Machine learning para la identificación de estudiantes en riesgo de deserción académica
Fecha
Autor corporativo
Título de la revista
ISSN de la revista
Título del volumen
Editor
Compartir
Director
Altmetric
Resumen
In Latin América, desertion rates in higher education range between 40% and 75%. There are many reasons for a student to deserted of their studies. However, the importance of identifying the level of risk related to such desertion is reflected in the socio-economic impact for the institutions as well as for the country. Technological advancements in database management and artificial intelligence have led to the development of techniques such as machine learning, which supports decision-making when facing a problem and adapts accordingly to the required conditions. The following article shows a case study of the identification of students in Industrial engineering at risk of dropping out in the Universidad Distrital Francisco José de Caldas from the 2003-1 to 2018-1 academic semesters. The algorithm is selected based on which is more suitable to the nature of data, through the comparison of automated learning techniques in azure machine learning studio.