Producción de una proteína recombinante de interés farmacéutico derivada del virus del síndrome reproductivo y respiratorio porcino (prrsv)

dc.contributor.advisorAyala Fajardo, Adis
dc.contributor.advisorSánchez López, Edwin
dc.contributor.authorFlórez Burbano, Daniel Felipe
dc.contributor.orcidAyala Fajardo , Adis [0000-0003-2830-982X]
dc.contributor.orcidSánchez López , Edwin [0009-0008-1949-385X]
dc.date.accessioned2026-02-10T14:51:31Z
dc.date.available2026-02-10T14:51:31Z
dc.date.created2025-10-07
dc.descriptionEl síndrome reproductivo y respiratorio porcino (PRRSV) es una enfermedad que provoca mortalidad y graves problemas respiratorios, como neumonía intersticial en cerdos. Se caracteriza por una viremia prolongada y su replicación se da principalmente en macrófagos alveolares pulmonares. El PRRSV es altamente variable y antigénicamente complejo, lo que dificulta su control y prevención. Está compuesto por proteínas como la nucleocápside y las glicoproteínas GP2, GP3, GP4 y GP5. Esta última es crucial para la interacción del virus con la célula huésped y contiene epítopos inmunodominantes que generan una respuesta inmune contra el PRRSV. En Colombia es una enfermedad endémica que se presenta en más de 11 departamentos, en donde se han logrado identificar 11 cepas. El propósito de este estudio es la producción de una proteína recombinante basada en la fusión de la glicoproteína GP5 con la proteína de choque térmico Hsp90.3 de Nicotiana benthamiana, utilizada como carrier. Con el propósito de mejorar el plegamiento de GP5 en sistemas bacterianos. Para esto, se amplificó el gen GP5 con sitios de restricción PstI y XhoI mediante PCR convencional. El ADN amplificado se purificó y se ligó a los vectores pGEMT (clonación) y pRSET-A (expresión), posteriormente se transformaron células competentes BL21 y se estandarizaron parámetros de expresión de la proteína recombinante. La identidad y la capacidad antigénica de esta proteína se evaluaron mediante Western blot utilizando anticuerpos monoclonales y sueros de cerdas seropositivas contra PRRSV, respectivamente. Los resultados confirmaron la amplificación y clonación exitosa del gen GP5 (615 pb), obteniendo por secuenciación una identidad del 97.84 %, tanto en su versión sola como fusionada con la Hsp90.3. Asimismo, se logró expresar la proteína recombinante GP5 con un peso de 22 kDa, la cual fue identificada a través de anticuerpos monoclonales anti-His, siendo reactiva frente a sueros seropositivos de cerdas circulantes en el Atlántico. Adicionalmente se construyó el vector p35S:GATFH-GP5 con la intención de expresar la proteína de manera transitoria en plantas. Estos resultados representan un avance importante hacia la evaluación de la funcionalidad antigénica de la proteína recombinante, así como su potencial aplicación en el diagnóstico del PRRSV. Este estudio permitirá desarrollar futuras investigaciones para validar las condiciones de expresión de GP5 sola y fusionada a Hsp90.3 de Nicotiana benthamiana en sistemas vegetales para aplicaciones farmacéuticas contra PRRSV.
dc.description.abstractPorcine reproductive and respiratory syndrome virus (PRRSV) is a disease that causes mortality and severe respiratory problems, such as interstitial pneumonia, in pigs. It is characterized by prolonged viremia, and its replication occurs primarily in pulmonary alveolar macrophages. PRRSV is highly variable and antigenically complex, making it difficult to control and prevent. It is composed of proteins such as the nucleocapsid and the glycoproteins GP2, GP3, GP4, and GP5. The latter is crucial for the interaction of the virus with the host cell and contains immunodominant epitopes that generate an immune response against PRRSV. In Colombia, it is an endemic disease present in more than 11 departments, where 11 strains have been identified. The purpose of this study is the production of a recombinant protein based on the fusion of the GP5 glycoprotein with the heat shock protein Hsp90.3 from Nicotiana benthamiana, used as a carrier, to improve the folding of GP5 in bacterial systems. To this end, the GP5 gene was amplified with PstI and XhoI restriction sites using conventional PCR. The amplified DNA was purified and ligated into the pGEMT (cloning) and pRSET-A (expression) vectors. Subsequently, BL21 competent cells were transformed, and expression parameters of the recombinant protein were standardized. The identity and antigenic capacity of this protein were evaluated by Western blot using monoclonal antibodies and sera from PRRSV-seropositive sows, respectively. The results confirmed the successful amplification and cloning of the GP5 gene (615 bp), yielding 97.84% identity by sequencing, both in its single version and fused with Hsp90.3. Furthermore, the recombinant GP5 protein, weighing 22 kDa, was successfully expressed and identified using anti-His monoclonal antibodies, reacting with sera from seropositive sows circulating in the Atlantic. Additionally, the p35S:GATFH-GP5 vector was constructed to transiently express the protein in plants. These results represent a significant step forward in evaluating the antigenic functionality of the recombinant protein, as well as its potential application in PRRSV diagnosis. This study will allow for future research to validate the expression conditions of GP5 alone and fused to Hsp90.3 from Nicotiana benthamiana in plant systems for pharmaceutical applications against PRRSV.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/100300
dc.language.isospa
dc.publisherUniversidad Distrital Fransisco José de Caldas
dc.relation.referencesAndreyev, V. G., Wesley, R. D., Mengeling, W. L., Vorwald, A. C., & Lager, K. M. (1997) Genetic variation and phylogenetic relationships of 22 porcine reproductive and respiratory syndrome virus (PRRSV) field strains based on sequence analysis of open reading frame 5. Archives of Virology, 142(5), 993–1001. https://doi.org/10.1007/s007050050134
dc.relation.referencesAnsari, I. H., Kwon, B., Osorio, F. A., & Pattnaik, A. K. (2006) Influence of N-Linked Glycosylation of Porcine Reproductive and Respiratory Syndrome Virus GP5 on Virus Infectivity, Antigenicity, and Ability To Induce Neutralizing Antibodies Journal of Virology 80(8) 3994–4004 https://doi.org/10.1128/JVI.80.8.3994-4004.2006
dc.relation.referencesZhou, Y.-J., Yu, H., Tian, Z.-J., Liu, J.-X., An, T.-Q., Peng, J.-M., Wang, Y.-F., Li, G.-X., Jiang, Y.-F., Cai, X.-H., Xue, Q., Wang, M., & Tong, G.-Z. (2009) Monoclonal antibodies and conserved antigenic epitopes in the C terminus of GP5 protein of the North American type porcine reproductive and respiratory syndrome virus. Veterinary microbiology, 138(1-2), 13-22
dc.relation.referencesBaneyx, F., & Mujacic, M. (2004). Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 22(11), 1399–1408. https://doi.org/10.1038/nbt1029
dc.relation.referencesBeerens, N., & Snijder, E. J. (2007). An ARN pseudoknot in the 3' end of the arterivirus genome has a critical role in regulating viral ARN synthesis. Journal of virology, 81(17), 9426–9436. https://doi.org/10.1128/JVI.00747-07
dc.relation.referencesBenfield, D. A., Nelson, E., Collins, J. E., Harris, L., Goyal, S. M., Robison, D., Christianson, W. T., Morrison, R. B., Gorcyca, D., & Chladek, D. (1992). Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332) Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc, 4(2), 127–133 https://doi.org/10.1177/104063879200400202
dc.relation.referencesBeura, L. K., Sarkar, S. N., Kwon, B., Subramaniam, S., Jones, C., Pattnaik, A. K., & Osorio, F. A. (2010) Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 1β Modulates Host Innate Immune Response by Antagonizing IRF3 Activation Journal of Virology, 84(3) 1574– 1584 https://doi.org/10.1128/JVI.01326-09
dc.relation.referencesForsberg R. (2005). Divergence time of porcine reproductive and respiratory syndrome virus subtypes. Molecular biology and evolution, 22(11), 2131–2134 https://doi.org/10.1093/molbev/msi208
dc.relation.referencesCao, Q. M., Tian, D., Heffron, C. L., Subramaniam, S., Opriessnig, T., Foss, D. L., Calvert, J. G., & Meng, X. J. (2019). Cytotoxic T lymphocyte epitopes identified from a contemporary strain of porcine reproductive and respiratory syndrome virus enhance CD4+CD8+ T, CD8+ T, and γδ T cell responses. Virology, 538, 35–44. https://doi.org/10.1016/J.VIROL.2019.09.006
dc.relation.referencesCorigliano, M. G., Maglioco, A., Laguía Becher, M., Goldman, A., Martín, V., Angel, S. O., & Clemente, M. (2011). Plant Hsp90 Proteins Interact with B-Cells and Stimulate Their Proliferation. PLoS ONE, 6(6), e21231. https://doi.org/10.1371/journal.pone.0021231
dc.relation.referencesGuzmán, M., Meléndez, R., Jiménez, C., Piche, M., Jiménez, E., León, B., Cordero, J. M., Ramirez-Carvajal, L., Uribe, A., van Nes, A., Stegeman, A., & Romero, J. J. (2021). Analysis of ORF5 sequences of Porcine Reproductive and Respiratory Syndrome virus (PRRSV) circulating within swine farms in Costa Rica. BMC Veterinary Research, 17(1), 217. https://doi.org/10.1186/s12917-021-02925-7
dc.relation.referencesLambert, M. È., Arsenault, J., Audet, P., Delisle, B., & D’Allaire, S. (2019). Evaluating an automated clustering approach in a perspective of ongoing surveillance of porcine reproductive and respiratory syndrome virus (PRRSV) field strains. Infection, Genetics and Evolution, 73, 295–305. https://doi.org/10.1016/J.MEEGID.2019.04.014
dc.relation.referencesMadapong, A., Saeng-chuto, K., Chaikhumwang, P., Tantituvanont, A., Saardrak, K., Pedrazuela Sanz, R., Miranda Alvarez, J., & Nilubol, D. (2020). Immune response and protective efficacy of intramuscular and intradermal vaccination with porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) modified live vaccine against highly pathogenic PRRSV-2 (HP-PRRSV-2) challenge, either alone or in combination with of PRRSV-1. Veterinary Microbiology, 244, 108655. https://doi.org/10.1016/J.VETMIC.2020.108655
dc.relation.referencesBalasuriya, U. B. R., Dobbe, J. C., Heidner, H. W., Smalley, V. L., Navarrette, A., Snijder, E. J., & MacLachlan, N. J. (2004) Characterization of the neutralization determinants of equine arteritis virus using recombinant chimeric viruses and site-specific mutagenesis of an infectious cDNA clone Virology, 321(2) 235–246 https://doi.org/10.1016/j.virol.2003.12.015
dc.relation.referencesBickel D., Gohlke H. (2019) moduladores C-terminales de la proteína de choque térmico de 90 kDa (Hsp90): estado de desarrollo y modos de acción bioorgánica med química 27 :115080. 10.1016/j.bmc.2019.115080
dc.relation.referencesBrar, M. S., Shi, M., Ge, L., Carman, S., Murtaugh, M. P., & Leung, F. C. (2011) Porcine reproductive and respiratory syndrome virus in Ontario, Canada 1999 to 2010: genetic diversity and restriction fragment length polymorphisms The Journal of general virology, 92(Pt 6) 1391–1397 https://doi.org/10.1099/vir.0.030155-0
dc.relation.referencesBreedam, W., Delputte, P. L., Van Gorp, H., Misinzo, G., Vanderheijden, N., Duan, X., & Nauwynck, H. J. (2010) Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage The Journal of general virology 91(pt 7), 1659–1667 https://doi.org/10.1099/vir.0.020503-0
dc.relation.referencesBrinton, M., Gulyaeva, A., Balasuriya, U.Dunowska, M., Faaberg, S., Goldberg, T., Leung, C., Nauwynck, J., Snijder, E., Stadejek, T. (2021) ICTV virus taxonomy profile: Arteriviridae. J Gen Virol DOI 10.1099/jgv.0.001632
dc.relation.referencesBurkard, C., Opriessnig, T., Mileham, A. J., Stadejek, T., Ait-Ali, T., Lillico, S. G., Whitelaw, C. B. A., & Archibald, A. L. (2018). Pigs Lacking the Scavenger Receptor Cysteine-Rich Domain 5 of CD163 Are Resistant to Porcine Reproductive and Respiratory Syndrome Virus 1 Infection Journal of Virology, 92(16) https://doi.org/10.1128/JVI.00415-18 105
dc.relation.referencesBurnett, M. J. B., & Burnett, A. C. (2020) Therapeutic recombinant protein production in plants Challenges and opportunities PLANTS, PEOPLE, PLANET 2 (2) 121–132 https://doi.org/10.1002/ppp3.10073
dc.relation.referencesCai, H., Zhang, H., Cheng, H., Liu, M., Wen, S., & Ren, J. (2023) Progress in PRRSV Infection and Adaptive Immune Response Mechanisms Viruses 15(7) 1442 https://doi.org/10.3390/v15071442
dc.relation.referencesCai, J.-P., Wang, Y.-D., Tse, H., Xiang, H., Yuen, K.-Y., & Che, X.-Y. (2009) Detection of Asymptomatic Antigenemia in Pigs Infected by Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) by a Novel Capture Immunoassay with Monoclonal Antibodies against the Nucleocapsid Protein of PRRSV Clinical and Vaccine Immunology 16(12) 1822–1828 https://doi.org/10.1128/CVI.00244-09
dc.relation.referencesChen, J., Wang, Q., Bai, Y., Wang, B., Zhao, H., Peng, J., An, T., Tian, Z., & Tong, G. (2014) Identification of two dominant linear epitopes on the GP3 protein of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) Research in Veterinary Science 97(2) 238 - 243 https://doi.org/10.1016/j.rvsc.2014.07.011
dc.relation.referencesChen, Q., Lai, H., Hurtado, J., Stahnke, J., Leuzinger, K., & Dent, M. (2013) Agroinfiltration as an Effective and Scalable Strategy of Gene Delivery for Production of Pharmaceutical Proteins Advanced techniques in biology & medicine 1 (1) 103 https://doi.org/10.4172/atbm.1000103
dc.relation.referencesChen, Z., Liu, S., Sun, W., Chen, L., Yoo, D., Li, F., Ren, S., Guo, L., Cong, X., Li, J., Zhou, S., Wu, J., Du, Y., & Wang, J. (2016) Nuclear export signal of PRRSV NSP1α is necessary for type I IFN inhibition Virology 499 278–287 https://doi.org/10.1016/J.VIROL.2016.07.008
dc.relation.referencesCho, J. G., & Dee, S. A. (2006) Porcine reproductive and respiratory syndrome virus Theriogenology 66(3) 655–662 https://doi.org/10.1016/J.THERIOGENOLOGY.2006.04.024
dc.relation.referencesChoi, J. H., Keum, K. C., & Lee, S. Y. (2006) Production of recombinant proteins by high cell density culture of Escherichia coli Chemical Engineering Science 61 (3) 876–885 https://doi.org/10.1016/j.ces.2005.03.031
dc.relation.referencesChoi, Y. J., Yun, S. I., Kang, S. Y., & Lee, Y. M. (2006) Identification of 5' and 3' cis-acting elements of the porcine reproductive and respiratory syndrome virus: acquisition of novel 5' AU-rich sequences restored replication of a 5'-proximal 7-nucleotide deletion mutant Journal of virology, 80(2), 723– 736 https://doi.org/10.1128/JVI.80.2.723-736.2006
dc.relation.referencesCorigliano, M. G., Fenoy, I., Sander, V., Maglioco, A., Goldman, A., & Clemente, M. (2013) Plant heat shock protein 90 as carrier-adjuvant for immunization against a reporter antigen Vaccine 31(49) 5872–5878 https://doi.org/10.1016/J.VACCINE.2013.09.047
dc.relation.referencesCosters, S., Lefebvre, D. J., Delputte, P. L., & Nauwynck, H. J. (2008) Porcine reproductive and respiratory syndrome virus modulates apoptosis during replication in alveolar macrophages Archives of virology 153(8) 1453–1465 https://doi.org/10.1007/s00705-008- 0135-5 106
dc.relation.referencesCui, J., O’Connell, C. M., Hagen, C., Sawicki, K., Smyth, J. A., Verardi, P. H., Van Kruiningen, H. J., et al. (2020) Broad Protection of Pigs against Heterologous PRRSV Strains by a GP5-Mosaic DNA Vaccine Prime/GP5-Mosaic rVaccinia (VACV) Vaccine Boost Vaccines, 8(1) 106 MDPI AG Retrieved from http://dx.doi.org/10.3390/vaccines8010106
dc.relation.referencesCui, J., Verardi, P. H., O'Connell, C. M., Costa, A., Pan, Y., Smyth, J. A., Burgess, D. J., Van Kruiningen, H. J., & Garmendia, A. E. (2019). A PRRSV GP5-Mosaic vaccine: Protection of pigs from challenge and ex vivo detection of IFNγ responses against several genotype 2 strains Vaccine 35(7) 1079-1086
dc.relation.referencesDaniell, H., Singh, N. D., Mason, H., & Streatfield, S. J. (2009) Plant-made vaccine antigens and biopharmaceuticals Trends in Plant Science 14 (12) 669–679. https://doi.org/10.1016/j.tplants.2009.09.009
dc.relation.referencesDas, P. B., Dinh, P. X., Ansari, I. H., de Lima, M., Osorio, F. A., & Pattnaik, A. K. (2010) The Minor Envelope Glycoproteins GP2a and GP4 of Porcine Reproductive and Respiratory Syndrome Virus Interact with the Receptor CD163 Journal of Virology 84 (4) 1731–1740 https://doi.org/10.1128/JVI.01774-09
dc.relation.referencesDas, P. B., Vu, H. L. X., Dinh, P. X., Cooney, J. L., Kwon, B., Osorio, F. A., & Pattnaik, A. K. (2011) Glycosylation of minor envelope glycoproteins of porcine reproductive and respiratory syndrome virus in infectious virus recovery receptor interaction and immune response. Virology 410(2), 385–394. https://doi.org/10.1016/j.virol.2010.12.002
dc.relation.referencesDelputte, P. L., Vanderheijden, N., Nauwynck, H. J., & Pensaert, M. B. (2002) Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages Journal of virology 76(9) 4312–4320 https://doi.org/10.1128/jvi.76.9.4312-4320.2002
dc.relation.referencesDeng, Z., Lehmann, K. C., Li, X., Feng, C., Wang, G., Zhang, Q., Qi, X., Yu, L., Zhang, X., Feng, W., Wu, W., Gong, P., Tao, Y., Posthuma, C. C., Snijder, E. J., Gorbalenya, A. E., & Chen, Z (2014) Structural basis for the regulatory function of a complex zinc-binding domain in a replicative arterivirus helicase resembling a nonsense-mediated mARN decay helicase Nucleic Acids Research, 42(5), 3464–3477 https://doi.org/10.1093/nar/gkt1310
dc.rights.accesoRestringido (Solo Referencia)
dc.rights.accessrightsRestrictedAccess
dc.subjectProteínas recombinantes
dc.subjectBiotecnología farmacéutica
dc.subjectIngeniería genética
dc.subjectProducción de proteínas
dc.subject.keywordPorcine reproductive and respiratory syndrome virus
dc.subject.keywordVirology
dc.subject.keywordPharmaceutical Technology
dc.subject.keywordHeterelogous expression
dc.subject.lembLicenciatura en Química -- Tesis y disertaciones académicas
dc.subject.lembVirus del síndrome reproductivo y respiratorio porcino
dc.subject.lembPrrsv
dc.subject.lembProteínas virales
dc.titleProducción de una proteína recombinante de interés farmacéutico derivada del virus del síndrome reproductivo y respiratorio porcino (prrsv)
dc.title.titleenglishProduction of a recombinant protein of pharmaceutical interest derived from the porcine reproductive and respiratory syndrome virus (prrsv)
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
FlorezBurbanoDanielFelipe2025.pdf
Tamaño:
4.41 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
Licencia de uso y publicacion.pdf
Tamaño:
265.71 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: