Modelo de degradación de batería de li-ion para aplicaciones en microrredes eléctricas
| dc.contributor.advisor | Trujillo Rodríguez, César Leonardo | |
| dc.contributor.advisor | Santamaría Piedrahita, Francisco | |
| dc.contributor.author | Santos Leon, Andres Ignacio | |
| dc.contributor.orcid | Trujillo Rodríguez, César Leonardo [0000-0002-0985-1472] | |
| dc.contributor.orcid | Santamaría Piedrahita, Francisco [0000-0002-0391-4508] | |
| dc.date.accessioned | 2025-03-17T15:03:02Z | |
| dc.date.available | 2025-03-17T15:03:02Z | |
| dc.date.created | 2024-12-05 | |
| dc.description | Las fuentes no convencionales de energía, como la energía fotovoltaica y la energía eólica, constituyen el inicio de la transformación del sistema energético tradicional, al pasar de una generación centralizada y alejada de los centros de consumo, a un sistema con generación distribuida, la cual está más cerca de las cargas finales, y una matriz energética más diversa que reduce la dependencia a unas pocas fuentes de energía. Una de las formas en las que las fuentes no convencionales de energía se pueden integrar al sistema tradicional de generación - transmisión/distribución de energía eléctrica son las microrredes eléctricas. Las microrredes eléctricas son sistemas controlables y gestionables donde las fuentes no convencionales de energía, las cargas y los sistemas de almacenamiento interactúan a través de interfaces conformadas por dispositivos de electrónica de potencia. Los sistemas de almacenamiento en las microrredes eléctricas son clave para el balance entre la generación y consumo de energía, la estabilidad, la autonomía del sistema, el almacenamiento y posterior venta de excedentes de generación, entre otros. Según la tecnología utilizada para almacenar la energía, los sistemas de almacenamiento pueden dividirse en eléctricos, mecánicos, electroquímicos y químicos. Las baterías son una forma de sistema de almacenamiento electroquímico, existen diferentes tipos de baterías utilizadas en microrredes eléctricas, como por ejemplo beterías de plomo ácido y baterías de ion de litio (Li-ion), estas últimas ofrecen características de alta densidad de potencia y energía en comparación con otros tipos de baterías. Uno de los grandes retos de los sistemas electroquímicos es la degradación que sufren con el tiempo, dicha variable impacta directamente en las microrredes eléctricas en términos de confiabilidad y estabilidad. En este proyecto de investigación se propone un modelo de degradación de batería de Li-ion en el contexto de una microrred eléctrica, el modelo está basado en una red neuronal NARX la cual se entrenó con un grupo de datos disponible en la literatura, el miso grupo de datos permite determinar los parámetros circuitales de un modelo circuital de batería que sirve de conexión entre el modelo de microrred y el modelo de degradación. El modelo de degradación de batería de Li-ion propuesto es evaluó encontrando un error menor a 2%, considerando el MAE (error absoluto medio) y RMSE (raíz del error cuadrático medio). | |
| dc.description.abstract | Non-conventional sources of energy, such as photovoltaic energy and wind energy, constitute the beginning of the transformation of the traditional energy system, moving from centralized generation away from consumption centers, to a system with distributed generation, which is closer to final loads, and a more diverse energy matrix that reduces dependence on a few energy sources. One of the ways in which non-conventional sources of energy can be integrated into the traditional system of generation-transmission/distribution of electrical energy are electrical microgrids. Electrical microgrids are controllable and manageable systems where non-conventional energy sources, loads and storage systems interact through interfaces made up of power electronics devices. Storage systems in electricity microgrids are key to the balance between energy generation and consumption, stability, system autonomy, storage and subsequent sale of surplus generation, among others. Depending on the technology used to store the energy, storage systems can be divided into electrical, mechanical, electrochemical, and chemical. Batteries are a form of electrochemical storage system, there are different types of batteries used in electrical microgrids, such as lead acid batteries and lithium-ion (Li-ion) batteries, the latter offering high power and energy density characteristics compared to other types of batteries. One of the great challenges of electrochemical systems is the degradation they suffer over time, this variable directly impacts electrical microgrids in terms of reliability and stability. In this research project a Li-ion battery degradation model is proposed in the context of an electrical microgrid, the model is based on a NARX neural network which was trained with a set of data available in the literature, the same set of data allows to determine the circuit parameters of a battery circuit model that serves as a connection between the microgrid model and the degradation model. The proposed Li-ion battery degradation model was evaluated by finding an error of less than 2%, considering the MAE (mean absolute error) and RMSE (root mean square error). | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/93725 | |
| dc.relation.references | Abdali, A., Noroozian, R., & Mazlumi, K. (2019). Simultaneous control and protection schemes for DC multi microgrids systems. Electrical Power and Energy Systems, 104, 230-245. https://doi.org/10.1016/j.ijepes.2018.06.054 | |
| dc.relation.references | Anseán, D., García, V. M., González, M., Blanco-Viejo, C., Viera, J. C., Pulido, Y. F., & Sánchez, L. (2019). Lithium-Ion Battery Degradation Indicators Via Incremental Capacity Analysis. IEEE Transactions on Industry Applications, 55(3), 2992-3002. https://doi.org/10.1109/TIA.2019.2891213 | |
| dc.relation.references | Anvari-Moghaddam, A., Dragicevic, T., Vasquez, J. C., & Guerrero, J. M. (2015). Optimal utilization of microgrids supplemented with battery energy storage systems in grid support applications. 2015 IEEE 1st International Conference on Direct Current Microgrids, ICDCM 2015, 57-61. https://doi.org/10.1109/ICDCM.2015.7152010 | |
| dc.relation.references | B Saha & K Goebel. (2007). Battery Data Set. NASA Ames Prognostics Data Repository, NASA Ames Research Center, Moffett Field, CA. https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository | |
| dc.relation.references | Bamati, S., & Chaoui, H. (2022). Lithium-ion batteries long horizon health prognostic using machine learning. IEEE Transactions on Energy Conversion, 37(2), 1176-1186. https://doi.org/10.1109/TEC.2021.3111525 | |
| dc.relation.references | Bao, M., Liu, D., Wu, Y., Wang, Z., Yang, J., Lan, L., & Ru, Q. (2024). Interpretable machine learning prediction for li-ion battery’s state of health based on electrochemical impedance spectroscopy and temporal features. Electrochimica Acta, 494, 144449. https://doi.org/10.1016/j.electacta.2024.144449 | |
| dc.relation.references | Boicea, V. A. (2014). Energy Storage Technologies: The Past and the Present. Proceedings of the IEEE, 102(11), 1777-1794. https://doi.org/10.1109/JPROC.2014.2359545 | |
| dc.relation.references | Bustos, R., Gadsden, S. A., Biglarbegian, M., AlShabi, M., & Mahmud, S. (2024). Battery State of Health Estimation Using the Sliding Interacting Multiple Model Strategy. Energies, 17(2), Article 2. https://doi.org/10.3390/en17020536 | |
| dc.relation.references | Cui, Z., Wang, C., Gao, X., & Tian, S. (2021). State of health estimation for lithium-ion battery based on the coupling-loop nonlinear autoregressive with exogenous inputs neural network. Electrochimica Acta, 393, 139047. https://doi.org/10.1016/j.electacta.2021.139047 | |
| dc.relation.references | Ding, Z., Wu, W., & Leung, M. K. H. (2022). On the rational development of advanced thermochemical thermal batteries for short-term and long-term energy storage. Renewable and Sustainable Energy Reviews, 164, 112557. https://doi.org/10.1016/j.rser.2022.112557 | |
| dc.relation.references | Doyle, M., Fuller, T. F., & Newman, J. (1993). Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell. Journal of The Electrochemical Society, 140(6), 1526-1533. https://doi.org/10.1149/1.2221597 | |
| dc.relation.references | Dragičević, T., Lu, X., Vasquez, J. C., & Guerrero, J. M. (2016). DC Microgrids—Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Transactions on Power Electronics, 31(7), 4876-4891. https://doi.org/10.1109/TPEL.2015.2478859 | |
| dc.relation.references | Eberleh, B., & Raiser, S. (2017). Lithium Batteries for Commercial Vehicles The Workhorses among Energy Storage Units. ATZ worldwide, 119(11), 26-31. https://doi.org/10.1007/s38311-017-0118-9 | |
| dc.relation.references | Ecker, M., Gerschler, J. B., Vogel, J., Käbitz, S., Hust, F., Dechent, P., & Sauer, D. U. (2012). Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data. Journal of Power Sources, 215, 248-257. https://doi.org/10.1016/j.jpowsour.2012.05.012 | |
| dc.relation.references | Eleftheriadis, P., Gangi, M., Leva, S., Rey, A. V., Groppo, E., & Grande, L. (2024). Comparative study of machine learning techniques for the state of health estimation of Li-Ion batteries. Electric Power Systems Research, 235, 110889. https://doi.org/10.1016/j.epsr.2024.110889 | |
| dc.relation.references | Eltoumi, F., Badji, A., Becherif, M., & Ramadan, H. S. (2018). Experimental identification using equivalent circuit model for lithium-ion battery. International Journal of Emerging Electric Power Systems, 19(3), 20170210. https://doi.org/doi:10.1515/ijeeps-2017-0210 | |
| dc.relation.references | Enair. (s. f.-a). Aeronogenerador E30PRO - La última tecnología. Recuperado 23 de mayo de 2023, de https://www.enair.es/es/aerogeneradores/e30pro | |
| dc.relation.references | Enair. (s. f.-b). Estimación de producción eólica y solar. Recuperado 23 de mayo de 2023, de https://www.enair.es/es/app | |
| dc.relation.references | Fan, G., Pan, K., & Canova, M. (2015). A comparison of model order reduction techniques for electrochemical characterization of Lithium-ion batteries. 2015 54th IEEE Conference on Decision and Control (CDC), 3922-3931. https://doi.org/10.1109/CDC.2015.7402829 | |
| dc.relation.references | Ferraro, P., Crisostomi, E., & Milano, F. (2018). Evaluation of the Impact of the Size of Storage Devices in Grid-Connected Microgrids. 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe), 1-5. https://doi.org/10.1109/EEEIC.2018.8494377 | |
| dc.relation.references | Fotouhi, A., Auger, D. J., Propp, K., & Longo, S. (2018). Accuracy versus simplicity in online battery model identification. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(2), 195-206. https://doi.org/10.1109/TSMC.2016.2599281 | |
| dc.relation.references | Gao, D. W. (2015a). Chapter 1—Basic Concepts and Control Architecture of Microgrids. En D. W. Gao (Ed.), Energy Storage for Sustainable Microgrid (pp. 1-34). Academic Press. https://doi.org/10.1016/B978-0-12-803374-6.00001-9 | |
| dc.relation.references | Gao, D. W. (2015b). Chapter 2—Applications of ESS in Renewable Energy Microgrids. En D. W. Gao (Ed.), Energy Storage for Sustainable Microgrid (pp. 35-77). Academic Press. https://doi.org/10.1016/B978-0-12-803374-6.00002-0 | |
| dc.relation.references | Gao, Y., Jiang, J., Zhang, C., Zhang, W., Ma, Z., & Jiang, Y. (2017). Lithium-ion battery aging mechanisms and life model under different charging stresses. Journal of Power Sources, 356, 103-114. https://doi.org/10.1016/j.jpowsour.2017.04.084 | |
| dc.relation.references | Gou, B., Xu, Y., & Feng, X. (2020a). State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method. IEEE Transactions on Vehicular Technology, 69(10), 10854-10867. https://doi.org/10.1109/TVT.2020.3014932 | |
| dc.relation.references | Gou, B., Xu, Y., & Feng, X. (2020b). State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method. IEEE Transactions on Vehicular Technology, 69(10), 10854-10867. https://doi.org/10.1109/TVT.2020.3014932 | |
| dc.relation.references | Hadjipaschalis, I., Poullikkas, A., & Efthimiou, V. (2009). Overview of current and future energy storage technologies for electric power applications. Renewable and Sustainable Energy Reviews, 13(6), 1513-1522. https://doi.org/10.1016/j.rser.2008.09.028 | |
| dc.relation.references | Hajiaghasi, S., Salemnia, A., & Hamzeh, M. (2019). Hybrid energy storage system for microgrids applications: A review. Journal of Energy Storage, 21, 543-570. https://doi.org/10.1016/j.est.2018.12.017 | |
| dc.relation.references | He, R., He, Y., Xie, W., Guo, B., & Yang, S. (2023). Comparative analysis for commercial li-ion batteries degradation using the distribution of relaxation time method based on electrochemical impedance spectroscopy. Energy, 263, 125972. https://doi.org/10.1016/j.energy.2022.125972 | |
| dc.relation.references | Imamura, W., Eda, N., Tanaka, K., Horie, H., & Akimoto, H. (2011). Capacity fade model of Lithium-ion batteries for Practical use. IMPROVING COMPLEX SYSTEMS TODAY, 441-448. https://doi.org/10.1007/978-0-85729-799-0_52 | |
| dc.relation.references | Jafari, M., Khan, K., & Gauchia, L. (2018). Deterministic models of Li-ion battery aging: It is a matter of scale. Journal of Energy Storage, 20, 67-77. https://doi.org/10.1016/j.est.2018.09.002 | |
| dc.relation.references | Khaleghi, S., Karimi, D., Beheshti, S. H., Hosen, Md. S., Behi, H., Berecibar, M., & Van Mierlo, J. (2021). Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network. Applied Energy, 282, 116159. https://doi.org/10.1016/j.apenergy.2020.116159 | |
| dc.relation.references | Khodadoost Arani, A. A., B. Gharehpetian, G., & Abedi, M. (2019). Review on Energy Storage Systems Control Methods in Microgrids. International Journal of Electrical Power and Energy Systems, 107(January), 745-757. https://doi.org/10.1016/j.ijepes.2018.12.040 | |
| dc.relation.references | Kim, T., & Qiao, W. (2011). A hybrid battery model capable of capturing dynamic circuit characteristics and nonlinear capacity effects. IEEE Transactions on Energy Conversion, 26(4), 1172-1180. https://doi.org/10.1109/TEC.2011.2167014 | |
| dc.relation.references | Komarnicki, P., Lombardi, P., & Styczynski, Z. (2017). Electric Energy Storage System. En Electric Energy Storage Systems: Flexibility Options for Smart Grids (pp. 37-95). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-53275-1_2 | |
| dc.relation.references | Kumar, J., Agarwal, A., & Agarwal, V. (2019). A review on overall control of DC microgrids. Journal of Energy Storage, 21, 113-138. https://doi.org/10.1016/j.est.2018.11.013 | |
| dc.relation.references | Lam, F., Allam, A., Joe, W. T., Choi, Y., & Onori, S. (2021). Offline multiobjective optimization for fast charging and reduced degradation in lithium-ion battery cells using electrochemical dynamics. IEEE Control Systems Letters, 5(6), 2066-2071. https://doi.org/10.1109/LCSYS.2020.3046378 | |
| dc.relation.references | Lam, L., & Bauer, P. (2013). Practical Capacity Fading Model for Li-Ion Battery Cells in Electric Vehicles. IEEE Transactions on Power Electronics, 28(12), 5910-5918. https://doi.org/10.1109/TPEL.2012.2235083 | |
| dc.relation.references | Li, C., Cui, N., Cui, Z., Wang, C., & Zhang, C. (2022). Novel equivalent circuit model for high-energy lithium-ion batteries considering the effect of nonlinear solid-phase diffusion. Journal of Power Sources, 523, 230993. https://doi.org/10.1016/j.jpowsour.2022.230993 | |
| dc.relation.references | Li, J.-F., Lin, Y.-S., Lin, C.-H., & Chen, K.-C. (2017). Three-Parameter Modeling of Nonlinear Capacity Fade for Lithium-Ion Batteries at Various Cycling Conditions. Journal of The Electrochemical Society, 164(12), A2767--A2776. | |
| dc.relation.references | Liu, K., Gao, Y., Zhu, C., Li, K., Fei, M., Peng, C., Zhang, X., & Han, Q.-L. (2022). Electrochemical modeling and parameterization towards control-oriented management of lithium-ion batteries. Control Engineering Practice, 124, 105176. https://doi.org/10.1016/j.conengprac.2022.105176 | |
| dc.relation.references | Liu, K., Hu, X., Yang, Z., Xie, Y., & Feng, S. (2019). Lithium-ion battery charging management considering economic costs of electrical energy loss and battery degradation. Energy Conversion and Management, 195, 167-179. https://doi.org/10.1016/j.enconman.2019.04.065 | |
| dc.relation.references | Long, B., Li, X., Gao, X., & Liu, Z. (2019). Prognostics Comparison of Lithium-Ion Battery Based on the Shallow and Deep Neural Networks Model. ENERGIES, 12(17). https://doi.org/10.3390/en12173271 | |
| dc.relation.references | Lucu, M., Martinez-Laserna, E., Gandiaga, I., & Camblong, H. (2018). A critical review on self-adaptive Li-ion battery ageing models. Journal of Power Sources, 401, 85-101. https://doi.org/10.1016/j.jpowsour.2018.08.064 | |
| dc.relation.references | Ma, Z., Wang, X., Davenport, P., Gifford, J., Cook, K., Martinek, J., Schirck, J., Morris, A., Lambert, M., & Zhang, R. (2022). System and component development for long-duration energy storage using particle thermal energy storage. Applied Thermal Engineering, 216, 119078. https://doi.org/10.1016/j.applthermaleng.2022.119078 | |
| dc.relation.references | Marongiu, A., Roscher, M., & Sauer, D. U. (2015). Influence of the vehicle-to-grid strategy on the aging behavior of lithium battery electric vehicles. Applied Energy, 137, 899-912. https://doi.org/10.1016/j.apenergy.2014.06.063 | |
| dc.relation.references | Mathworks. (s. f.-a). Gensim—Generar un bloque de Simulink para la simulación de redes neuronales superficiales—MATLAB - MathWorks América Latina. Recuperado 2 de noviembre de 2024, de https://la.mathworks.com/help/deeplearning/ref/network.gensim.html#mw_abb93ea8-1a7a-409c-bd3e-7859253adcf1 | |
| dc.relation.references | Mathworks. (s. f.-b). Lsqcurvefit—Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense—MATLAB. Recuperado 15 de octubre de 2024, de https://www.mathworks.com/help/optim/ug/lsqcurvefit.html | |
| dc.relation.references | NASA. (s. f.). POWER | Data Access Viewer. Recuperado 23 de mayo de 2023, de https://power.larc.nasa.gov/data-access-viewer/ | |
| dc.relation.references | Ning, G., White, R. E., & Popov, B. N. (2006). A generalized cycle life model of rechargeable Li-ion batteries. Electrochimica Acta, 51(10), 2012-2022. https://doi.org/10.1016/j.electacta.2005.06.033 | |
| dc.relation.references | Padmanaban, S., Sharmeela, C., Sivaraman, P., & Holm-Nielsen, J. B. (Eds.). (2022). Residential microgrids and rural electrifications. Academic Press. | |
| dc.relation.references | Petit, M., Prada, E., & Sauvant-Moynot, V. (2016). Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime. Applied Energy, 172, 398-407. https://doi.org/10.1016/j.apenergy.2016.03.119 | |
| dc.relation.references | PowerTech-Systems-SAS. (s. f.-a). Lithium-Ion Battery 48V - 105Ah—5.38kWh—PowerBrick+ / LFP battery. Recuperado 23 de mayo de 2023, de https://www.powertechsystems.eu/home/products/48v-lithium-ion-battery-pack/48v-105ah-5-38kwh-lithium-ion-battery-pack-powerbrick/ | |
| dc.relation.references | PowerTech-Systems-SAS. (s. f.-b). PowerBrick+: 12V Lithium Iron Phosphate Battery | 12V LiFePO4 Battery. Recuperado 23 de mayo de 2023, de https://www.powertechsystems.eu/home/products/12v-lithium-battery-pack-powerbrick/ | |
| dc.relation.references | Purohit, I., Sundaray, S., & Motiwala, S. (2018). Familiarization with Energy Storage Technologies and Their Relevance for Renewable Energy (RE) Based Power Generation. En A. Sharma, A. Shukla, & L. Aye (Eds.), Low Carbon Energy Supply: Trends, Technology, Management (pp. 273-326). Springer Singapore. https://doi.org/10.1007/978-981-10-7326-7_14 | |
| dc.relation.references | Sabry, A. H., Shallal, A. H., Hameed, H. S., & Ker, P. J. (2020). Compatibility of household appliances with DC microgrid for PV systems. Heliyon, 6(12), e05699. https://doi.org/10.1016/j.heliyon.2020.e05699 | |
| dc.relation.references | Sapunkov, O., Pande, V., Khetan, A., Choomwattana, C., & Viswanathan, V. (2015). Quantifying the promise of ‘beyond’ Li–ion batteries. Translational Materials Research, 2(4), 045002. https://doi.org/10.1088/2053-1613/2/4/045002 | |
| dc.relation.references | Schmalstieg, J., Käbitz, S., Ecker, M., & Sauer, D. U. (2014). A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. Journal of Power Sources, 257, 325-334. https://doi.org/10.1016/j.jpowsour.2014.02.012 | |
| dc.relation.references | Sechilariu, M., & Locment, F. (2016). General Introduction. En M. Sechilariu & F. Locment (Eds.), Urban DC Microgrid (pp. xxi-xxx). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-803736-2.02001-6 | |
| dc.relation.references | Shah, A. A., Yu, F., Xing, W. W., & Leung, P. K. (2022). Machine learning for predicting fuel cell and battery polarisation and charge–discharge curves. Energy Reports, 8, 4811-4821. https://doi.org/10.1016/j.egyr.2022.03.191 | |
| dc.relation.references | Shen, J., Dusmez, S., & Khaligh, A. (2014). Optimization of Sizing and Battery Cycle Life in Battery/Ultracapacitor Hybrid Energy Storage Systems for Electric Vehicle Applications. IEEE Transactions on Industrial Informatics, 10(4), 2112-2121. https://doi.org/10.1109/TII.2014.2334233 | |
| dc.relation.references | Siva Suriya Narayanan, S., & Thangavel, S. (2022). Machine learning-based model development for battery state of charge–open circuit voltage relationship using regression techniques. Journal of Energy Storage, 49, 104098. https://doi.org/10.1016/j.est.2022.104098 | |
| dc.relation.references | Song, H., Cao, Z., Chen, X., Lu, H., Jia, M., Zhang, Z., Lai, Y., Li, J., & Liu, Y. (2013). Capacity fade of LiFePO4/graphite cell at elevated temperature. Journal of Solid State Electrochemistry, 17(3), 599-605. https://doi.org/10.1007/s10008-012-1893-2 | |
| dc.relation.references | Sun, B., He, X., Zhang, W., Ruan, H., Su, X., & Jiang, J. (2021). Study of Parameters Identification Method of Li-Ion Battery Model for EV Power Profile Based on Transient Characteristics Data. IEEE Transactions on Intelligent Transportation Systems, 22(1), 661-672. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2020.3032447 | |
| dc.relation.references | Suri, G., & Onori, S. (2016). A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries. Energy, 96, 644-653. https://doi.org/10.1016/j.energy.2015.11.075 | |
| dc.relation.references | Swierczynski, M., Stroe, D. I., Stan, A. I., Teodorescu, R., & Vikelgaard, H. (2013). Selection and impedance based model of a lithium ion battery technology for integration with virtual power plant. 2013 15th European Conference on Power Electronics and Applications (EPE), 1-10. https://doi.org/10.1109/EPE.2013.6634755 | |
| dc.relation.references | Tan, K. M., Babu, T. S., Ramachandaramurthy, V. K., Kasinathan, P., Solanki, S. G., & Raveendran, S. K. (2021). Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration. Journal of Energy Storage, 39, 102591. https://doi.org/10.1016/j.est.2021.102591 | |
| dc.relation.references | Tanim, T. R., & Rahn, C. D. (2015). Aging formula for lithium ion batteries with solid electrolyte interphase layer growth. Journal of Power Sources, 294, 239-247. https://doi.org/10.1016/j.jpowsour.2015.06.014 | |
| dc.relation.references | Tian, Y., Li, X., Zhu, Y., & Xia, R. (2018). Optimal capacity allocation of multiple energy storage considering microgrid cost Optimal capacity allocation of multiple energy storage considering microgrid cost. 1074, 012126. https://doi.org/10.1088/1742-6596/1074/1/012126 | |
| dc.relation.references | Trina Solar. (2017, febrero 19). Vertex S DE09.08. Trina Solar. https://www.trinasolar.com/en-glb/resources/downloads | |
| dc.relation.references | Tu, H., Moura, S., Wang, Y., & Fang, H. (2023). Integrating physics-based modeling with machine learning for lithium-ion batteries. Applied Energy, 329, 120289. https://doi.org/10.1016/j.apenergy.2022.120289 | |
| dc.relation.references | Vega-Escobar, A.-M. (2018). Gestión de la energía eléctrica domiciliaria con base en la gestión activa de la demanda [Universidad Distrital Francisco José de Caldas - Biblioteca UDFJC]. http://repository.udistrital.edu.co/handle/11349/7587 | |
| dc.relation.references | Vetter, J., Novák, P., Wagner, M. R., Veit, C., Möller, K.-C., Besenhard, J. O., Winter, M., Wohlfahrt-Mehrens, M., Vogler, C., & Hammouche, A. (2005). Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147(1), 269-281. https://doi.org/10.1016/j.jpowsour.2005.01.006 | |
| dc.relation.references | Waag, W., Käbitz, S., & Sauer, D. U. (2013). Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Applied Energy, 102, 885-897. https://doi.org/10.1016/j.apenergy.2012.09.030 | |
| dc.relation.references | Wang, P., Dan, X., & Yang, Y. (2019). A multi-scale fusion prediction method for lithium-ion battery capacity based on ensemble empirical mode decomposition and nonlinear autoregressive neural networks. International Journal of Distributed Sensor Networks, 15(3), 1550147719839637. https://doi.org/10.1177/1550147719839637 | |
| dc.relation.references | Wang, Q., Mao, B., Stoliarov, S. I., & Sun, J. (2019). A review of lithium ion battery failure mechanisms and fire prevention strategies. Progress in Energy and Combustion Science, 73, 95-131. https://doi.org/10.1016/j.pecs.2019.03.002 | |
| dc.relation.references | Welder, L., Stenzel, P., Ebersbach, N., Markewitz, P., Robinius, M., Emonts, B., & Stolten, D. (2019). Design and evaluation of hydrogen electricity reconversion pathways in national energy systems using spatially and temporally resolved energy system optimization. International Journal of Hydrogen Energy, 44(19), 9594-9607. https://doi.org/10.1016/j.ijhydene.2018.11.194 | |
| dc.relation.references | Xiong, X., Wang, Y., Li, K., & Chen, Z. (2023). State of health estimation for lithium-ion batteries using Gaussian process regression-based data reconstruction method during random charging process. Journal of Energy Storage, 72, 108390. https://doi.org/10.1016/j.est.2023.108390 | |
| dc.relation.references | Xu, B., Oudalov, A., Ulbig, A., Andersson, G., & Kirschen, D. S. (2018). Modeling of lithium-ion battery degradation for cell life assessment. IEEE Transactions on Smart Grid, 9(2), 1131-1140. https://doi.org/10.1109/TSG.2016.2578950 | |
| dc.relation.references | Yuan, M., Fu, Y., Mi, Y., Li, Z., & Wang, C. (2019). Hierarchical control of DC microgrid with dynamical load power sharing. https://doi.org/10.1016/j.apenergy.2019.01.081 | |
| dc.relation.references | Zhang, F., Meng, C., Yang, Y., Sun, C., Ji, C., Chen, Y., Wei, W., Qiu, H., & Yang, G. (2015). Advantages and challenges of DC microgrid for commercial building: A case study from Xiamen university DC microgrid. 2015 IEEE 1st International Conference on Direct Current Microgrids, ICDCM 2015, 355-358. https://doi.org/10.1109/ICDCM.2015.7152068 | |
| dc.relation.references | Zhang, Y., Wang, C.-Y., & Tang, X. (2011). Cycling degradation of an automotive LiFePO4 lithium-ion battery. Journal of Power Sources, 196(3), 1513-1520. https://doi.org/10.1016/j.jpowsour.2010.08.070 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Batería de ion de litio | |
| dc.subject | Microrred | |
| dc.subject | Aprendizaje automático | |
| dc.subject | Estimación de capacidad | |
| dc.subject | Envejecimiento | |
| dc.subject | Degradación | |
| dc.subject.keyword | Li-ion battery | |
| dc.subject.keyword | Microgrid | |
| dc.subject.keyword | Machine learning | |
| dc.subject.keyword | Neural network | |
| dc.subject.keyword | Capacity estimation | |
| dc.subject.keyword | Aging | |
| dc.subject.keyword | Degradation | |
| dc.subject.lemb | Maestría en Ingeniería - Énfasis en Ingeniería Electrónica -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Sistemas eléctricos | |
| dc.subject.lemb | Baterías de litio -- Almacenamiento de energía | |
| dc.subject.lemb | NARX -- Redes neurales | |
| dc.subject.lemb | Ingeniería electrónica | |
| dc.title | Modelo de degradación de batería de li-ion para aplicaciones en microrredes eléctricas | |
| dc.title.titleenglish | Li-ion battery degradation model for microgrid applications | |
| dc.type | masterThesis | |
| dc.type.degree | Producción Académica |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
