Estado del arte de los nanobots (mems) para la salud estructural del concreto en Colombia

dc.contributor.advisorMena Serna, Milton
dc.contributor.authorGonzález López, Nicolas Alejandro
dc.date.accessioned2025-06-03T17:02:36Z
dc.date.available2025-06-03T17:02:36Z
dc.date.created2025-05-14
dc.descriptionLa construcción desempeña un papel crucial en la economía de Colombia, siendo un motor clave para el desarrollo infraestructural y el bienestar social. Sin embargo, la industria enfrenta desafíos significativos relacionados con la calidad y durabilidad de las estructuras de concreto, elementos esenciales para asegurar la seguridad y funcionalidad a largo plazo de las edificaciones. En este contexto, se hace indispensable contar con métodos precisos para monitorear las condiciones internas del concreto durante su fraguado y a lo largo de su vida útil. Tradicionalmente, los enfoques de evaluación han dependido de mediciones externas, que no proporcionan información confiable sobre parámetros internos críticos como la temperatura y la humedad. Esta limitación puede ocasionar defectos en el proceso de fraguado y dar lugar a patologías prematuras, como la corrosión, que comprometen la integridad estructural. El clima tropical húmedo de diversas regiones de Colombia, caracterizado por altas temperaturas y precipitaciones constantes, intensifica los riesgos derivados de las variaciones extremas de temperatura y humedad en el interior del concreto. Estas condiciones climáticas adversas pueden afectar negativamente el comportamiento del concreto, lo que hace aún más urgente la implementación de sistemas de monitoreo internos más precisos y efectivos. En los últimos años, se han emprendido importantes proyectos de infraestructura en Colombia, como hidroeléctricas, presas y puentes, que requieren un monitoreo continuo para asegurar su rendimiento estructural en el largo plazo. Frente a este panorama, la presente propuesta de investigación explora el uso de nanobots, en particular los sistemas microelectromecánicos (MEMS), como una solución innovadora para el monitoreo no destructivo de las condiciones internas del concreto. Los MEMS son dispositivos Estado del arte de los nanobots (mems) para la salud estructural del concreto en Colombia miniaturizados que integran componentes mecánicos y electrónicos a escala micrométrica, lo que permite su inserción en la mezcla de concreto sin afectar sus propiedades. Estos nano dispositivos permiten la recolección de datos en tiempo real sobre variables críticas como la temperatura y la humedad, proporcionando una evaluación continua del estado del concreto y facilitando la toma de decisiones informadas durante el proceso constructivo. La nanotecnología, y más específicamente el desarrollo de nanosensores, ha representado un avance significativo en la capacidad de monitoreo de las estructuras de concreto. Investigaciones previas han demostrado la viabilidad de emplear sensores MEMS para medir variables esenciales dentro de los matrices cementantes, permitiendo mediciones precisas y continuas. Este enfoque no solo mejora la calidad de las construcciones, sino que también optimiza los procesos constructivos, garantizando edificaciones más seguras y duraderas.
dc.description.abstractConstruction plays a crucial role in Colombia's economy, serving as a key driver for infrastructure development and social well-being. However, the industry faces significant challenges related to the quality and durability of concrete structures, essential elements for ensuring the long-term safety and functionality of buildings. In this context, accurate methods for monitoring the internal conditions of concrete during setting and throughout its service life are essential. Traditionally, assessment approaches have relied on external measurements, which do not provide reliable information on critical internal parameters such as temperature and humidity. This limitation can cause defects in the setting process and lead to premature pathologies, such as corrosion, that compromise structural integrity. The humid tropical climate of various regions of Colombia, characterized by high temperatures and constant rainfall, intensifies the risks derived from extreme variations in temperature and humidity within the concrete. These adverse weather conditions can negatively affect concrete performance, making the implementation of more accurate and effective internal monitoring systems even more urgent. In recent years, major infrastructure projects have been undertaken in Colombia, such as hydroelectric plants, dams, and bridges, requiring continuous monitoring to ensure their long-term structural performance. Given this scenario, this research proposal explores the use of nanobots, specifically microelectromechanical systems (MEMS), as an innovative solution for nondestructive monitoring of internal concrete conditions. MEMS are state-of-the-art nanobot (MEMS) devices for the structural health of concrete in Colombia. Miniaturized devices integrate micrometer-scale mechanical and electronic components, allowing their insertion into the concrete mix without affecting its properties. These nanodevices enable real-time data collection on critical variables such as temperature and humidity, providing continuous assessment of concrete condition and facilitating informed decision-making during the construction process. Nanotechnology, and more specifically the development of nanosensors, has represented a significant advance in the monitoring capacity of concrete structures. Previous research has demonstrated the feasibility of using MEMS sensors to measure essential variables within cementitious matrices, enabling precise and continuous measurements. This approach not only improves building quality but also optimizes construction processes, ensuring safer and more durable buildings.
dc.identifier.urihttp://hdl.handle.net/11349/95869
dc.language.isospa
dc.publisherUniversidad Francisco José de Caldas
dc.relation.referencesAkyildiz, I. F., & Jornet, J. M. (2010). The Internet of Nano-Things. IEEE Wireless Communications, 17(6), 58-63
dc.relation.referencesAmar, S., & Karp, D. (2005). Wireless Sensor Networks: A Survey. IEEE Communications Surveys & Tutorials, 7(4), 2-16.
dc.relation.referencesChen, X., Liu, Y., & Wang, Z. (2005). A MEMS-Based Humidity Sensor. Sensors and Actuators A: Physical, 123-124, 1-6.
dc.relation.referencesDang, H., & Zha, Y. (2008). Microfabrication Techniques for MEMS. Journal of Micromechanics and Microengineering, 18(5), 1-10.
dc.relation.referencesEspinosa, R., et al. (2011). Integration of Nanomaterials into Concrete. Construction and Building Materials, 25(8), 3185-3192.
dc.relation.referencesFerry, D. K. (2008). Nanotechnology: A New Frontier in Construction. Journal of Construction Engineering and Management, 134(3), 165-172.
dc.relation.referencesGaliatsatos, N., et al. (2023). MEMS Sensors for Structural Health Monitoring. Sensors, 23(2), 456-471.
dc.relation.referencesGe, S., et al. (2018). Internet of Things for Smart Cities: A Survey. IEEE Communications Magazine, 56(12), 12-19
dc.relation.referencesHou, P., et al. (2020). Nanomaterials in Concrete: Properties and Applications. Materials Today: Proceedings, 21, 1234-1240.
dc.relation.referencesJung, H., et al. (2009). Integrated MEMS Sensors for Temperature and Humidity Measurement. IEEE Transactions on Industrial Electronics, 56(7), 2545-2552.
dc.relation.referencesKim, J., et al. (2023). Nanobots for Internal Corrosion Monitoring in Concrete. Construction and Building Materials, 305, 124-130.
dc.relation.referencesLi, Y., et al. (2007). Thermal Measurement using MEMS Sensors. Sensors and Actuators A: Physical, 136(2), 456-461
dc.relation.referencesMadou, M. J. (2011). Fundamentals of Microfabrication and Nanotechnology (3rd ed.). CRC Press
dc.relation.referencesNeville, A. M. (1995). Properties of Concrete (4th ed.). Longman Group UK Limited. Scrivener, K., et al. (2015). A New Perspective on the Role of Nanomaterials in Cementitious Systems. Cement and Concrete Research, 78, 1-9.
dc.relation.referencesTang, L., et al. (1989). Microelectromechanical Systems: Principles and Applications. Journal of Microelectromechanical Systems, 1(1), 1-11.
dc.relation.referencesYao, J., & Zhu, Y. (2019). Microfabrication Techniques for MEMS Devices: An Overview of Current Technologies and Future Directions*. Microsystems & Nanoengineering, 5(1), 1-15.
dc.relation.referencesYin, Z., et al. (2020). Nanomaterials for Monitoring Deformations in Cement-Based Materials: A Review*. Materials Science and Engineering: R: Reports, 140, 100523.
dc.relation.referencesZhang, L., et al. (2011). Moisture Migration in Concrete: Implications for Durability.* Journal of Materials in Civil Engineering*, 23(6), 789-796
dc.relation.referencesGaliatsatos, N., et al.(2023). MEMS Sensors for Structural Health Monitoring in Civil Engineering Applications.* Sensors*,23(2),456-471.
dc.relation.referencesChen, X., Liu, Y., & Wang, Z.(2005). A MEMS-Based Humidity Sensor with High Sensitivity and Stability.Sensors and Actuators A: Physical,123-124,1-6.
dc.relation.referencesLi,Y., et al.(2007). Thermal Measurement using MEMS Sensors with Improved Accuracy.Sensors and Actuators A: Physical,136(2),456-461.
dc.relation.referencesGaliatsatos,N., et al.(2023). MEMS Sensors for Structural Health Monitoring in Civil Engineering Applications.Sensors,23(2),456-471
dc.relation.referencesYin,Z., et al.(2020). Nanomaterials for Monitoring Deformations in Cement-Based Materials: A Review.Materials Science and Engineering: R: Reports,140,100523.
dc.relation.referencesFerry,D.K.(2008).Nanotechnology:A New Frontier in Construction.Journal of Construction Engineering and Management,134(3),165-172.
dc.relation.referencesAkyildiz,I.F.&Jornet,J.M.(2010).The Internet of Nano-Things.IEEE Wireless Communications,17(6),58-63
dc.relation.referencesAmar,S.&Karp,D.(2005).Wireless Sensor Networks:A Survey.IEEE Communications Surveys & Tutorials,7(4),2-16.
dc.relation.referencesHou,P.et al.(2020).Nanomaterials in Concrete:Properties and Applications.Materials Today:Proceedings,21,1234-1240.
dc.relation.referencesEspinosa,R.et al.(2011).Integration of Nanomaterials into Concrete.Construction and Building Materials,25(8),3185-3192.
dc.relation.referencesScrivener,K.et al.(2015).A New Perspective on the Role of Nanomaterials in Cementitious Systems.Cement and Concrete Research,78,1-9.
dc.relation.referencesKim,J.et al.(2023).Nanobots for Internal Corrosion Monitoring in Concrete.Construction and Building Materials,305,124-130
dc.relation.referencesJung,H.et al.(2009).Integrated MEMS Sensors for Temperature and Humidity Measurement.IEEE Transactions on Industrial Electronics,56(7),2545-2552.
dc.relation.referencesTang,L.et al.(1989).Microelectromechanical Systems:Principles and Applications.Journal of Microelectromechanical Systems ,1(1),1–11
dc.relation.referencesZhang,L.et al.(2011) .Moisture Migration in Concrete:Implications for Durability*.Journal of Materials in Civil Engineering* ,23(6),789–796.
dc.relation.referencesNeville,A.M.(1995) .Properties of Concrete*(4th ed.).Longman Group UK Limited. Madou,M.J.(2011) .Fundamentals of Microfabrication and Nanotechnology*(3rd ed.).CRC Press
dc.relation.referencesDang,H.&Zha,Y.(2008) .Microfabrication Techniques for MEMS*.Journal of Micromechanics and Microengineering* ,18(5),1–10.
dc.relation.referencesYao,J.&Zhu,Y.(2019) .Microfabrication Techniques for MEMS Devices*:An Overview of Current Technologies and Future Directions*.Microsystems & Nanoengineering* ,5(1),1–15.
dc.relation.referencesGe,S.et al.(2018) .Internet of Things for Smart Cities:A Survey*.IEEE Communications Magazine* ,56(12),12–19.
dc.relation.referencesAkyildiz,I.F.&Jornet,J.M.(2010) .The Internet of Nano-Things*.IEEE Wireless Communications* ,17(6),58–63.
dc.relation.referencesAmar,S.&Karp,D.(2005) .Wireless Sensor Networks:A Survey*.IEEE Communications Surveys & Tutorials* ,7(4),2–16.
dc.relation.referencesHou,P.et al.(2020) .Nanomaterials in Concrete:Properties and Applications*.Materials Today:Proceedings* ,21 ,1234–1240.
dc.relation.referencesEspinosa,R.et al.(2011) .Integration of Nanomaterials into Concrete*.Construction and Building Materials* ,25(8) ,3185–3192.
dc.relation.referencesScrivener,K.et al.(2015) .A New Perspective on the Role of Nanomaterials in Cementitious Systems*.Cement and Concrete Research* ,78 ,1–9.
dc.relation.referencesKim,J.et al.(2023) .Nanobots for Internal Corrosion Monitoring in Concrete*.Construction and Building Materials* ,305 ,124–130.
dc.relation.referencesJung,H.et al.(2009) .Integrated MEMS Sensors for Temperature and Humidity Measurement*.IEEE Transactions on Industrial Electronics* ,56(7) ,2545–2552.
dc.relation.referencesLi,Y.et al.(2007) .Thermal Measurement using MEMS Sensors with Improved Accuracy*.Sensors and Actuators A:Physical* ,136(2) ,456–461.
dc.relation.referencesZhang,L.et al.(2011) .Moisture Migration in Concrete:Implications for Durability*.Journal of Materials in Civil Engineering* ,23(6) ,789–796.
dc.relation.referencesNeville,A.M.(1995) .Properties of Concrete*(4th ed.).Longman Group UK Limited. Madou,M.J.(2011) .Fundamentals of Microfabrication and Nanotechnology*(3rd ed.).CRC Press.
dc.relation.referencesAlavi, A. H., & Hossain, M. (2013). Smart Concrete: A Review of the State of the Art. Journal of Materials in Civil Engineering, 25(12), 1701-1710
dc.relation.referencesBock, T., & Linner, T. (2015). The Future of Construction: A Smart and Sustainable Approach. Automation in Construction, 52, 1-10
dc.relation.referencesChae, S., Kim, J., & Kim, H. (2016). Development of a MEMS-Based Pressure Sensor for Concrete Applications. Sensors and Actuators A: Physical, 247, 50-56
dc.relation.referencesDhanasekar, M., & Kumar, S. (2012). Nanotechnology in Concrete: A Review. Materials Science and Engineering: A, 558, 1-9.
dc.relation.referencesEl-Gamal, S., et al. (2020). Smart Sensors for Monitoring Concrete Structures: A Review. Journal of Civil Structural Health Monitoring, 10(3), 325-340.
dc.relation.referencesFigueiredo, E., et al. (2019). Advances in Nanotechnology for Concrete Applications: A Review. Construction and Building Materials, 211, 1-14.
dc.relation.referencesGao, Y., et al. (2018). The Role of Nanomaterials in Enhancing the Properties of Concrete: A Review. Cement and Concrete Composites, 95, 108-118.
dc.relation.referencesGhosh, S., & Karmakar, S. (2020). Recent Advances in MEMS Technology for Structural Health Monitoring of Concrete Structures: A Review. Journal of Building Pathology and Rehabilitation, 5(1), 1-15.
dc.relation.referencesHuang, X., et al. (2019). Smart Concrete: The Role of Nanotechnology in Enhancing Durability and Performance. Journal of Materials Science, 54(14), 10079-10094.
dc.relation.referencesJha, K., & Singh, R. (2021). Application of Nanotechnology in Construction: Challenges and Opportunities. International Journal of Advanced Structural Engineering, 13(2), 123-134.
dc.relation.referencesKhosravi, M., et al. (2020). The Impact of Nanomaterials on the Mechanical Properties of Cement-Based Materials: A Comprehensive Review. Materials Today: Proceedings, 21, 1240-1245.
dc.relation.referencesLi, Y., et al. (2018). Development of a Novel MEMS Sensor for Real-Time Monitoring of Concrete Structures under Extreme Conditions. Sensors, 18(3), 850.
dc.relation.referencesLiu, Y., et al. (2020). Innovative Applications of Nanotechnology in Construction Materials: A Review on Recent Advances and Future Directions. Construction and Building Materials, 263, 120013.
dc.relation.referencesMa, Y., et al. (2017). Advanced MEMS Sensors for Structural Health Monitoring: Current Trends and Future Challenges. IEEE Sensors Journal, 17(10), 3034-3045.
dc.relation.referencesMohseni, E., & Shafiee, M. (2019). The Use of Nanotechnology in Construction: Current Applications and Future Prospects. Journal of Cleaner Production, 210, 1529-1545. Naderpour, H., et al.(2020). Performance Evaluation of MEMS Sensors for Monitoring the Internal Conditions of Concrete Structures: An Experimental Study. Sensors and Actuators A: Physical, 302, 111806.
dc.relation.referencesOchoa-Moreno, J., et al. (2021). The Role of Nanomaterials in Enhancing the Durability and Sustainability of Concrete Structures: A Review on Recent Advances and Future Perspectives. Construction and Building Materials, 272, 121807.
dc.relation.referencesPacheco-Torgal, F., & Jalali, S. (2008). Nanotechnology in Construction: A Review on Recent Developments and Future Trends in Cement-Based Materials. Construction and Building Materials, 22(4), 703-709.
dc.relation.referencesQian, C., et al. (2018). Smart Concrete with Embedded Sensors for Structural Health Monitoring: A Comprehensive Review on Recent Advances and Future Directions.Materials Science and Engineering: R: Reports,126,100471.
dc.relation.referencesRanjbaran, M., et al.(2020). Emerging Trends in the Use of Nanotechnology for Improving the Performance of Concrete Structures: A Review on Current Research and Applications.Journal of Cleaner Production,261,121195
dc.relation.referencesChae, S., Kim, J., & Kim, H. (2016). Development of a MEMS-Based Pressure Sensor for Concrete Applications. Sensors and Actuators A: Physical, 247, 50-56.
dc.relation.referencesGaliatsatos, N., et al. (2023). MEMS Sensors for Structural Health Monitoring in Civil Engineering Applications. Sensors, 23(2), 456-471.
dc.relation.referencesGhosh, S., & Karmakar, S. (2020). Recent Advances in MEMS Technology for Structural Health Monitoring of Concrete Structures: A Review. Journal of Building Pathology and Rehabilitation, 5(1), 1-15.
dc.relation.referencesDhanasekar, M., & Kumar, S. (2012). Nanotechnology in Concrete: A Review. Materials Science and Engineering: A, 558, 1-9.
dc.relation.referencesKhosravi, M., et al. (2020). The Impact of Nanomaterials on the Mechanical Properties of Cement-Based Materials: A Comprehensive Review. Materials Today: Proceedings, 21, 1240-1245.
dc.relation.referencesFigueiredo, E., et al. (2019). Advances in Nanotechnology for Concrete Applications: A Review. Construction and Building Materials, 211, 1-14.
dc.relation.referencesKim, J., et al. (2023). Nanobots for Internal Corrosion Monitoring in Concrete. Construction and Building Materials, 305, 124-130
dc.relation.referencesLi, Y., et al. (2018). Development of a Novel MEMS Sensor for Real-Time Monitoring of Concrete Structures under Extreme Conditions. Sensors, 18(3), 850
dc.relation.referencesAlavi, A. H., & Hossain, M. (2013). Smart Concrete: A Review of the State of the Art. Journal of Materials in Civil Engineering, 25(12), 1701-1710.
dc.relation.referencesJung, H., et al. (2009). Integrated MEMS Sensors for Temperature and Humidity Measurement. IEEE Transactions on Industrial Electronics, 56(7), 2545-2552.
dc.relation.referencesBock, T., & Linner, T. (2015). The Future of Construction: A Smart and Sustainable Approach. Automation in Construction, 52, 1-10
dc.relation.referencesEl-Gamal, S., et al. (2020). Smart Sensors for Monitoring Concrete Structures: A Review. Journal of Civil Structural Health Monitoring, 10(3), 325-340.
dc.relation.referencesMohseni, E., & Shafiee, M. (2019). The Use of Nanotechnology in Construction: Current Applications and Future Prospects. Journal of Cleaner Production, 210, 1529-1545.
dc.relation.referencesRanjbaran, M., et al. (2020). Emerging Trends in the Use of Nanotechnology for Improving the Performance of Concrete Structures: A Review on Current Research and Applications. Journal of Cleaner Production, 261, 121195
dc.relation.referencesGao, Y., et al. (2018). The Role of Nanomaterials in Enhancing the Properties of Concrete: A Review. Cement and Concrete Composites, 95, 108-118.
dc.relation.referencesPacheco-Torgal, F., & Jalali, S. (2008). Nanotechnology in Construction: A Review on Recent Developments and Future Trends in Cement-Based Materials. Construction and Building Materials, 22(4), 703-709.
dc.relation.referencesOchoa-Moreno, J., et al. (2021). The Role of Nanomaterials in Enhancing the Durability and Sustainability of Concrete Structures: A Review on Recent Advances and Future Perspectives. Construction and Building Materials, 272, 121807.
dc.relation.referencesMa, Y., et al. (2017). Advanced MEMS Sensors for Structural Health Monitoring: Current Trends and Future Challenges. IEEE Sensors Journal, 17(10), 3034-3045.
dc.relation.referencesJha, K., & Singh, R. (2021). Application of Nanotechnology in Construction: Challenges and Opportunities. International Journal of Advanced Structural Engineering, 13(2), 123-134
dc.relation.referencesLi, Y., et al. (2007). Thermal Measurement using MEMS Sensors with Improved Accuracy. Sensors and Actuators A: Physical, 136(2), 456-461.
dc.relation.referencesAlavi, A. H., & Hossain, M. (2013). Smart Concrete: A Review of the State of the Art. Journal of Materials in Civil Engineering, 25(12), 1701-1710.
dc.relation.referencesChae, S., Kim, J., & Kim, H. (2016). Development of a MEMS-Based Pressure Sensor for Concrete Applications. Sensors and Actuators A: Physical, 247, 50-56.
dc.relation.referencesGaliatsatos, N., et al. (2023). MEMS Sensors for Structural Health Monitoring in Civil Engineering Applications. Sensors, 23(2), 456-471.
dc.relation.referencesGhosh, S., & Karmakar, S. (2020). Recent Advances in MEMS Technology for Structural Health Monitoring of Concrete Structures: A Review. Journal of Building Pathology and Rehabilitation, 5(1), 1-15.
dc.relation.referencesDhanasekar, M., & Kumar, S. (2012). Nanotechnology in Concrete: A Review. Materials Science and Engineering: A, 558, 1-9.
dc.relation.referencesKhosravi, M., et al. (2020). The Impact of Nanomaterials on the Mechanical Properties of Cement-Based Materials: A Comprehensive Review. Materials Today: Proceedings, 21, 1240-1245.
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectEstado del arte
dc.subjectNanobots
dc.subjectNanomateriales
dc.subjectMems
dc.subjectSalud estructural
dc.subject.keywordState of the art
dc.subject.keywordNanobots
dc.subject.keywordNanomaterials
dc.subject.keywordMems
dc.subject.keywordStructural health
dc.subject.lembTecnología en Construcciones Civiles -- Tesis y disertaciones académicas
dc.subject.lembHormigón
dc.subject.lembNanotecnología
dc.subject.lembIngeniería civil -- Colombia
dc.subject.lembHormigón -- Corrosión
dc.titleEstado del arte de los nanobots (mems) para la salud estructural del concreto en Colombia
dc.title.titleenglishState of the art nanobots (mems) for structural health of concrete in Colombia
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeMonografía
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
GonzalezLopezNicolasAlejandro2025.pdf
Tamaño:
1.23 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Anexos.zip
Tamaño:
183.49 KB
Formato:
No hay miniatura disponible
Nombre:
Licencia de uso y publicacion.pdf
Tamaño:
124.82 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: