Estudio del estado del arte de la tecnología LiDAR aplicada al mapeo de diferencias en altura de construcciones urbanas
| dc.contributor.advisor | Aldana Boutin, Rose Marie | |
| dc.contributor.author | Salamanca Africano, Tatiana Lucía | |
| dc.date.accessioned | 2025-03-18T13:44:26Z | |
| dc.date.available | 2025-03-18T13:44:26Z | |
| dc.date.created | 2024-12-03 | |
| dc.description | El proyecto de investigación, titulado "Estudio del estado del arte de la tecnología LiDAR aplicada al mapeo de diferencias en altura de construcciones urbanas," se centra en la evaluación objetiva de la efectividad de la tecnología LiDAR en la medición de diferencias en altura de edificaciones urbanas. Los objetivos específicos abarcan la evaluación del alcance y la capacidad de LiDAR para detectar diferencias en altura, el análisis de su aplicación en la generación de datos de altura en entornos urbanos, la identificación de tecnologías y métodos asociados, el estudio de su variabilidad en diferentes contextos urbanos y la determinación de tendencias futuras. La investigación se justifica teóricamente al explorar un área que no está completamente estudiada y busca contribuir a la teoría del conocimiento en teledetección y topografía. Este proyecto beneficiará al Instituto Geográfico Agustín Codazzi (IGAC), proporcionando una base para decisiones informadas en proyectos de mapeo urbano. Además, servirá como recurso fundamental para profesionales en topografía, teledetección y cartografía, contribuyendo a su formación y al desarrollo de nuevas metodologías. Con una construcción sólida de conocimiento que podrá beneficiar a la comunidad académica y profesional. En resumen, el proyecto se enfoca en la evaluación de LiDAR para medir diferencias en altura de construcciones urbanas, contribuyendo al conocimiento existente en el campo y brindando beneficios significativos, por lo que los resultados de este estudio ayudarán a comprender mejor la utilidad y las limitaciones de LiDAR en este contexto específico, lo que respalda una toma de decisiones más efectiva en proyectos futuros. | |
| dc.description.abstract | The research project, titled "Study of the State of the Art of LiDAR Technology Applied to Mapping Height Differences in Urban Constructions," focuses on the objective evaluation of the effectiveness of LiDAR technology in measuring height differences in urban buildings. The specific objectives include assessing the scope and capability of LiDAR to detect height variations, analyzing its application in generating height data in urban environments, identifying associated technologies and methods, studying its variability in different urban contexts, and determining future trends. The research is theoretically justified by exploring an area that is not fully studied and seeks to contribute to the body of knowledge in remote sensing and topography. This project will benefit the Agustín Codazzi Geographic Institute (IGAC) by providing a foundation for informed decision-making in urban mapping projects. Additionally, it will serve as a fundamental resource for professionals in topography, remote sensing, and cartography, contributing to their education and the development of new methodologies, thus fostering the construction of knowledge that will benefit both the academic and professional communities. In summary, the project focuses on evaluating LiDAR's capability to measure height differences in urban constructions, contributing to the existing knowledge in the field and providing significant benefits. The results of this study will help improve the understanding of LiDAR's utility and limitations in this specific context, supporting more effective decision-making in future projects. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/93759 | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Chipman, J. W., Lillesand, T. M., & Kiefer, R. W. (2015). REMOTE SENSING AND IMAGE INTERPRETATION (R. Flahive, M. Provenzano, K. Hancox, C. Volpe, J. Nollen, J. Soo, B. S. Prakash, S. Bochet, & J. Russiello, Eds.; 7a ed.). Wiley. | |
| dc.relation.references | Unidad Administrativa Especial de Catastro Distrital-Gerencia IDECA, U. A. E. (2019, febrero). Metodología para la Detección de Cambios Multitemporales Basados en Información Proveniente de Sensores LiDAR. www.ideca.gov.co. https://www.ideca.gov.co/sites/default/files/MetodologiaDeteccionCambiosDatosLIDAR_0.pdf | |
| dc.relation.references | National Aeronautics and Space Administration. (s/f). Fundamentos de la Teledetección (Percepción Remota). https://appliedsciences.nasa.gov/what-we-do/capacity-building/arset. Recuperado el 12 de julio de 2024, de https://appliedsciences.nasa.gov/sites/default/files/2023-02/Fundamentals_of_RS_Span.pdf | |
| dc.relation.references | Yi Zhao, Bin Wu, Qiaoxuan Li, Lei Yang, Hongchao Fan, Jianping Wu, Bailang Yu,Combining ICESat-2 photons and Google Earth Satellite images for building height extraction,International Journal of Applied Earth Observation and Geoinformation,(Volume 117,2023) https://www.sciencedirect.com/science/article/pii/S1569843223000353 | |
| dc.relation.references | ingyu Li, Lichao Mou, Yuansheng Hua, Yilei Shi, Sining Chen, Yao Sun, Xiao Xiang Zhu,3DCentripetalNet: Building height retrieval from monocular remote sensing imagery,International Journal of Applied Earth Observation and Geoinformation,(Volume 120,2023). https://www.sciencedirect.com/science/article/pii/S1569843223001334 | |
| dc.relation.references | Dong, P., & Chen, Q. (2018). LiDAR Remote Sensing and Applications. | |
| dc.relation.references | ESRI. (s/f-a). ¿Qué son los datos LIDAR? ArcGIS.com. Recuperado el 29 de agosto de 2024, de https://desktop.arcgis.com/es/arcmap/latest/manage-data/las-dataset/what-is-LiDAR-data-.htm | |
| dc.relation.references | Kumar, P., Sajjad, H., Chaudhary, B. S., Rawat, J. S., & Rani, M. (2020). Remote sensing and GIScience: Challenges and future directions. En Remote Sensing and GIScience: Challenges and Future Directions. Springer International Publishing. https://doi.org/10.1007/978-3-030-55092-9 | |
| dc.relation.references | McGaughey, R. J. (2020). FUSION/LDV LIDAR analysis and visualization software. Pacific Northwest Research Station USDA Forest Service. http://forsys.cfr.washington.edu/FUSION/fusion_overview.html | |
| dc.relation.references | McManamon, P. (2019). LiDAR technologies and systems. SPIE. | |
| dc.relation.references | Melin, M., Shapiro, A., & Glover-Kapfer, P. (2017). LIDAR for ecology and conservation (Vol. 3). WWF. | |
| dc.relation.references | NASA. (2023). Fundamentals of Remote Sensing. Earth Science Applied Sciences - NASA. https://appliedsciences.nasa.gov/sites/default/files/2023-02/Fundamentals_of_RS.pdf | |
| dc.relation.references | Nazmuz Sakib, S. M. (2022). LiDAR Technology-An Overview. The IUP Journal of Electrical & Electronics Engineering, 15(1), 36. | |
| dc.relation.references | Neff, T. (2018). The Laser That’s Changing the World The Amazing Stories behind LiDAR, from 3D Mapping to Self-Driving Cars | |
| dc.relation.references | OPALS. (2024). OPALS - Orientation and Processing of Airborne Laser Scanning data. Department of Geodesy and Geoinformation - Research Groups Photogrammetry and Remote Sensing. https://opals.geo.tuwien.ac.at/html/stable/index.html# | |
| dc.relation.references | Rapidlasso. (s/f). LASTools. Rapidlasso.com. Recuperado el 8 de septiembre de 2024, de https://rapidlasso.de/product-overview/ | |
| dc.relation.references | SCOPUS. (2024). Search Results. Elsevier. | |
| dc.relation.references | Villegas-Vega, H. (2008). Introducción a la percepción remota y sus aplicaciones geológicas (Guías para los asistentes). Instituto Colombiano de Minas. | |
| dc.relation.references | Yadav, R., Nascetti, A., & Ban, Y. (2022). Building change detection using multi-temporal airborne LiDAR data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2022, 1377-1383. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1377-2022​:contentReference[oaicite:0]{index=0} | |
| dc.relation.references | Peng, D., & Zhang, Y. (2016). Building change detection by combining LiDAR data and ortho image. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B3, 669-676. https://doi.org/10.5194/isprsarchives-XLI-B3-669-2016​:contentReference[oaicite:1]{index=1}. | |
| dc.relation.references | Xiao, W., Cao, H., & Tang, M. (2023). 3D urban object change detection from aerial and terrestrial point clouds: A review. International Journal of Applied Earth Observation and Geoinformation, 118, 103258. https://doi.org/10.1016/j.jag.2023.103258​:contentReference[oaicite:2]{index=2}. | |
| dc.relation.references | Yi Zhao a,b,d , Bin Wu a,c,* , Qiaoxuan Li a,b , Lei Yang a,b , Hongchao Fan d , Jianping Wu a,b , Bailang Yu a,b. (2023). Combining ICESat-2 photons and Google Earth Satellite images for building height extraction. https://www.sciencedirect.com/science/article/pii/S1569843223000353?via%3Dihub. https://doi.org/Ingles | |
| dc.relation.references | Ma, X., Zheng, G., Chi, X., Yang, L., Geng, Q., Li, J., & Qiao, Y. (2023). Mapping fine-scale building heights in urban agglomeration with spaceborne LiDAR. Remote Sensing of Environment, 285(113392), 113392. https://doi.org/10.1016/j.rse.2022.113392 | |
| dc.relation.references | Estrada-Belli, F., Gilabert-Sansalvador, L., Canuto, M. A., Šprajc, I., & Fernandez-Diaz, J. C. (2023). Architecture, wealth and status in Classic Maya urbanism revealed by airborne LiDAR mapping. Journal of Archaeological Science, 157(105835), 105835. https://doi.org/10.1016/j.jas.2023.105835 | |
| dc.relation.references | Zhao, Y., Wu, B., Li, Q., Yang, L., Fan, H., Wu, J., & Yu, B. (2023). Combining ICESat-2 photons and Google Earth Satellite images for building height extraction. International Journal of Applied Earth Observation and Geoinformation: ITC Journal, 117(103213), 103213. https://doi.org/10.1016/j.jag.2023.103213 | |
| dc.relation.references | Shirowzhan, S., Lim, S., Trinder, J., Li, H., & Sepasgozar, S. M. E. (2020). Data mining for recognition of spatial distribution patterns of building heights using airborne LiDAR data. Advanced Engineering Informatics, 43(101033), 101033. https://doi.org/10.1016/j.aei.2020.101033 | |
| dc.relation.references | Bonczak, B., & Kontokosta, C. E. (2019). Large-scale parameterization of 3D building morphology in complex urban landscapes using aerial LiDAR and city administrative data. Computers, Environment and Urban Systems, 73, 126–142. https://doi.org/10.1016/j.compenvurbsys.2018.09.004 | |
| dc.relation.references | Bizjak, M., Žalik, B., Štumberger, G., & Lukač, N. (2021). Large-scale estimation of buildings’ thermal load using LiDAR data. Energy and Buildings, 231(110626), 110626. https://doi.org/10.1016/j.enbuild.2020.110626 | |
| dc.relation.references | Li, Q., Mou, L., Hua, Y., Shi, Y., Chen, S., Sun, Y., & Zhu, X. X. (2023). 3DCentripetalNet: Building height retrieval from monocular remote sensing imagery. International Journal of Applied Earth Observation and Geoinformation: ITC Journal, 120(103311), 103311. https://doi.org/10.1016/j.jag.2023.103311 | |
| dc.relation.references | Yu, S., Yu, B., Song, W., Wu, B., Zhou, J., Huang, Y., Wu, J., Zhao, F., & Mao, W. (2016). View-based greenery: A three-dimensional assessment of city buildings’ green visibility using Floor Green View Index. Landscape and Urban Planning, 152, 13–26. https://doi.org/10.1016/j.landurbplan.2016.04.004 | |
| dc.relation.references | Karsli, B., Yilmazturk, F., Bahadir, M., Karsli, F., & Ozdemir, E. (2024). Automatic building footprint extraction from photogrammetric and LiDAR point clouds using a novel improved-Octree approach. Journal of Building Engineering, 82(108281), 108281. https://doi.org/10.1016/j.jobe.2023.108281 | |
| dc.relation.references | Huang, H., Brenner, C., & Sester, M. (2013). A generative statistical approach to automatic 3D building roof reconstruction from laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing: Official Publication of the International Society for Photogrammetry and Remote Sensing (ISPRS), 79, 29–43. https://doi.org/10.1016/j.isprsjprs.2013.02.004 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.subject | Catastro multipropósito | |
| dc.subject | Teledetección | |
| dc.subject | Métodos | |
| dc.subject | Tecnología LiDAR | |
| dc.subject | Medición altura | |
| dc.subject.keyword | Multipurpose cadastre | |
| dc.subject.keyword | Remote sensing | |
| dc.subject.keyword | Methods | |
| dc.subject.keyword | Technology LiDAR | |
| dc.subject.keyword | Height measurement | |
| dc.subject.lemb | Ingeniería Topográfica -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Geomática -- Uso | |
| dc.subject.lemb | Teledetección -- Equipos y accesorios | |
| dc.subject.lemb | Sistemas de información geográfica | |
| dc.subject.lemb | Arquitectura dómestica -- Investigación bibliográfica | |
| dc.subject.lemb | Topografía | |
| dc.title | Estudio del estado del arte de la tecnología LiDAR aplicada al mapeo de diferencias en altura de construcciones urbanas | |
| dc.title.titleenglish | Study of the state of the art of LiDAR technology applied to mapping height differences in urban constructions | |
| dc.type | bachelorThesis | |
| dc.type.degree | Pasantía |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- SalamancaAfricanoTatianaLucía2024.pdf
- Tamaño:
- 1.34 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado
No hay miniatura disponible
- Nombre:
- SalamancaAfricanoTatianaLucíaAnexos.rar
- Tamaño:
- 454.28 KB
- Formato:
- Unknown data format
- Descripción:
- Anexos
No hay miniatura disponible
- Nombre:
- Licencia de uso y publicación.pdf
- Tamaño:
- 253.69 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Licencia de uso y publicación
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
