, G., & Cobbina, S. J. (2023). The use of local materials to remove heavy metals for household-scale drinking water treatment: A review. Environmental Technology & Innovation, 29, 103005. https://doi.org/10.1016/j.eti.2023.103005
dc.relation.referencesSinha, V., Pakshirajan, K., & Chaturvedi, R. (2018). Chromium tolerance, bioaccumulation and localization in plants: An overview. Journal of Environmental Management, 206, 715–730. https://doi.org/10.1016/j.jenvman.2017.10.033
dc.relation.referencesSyeda, H. I., Sultan, I., Razavi, K. S., & Yap, P.-S. (2022a). Biosorption of heavy metals from aqueous solution by various chemically modified agricultural wastes: A review. Journal of Water Process Engineering, 46, 102446. https://doi.org/10.1016/j.jwpe.2021.102446
dc.relation.referencesSyeda, H. I., Sultan, I., Razavi, K. S., & Yap, P.-S. (2022b). Biosorption of heavy metals from aqueous solution by various chemically modified agricultural wastes: A review. Journal of Water Process Engineering, 46, 102446. https://doi.org/10.1016/j.jwpe.2021.102446
dc.relation.referencesTapiero, Y. A. (2015). SÍNTESIS Y CARACTERIZACIÓN DE MEMBRANAS CON CAPACIDAD DE INTERCAMBIO IÓNICO PARA LA REMOCIÓN DE CROMO HEXAVALENTE Y TRIVALENTE DESDE DISOLUCIONES ACUOSAS [Universidad de concepción]. http://repositorio.udec.cl/handle/11594/1839
dc.relation.referencesTchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metal Toxicity and the Environment (pp. 133–164). https://doi.org/10.1007/978-3-7643-8340-4_6
dc.relation.referencesTejada, C., Quiñones, E., Tejada, L., & Marimón, W. (2015). Absorción de Cromo Hexavalente en soluciones acuosas por cascaras de naranja (Citrus sinensis). Producción + Limpia, 10, 9–21. http://www.scielo.org.co/pdf/pml/v10n1/v10n1a02.pdf
dc.relation.referencesTejada Tovar, C., Villabona Ortiz, Á., & Jiménez Villadiego, M. (2017). REMOCIÓN DE CROMO HEXAVALENTE SOBRE RESIDUOS DE CACAO PRETRATADOS QUÍMICAMENTE. http://www.scielo.org.co/pdf/rudca/v20n1/v20n1a16.pdf
dc.relation.referencesTEJADA-TOVAR, C., PAZ, I., ACEVEDO-CORREA, D., ESPINOSA-FORTICH, M., & LÓPEZ-BADEL, C. (2021). Adsorption of chrome (VI) and mercury (II) in solution using 142 hyacinth (Eichhornia crassipes)*. Biotecnología en el sector agropecuario y agroindustrial, 19. https://doi.org/10.18684/BSAA(19)54-65
dc.relation.referencesThe International Adsorption Society. (s/f). What is Adsorption? Recuperado el 4 de agosto de 2023, de https://www.int-ads-soc.org/what-is-adsorption/#
dc.relation.referencesThompson, A., & Goyne, keith. (2012). Introduction to the Sorption of Chemical Constituents in Soils. the nature education.
dc.relation.referencesTonelli, D. (2009). Methods for Determining Ethanol in Beer. En Beer in Health and Disease Prevention (pp. 1055–1065). Elsevier. https://doi.org/10.1016/B978-0-12-373891-2.00102- 4
dc.relation.referencesUkhurebor, K. E., Aigbe, U. O., Onyancha, R. B., Nwankwo, W., Osibote, O. A., Paumo, H. K., Ama, O. M., Adetunji, C. O., & Siloko, I. U. (2021). Effect of hexavalent chromium on the environment and removal techniques: A review. Journal of Environmental Management, 280, 111809. https://doi.org/10.1016/j.jenvman.2020.111809
dc.relation.referencesUsmani, M. A., Khan, I., Gazal, U., Mohamad Haafiz, M. K., & Bhat, A. H. (2018). Interplay of polymer bionanocomposites and significance of ionic liquids for heavy metal removal. En Polymer-based Nanocomposites for Energy and Environmental Applications (pp. 441–463). Elsevier. https://doi.org/10.1016/B978-0-08-102262-7.00016-7
dc.relation.referencesValenzuela, T. de J. (2004). Exploración de posibilidades para proponer un tren de tratamiento para remoción de dureza que logre la optimización técnica y económica del proceso [Universidad de las Américas Puebla.]. http://catarina.udlap.mx/u_dl_a/tales/documentos/leip/valenzuela_m_td/
dc.relation.referencesVanegas, J. V. (2022). DETERMINACIÓN DE LOS PARÁMETROS DE LA ADSORCIÓN DE CROMO (VI) SOBRE RESIDUOS DE MANDARINA (Citrus reticulata) [Escuela Superior Politécnica de Chimborazo]. http://dspace.espoch.edu.ec/bitstream/123456789/17709/1/96T00779.pdf
dc.relation.referencesWestreicher, G. (2020). Precisión. https://economipedia.com/definiciones/precision.html
dc.relation.referencesWu, Y., Cha, L., Fan, Y., Fang, P., Ming, Z., & Sha, H. (2017). Activated Biochar Prepared by Pomelo Peel Using H3PO4 for the Adsorption of Hexavalent Chromium: Performance and Mechanism. Water, Air, & Soil Pollution, 228(10), 405. https://doi.org/10.1007/s11270- 017-3587-y
dc.relation.referencesYusuff, A. S., Ishola, N. B., Gbadamosi, A. O., & Epelle, E. I. (2023). Modeling and Optimization of Hexavalent Chromium Adsorption by Activated Eucalyptus Biochar Using Response Surface Methodology and Adaptive Neuro-Fuzzy Inference System. Environments, 10(3), 55. https://doi.org/10.3390/environments10030055
dc.relation.referencesZaib, Q., & Kyung, D. (2022). Optimized removal of hexavalent chromium from water using spent tea leaves treated with ascorbic acid. Scientific Reports, 12(1), 8845. https://doi.org/10.1038/s41598-022-12787-0
dc.relation.referencesZeng, Z., Zhao, B., & Wang, R. (2023). Water based adsorption thermal battery: Sorption mechanisms and applications. Energy Storage Materials, 54, 794–821. https://doi.org/10.1016/j.ensm.2022.11.024
dc.relation.referencesZhong, X., de Cássia da Silveira e Sá, R., & Zhong, C. (2017). Mitochondrial Biogenesis in Response to Chromium (VI) Toxicity in Human Liver Cells. International Journal of Molecular Sciences, 18(9), 1877. https://doi.org/10.3390/ijms18091877
dc.rights.accesoRestringido (Solo Referencia)
dc.rights.accessrightsRestrictedAccess
dc.subjectCromo hexavalente
dc.subjectRetamo espinoso
dc.subjectAdsorción
dc.subjectBiomasa
dc.subjectCinética de adsorción
dc.subjectIsotermas
dc.subject.keywordHexavalent chromium
dc.subject.keywordThorny broom
dc.subject.keywordAdsorption
dc.subject.keywordBiomass
dc.subject.keywordAdsorption kinetics
dc.subject.keywordIsotherms
dc.subject.lembIngeniería Ambiental -- Tesis y disertaciones académicas
dc.subject.lembBioadsorción -- Tratamiento
dc.subject.lembBiomasa vegetal
dc.subject.lembCromo -- Aspectos ambientales
dc.subject.lembMetales pesados -- Aspectos ambientales
dc.titleDeterminación de la eficiencia de bioadsorción de cromo hexavalente a partir de la biomasa de retamo espinoso (Ulex europaeus), mejorado con cloruro férrico
dc.title.titleenglishDetermination of the bioadsorption efficiency of hexavalent chromium from the biomass of thorny broom (Ulex europaeus), enhanced with ferric chloride.
dc.typebachelorThesis
dc.type.degreeInvestigación-Innovación

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
GonzálezNeiraWendyTatiana2024.pdf
Tamaño:
1.34 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
No hay miniatura disponible
Nombre:
Licencia de uso y publicación.pdf
Tamaño:
178.02 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia de uso y publicación

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: