Machine learning para la identificación de estudiantes en riesgo de deserción académica

Fecha

Autor corporativo

Título de la revista

ISSN de la revista

Título del volumen

Editor

Compartir

Altmetric

Resumen

In Latin América, desertion rates in higher education range between 40% and 75%. There are many reasons for a student to deserted of their studies. However, the importance of identifying the level of risk related to such desertion is reflected in the socio-economic impact for the institutions as well as for the country. Technological advancements in database management and artificial intelligence have led to the development of techniques such as machine learning, which supports decision-making when facing a problem and adapts accordingly to the required conditions. The following article shows a case study of the identification of students in Industrial engineering at risk of dropping out in the Universidad Distrital Francisco José de Caldas from the 2003-1 to 2018-1 academic semesters. The algorithm is selected based on which is more suitable to the nature of data, through the comparison of automated learning techniques in azure machine learning studio.

Descripción

La tasa de deserción de la educación superior en América Latina oscila entre el 40% y el 75%. Existen diversas razones por las que un estudiante decide abandonar sus estudios; sin embargo, la importancia de identificar el nivel de riesgo de la deserción se refleja en el impacto socioeconómico tanto en la institución, como en el país. Los avances informáticos en el campo de la gestión de bases de datos e inteligencia artificial han propiciado el desarrollo de técnicas como el machine learning, que soporta la toma de decisiones frente a un problema y las modifica cuando las condiciones lo requieran. El siguiente artículo, presenta un caso de estudio de la Identificación de estudiantes de ingeniería industrial en riesgo de deserción académica de la Universidad Distrital Francisco José de Caldas durante los periodos 2003-1 al 2018-1; mediante la selección del algoritmo que mejor se adapte a la naturaleza de los datos, a través de la comparación de algoritmos de aprendizaje automático en el software azure machine learning studio.

Palabras clave

Deserción académica, Algoritmo, Inteligencia artificial, Aprendizaje automático

Materias

Ingeniería Industrial - Tesis y disertaciones académicas , Aprendizaje automático (Inteligencia artificial) , Deserción universitaria , Inteligencia artificial

Citación