Desarrollo de un modelo predictivo basado en machine learning para la biomasa aérea del bosque seco tropical en el sector suroccidental del área de compensación ambiental del proyecto hidroeléctrico el Quimbo
| dc.contributor.advisor | Avella Muñoz, Edgar Andrés | |
| dc.contributor.author | Barreto Puerto, Eddy Santiago | |
| dc.contributor.orcid | Avella Muñoz, Edgar Andrés [0000-0002-1595-1154] | |
| dc.date.accessioned | 2025-05-07T17:13:33Z | |
| dc.date.available | 2025-05-07T17:13:33Z | |
| dc.date.created | 2024-04-19 | |
| dc.description | El bosque seco tropical (bs-T) es uno de los ecosistemas más vulnerables a nivel global debido a su alto grado de deforestación y fragmentación, lo que resalta su importancia para la conservación de la biodiversidad y su papel crucial en el almacenamiento de carbono. En este contexto, se desarrolló un modelo predictivo utilizando algoritmos de aprendizaje automático (Machine Learning) para estimar la biomasa aérea en las inmediaciones del proyecto hidroeléctrico El Quimbo. El objetivo de este estudio fue identificar el modelo que mejor predijera el stock de biomasa aérea en dicha región. Para ello, se emplearon imágenes satelitales Sentinel-2 junto con diversas variables topográficas, como el Modelo Digital de Elevación (DEM), el aspecto y la pendiente, además de datos de campo para la predicción de biomasa aérea. Se implementaron tres modelos predictivos: XGBoost, Random Forest (RF) y Redes Neuronales Artificiales (ANN). Entre estos, el modelo XGBoost demostró el mejor desempeño, con un coeficiente de determinación (R²) de 0,72, un error medio absoluto (MAE) de 17,38 t ha⁻¹, una raíz del error cuadrático medio (RMSE) de 27,61 t ha⁻¹ y un Huber Loss de 22,62 t ha⁻¹. | |
| dc.description.abstract | The tropical dry forest (bs-T) is among the most vulnerable ecosystems globally due to extensive deforestation and fragmentation. This underscores its critical importance for biodiversity conservation and its essential role in carbon storage. In this context, a predictive model was developed using machine learning algorithms to accurately estimate aboveground biomass in the tropical dry forest near the El Quimbo hydroelectric project. The objective of this study was to identify the model that most accurately predicted the aboveground biomass stock in this region. To achieve this, Sentinel-2 satellite images were utilized alongside various topographic variables, such as the Digital Elevation Model (DEM), aspect, and slope, in addition to field data for aboveground biomass prediction. Three predictive models were implemented: XGBoost, Random Forest (RF), and Artificial Neural Networks (ANN). Among these, the XGBoost model demonstrated the best performance, with a coefficient of determination (R²) of 0.72, a mean absolute error (MAE) of 17.38 t ha⁻¹, a root mean square error (RMSE) of 27.61 t ha⁻¹, and a Huber Loss of 22.62 t ha⁻¹. | |
| dc.description.sponsorship | Fundación Natura Colombia | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/95270 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Acosta Mireles, M., Vargas Hernández, J. J., Velázquez Martínez, A., y Etchevers Barra, J. D. (2002). Estimación de la biomasa aérea mediante el uso de relaciones alométricas en seis especies arbóreas en Oaxaca, México. Agrociencia, ISSN 2521-9766, ISSN-e 1405-3195, Vol. 36, No. 6, 2002, págs. 725-736, 36(6), 725–736. | |
| dc.relation.references | Akiba, T., Sano, S., Yanase, T., Ohta, T., y Koyama, M. (2019). Optuna: A Next-generation Hyperparameter Optimization Framework. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2623–2631. https://doi.org/10.1145/3292500.3330701 | |
| dc.relation.references | Alcázar Caicedo, C., Avella Muñoz, E. A., Norden Medina, N. N., García Villalobos, D. H., García Martínez, H., Castellanos Castro, C., y González Martínez, R. (2021). Programa Nacional para la Conservación y Restauración del Bosque Seco Tropical en Colombia. En Ministerio de Ambiente y Desarrollo Sostenible & Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (Eds.), Programa nacional para la conservación y restauración del bosque seco tropical en Colombia. Plan de Acción 2020-2030 (1a ed., Vol. 1). Ministerio de Ambiente y Desarrollo Sostenible. | |
| dc.relation.references | Ali, J., Khan, R., Ahmad, N., y Maqsood, I. (2012). Random Forests and Decision Trees. IJCSI International Journal of Computer Science Issues, 9(5). www.IJCSI.org | |
| dc.relation.references | Alvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de las Salas, G., del Valle, I., Lema, A., Moreno, F., Orrego, S., y Rodríguez, L. (2012). Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management, 267, 297–308. https://doi.org/10.1016/J.FORECO.2011.12.013 | |
| dc.relation.references | Alvarez-Mendoza, C. I., Teodoro, A., y Ramirez-Cando, L. (2019). Spatial estimation of surface ozone concentrations in Quito Ecuador with remote sensing data, air pollution measurements and meteorological variables. Environmental monitoring and assessment, 191(3). https://doi.org/10.1007/S10661-019-7286-6 | |
| dc.relation.references | Arnold, C., Biedebach, L., Küpfer, A., y Neunhoeffer, M. (2024). The role of hyperparameters in machine learning models and how to tune them. Political Science Research and Methods, 1–8. https://doi.org/10.1017/PSRM.2023.61 | |
| dc.relation.references | Avella-M, A., García-G, N., Fajardo-Gutiérrez, F., y González-Melo, A. (2019). Patrones de sucesión secundaria en un bosque seco tropical interandino de Colombia: implicaciones para la restauración ecológica. Caldasia, 41(1). https://doi.org/10.15446/caldasia.v41n1.65859 | |
| dc.relation.references | Baret, F., Jacquemoud, S., y Hanocq, J. F. (1993). About the soil line concept in remote sensing. Advances in Space Research, 13(5), 281–284. https://doi.org/10.1016/0273-1177(93)90560-X | |
| dc.relation.references | Becknell, J. M., Kissing Kucek, L., y Powers, J. S. (2012). Aboveground biomass in mature and secondary seasonally dry tropical forests: A literature review and global synthesis. Forest Ecology and Management, 276, 88–95. https://doi.org/10.1016/J.FORECO.2012.03.033 | |
| dc.relation.references | Berrar, D. (2019). Cross-Validation. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1–3, 542–545. https://doi.org/10.1016/B978-0-12-809633-8.20349-X | |
| dc.relation.references | Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A. L., Deng, D., y Lindauer, M. (2021). Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2). https://doi.org/10.1002/widm.1484 | |
| dc.relation.references | Breiman, L. (2001). Statistical Modeling: The Two Cultures. Statistical Science, 16(3), 199–231. | |
| dc.relation.references | Brown, S., Gillespie, A. J. R., y Lugo, A. E. (1989). Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data. Forest Science, 35(4), 881–902. https://doi.org/10.1093/FORESTSCIENCE/35.4.881 | |
| dc.relation.references | Bzdok, D., Altman, N., y Krzywinski, M. (2018). Statistics versus machine learning. Nature Methods 2018 15:4. https://www.nature.com/articles/nmeth.4642 | |
| dc.relation.references | Chan, J. Y. Le, Leow, S. M. H., Bea, K. T., Cheng, W. K., Phoong, S. W., Hong, Z. W., y Chen, Y. L. (2022). Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review. Mathematics 2022, Vol. 10, Page 1283, 10(8), 1283. https://doi.org/10.3390/MATH10081283 | |
| dc.relation.references | Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., MullerLandau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629 | |
| dc.relation.references | Chen, T., y Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794. https://doi.org/10.1145/2939672.2939785 | |
| dc.relation.references | Cohen, J., Aiken, L. S., Cohen, P., y West, S. G. (2002). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (3a ed.). https://doi.org/10.4324/9780203774441 | |
| dc.relation.references | David, R. M., Rosser, N. J., y Donoghue, D. N. M. (2022). Improving above ground biomass estimates of Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 multispectral imagery. Remote Sensing of Environment, 282, 113232. https://doi.org/10.1016/J.RSE.2022.113232 | |
| dc.relation.references | Farrell, A., Wang, G., Rush, S. A., Martin, J. A., Belant, J. L., Butler, A. B., y Godwin, D. (2019). Machine learning of large-scale spatial distributions of wild turkeys with high-dimensional environmental data. Ecology and evolution, 9(10), 5938–5949. https://doi.org/10.1002/ECE3.5177 | |
| dc.relation.references | Forkuor, G., Benewinde Zoungrana, J. B., Dimobe, K., Ouattara, B., Vadrevu, K. P., y Tondoh, J. E. (2020). Above-ground biomass mapping in West African dryland forest using Sentinel-1 and 2 datasets - A case study. Remote Sensing of Environment, 236, 111496. https://doi.org/10.1016/J.RSE.2019.111496 | |
| dc.relation.references | García, H., Corzo, G., Issacs, P., y Etter, A. (2014). Distribución y estado actual de los remanentes del bioma de Bosque Seco Tropical en Colombia: Insumos para su gestión. En C. Pizano & H. García (Eds.), El Bosque Seco Tropical en Colombia (1a ed., pp. 229–251). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). | |
| dc.relation.references | Geurts, P., Irrthum, A., y Wehenkel, L. (2009). Supervised learning with decision tree-based methods in computational and systems biology. Molecular BioSystems, 12, 1593–1605. https://doi.org/10.1039/B907946G | |
| dc.relation.references | Ghosh, S. M., y Behera, M. D. (2018). Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest. Applied Geography, 96, 29–40. https://doi.org/10.1016/J.APGEOG.2018.05.011 | |
| dc.relation.references | Gitelson, A. A. (2004). Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. Journal of Plant Physiology, 161(2), 165–173. https://doi.org/10.1078/0176-1617-01176 | |
| dc.relation.references | Goetz, S. J., Hansen, M., Houghton, R. A., -, al, Kim, J. B., Monier, E., Gibbs, H. K., Brown, S., Niles, J. O., y Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2(4), 045023. https://doi.org/10.1088/1748-9326/2/4/045023 | |
| dc.relation.references | Hasnat, G. N. T., y Hossain, M. K. (2019). Global Overview of Tropical Dry Forests. En R. Bhadouria, S. Tripathi, P. Srivastava, & P. Singh (Eds.), Handbook of Research on the Conservation and Restoration of Tropical Dry Forests (pp. 1–23). https://doi.org/10.4018/978-1-7998-0014-9.ch001 | |
| dc.relation.references | Hastie, T., Tibshirani, R., y Friedman, J. (2009). The Elements of Statistical Learning (2a ed.). Springer New York. https://doi.org/10.1007/978-0-387-84858-7 | |
| dc.relation.references | Hernández, J., y Sánchez, H. (1992). Biomas terrestres de Colombia. En G. Halffter (Ed.), La Diversidad Biológica de Iberoamérica I (1a ed., Vol. 1, pp. 153–174). Acta Zoologica Mexicana. | |
| dc.relation.references | Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., y Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2 | |
| dc.relation.references | IAvH. (1998). El Bosque seco Tropical (Bs-T) en Colombia. Instituto Alexander von Humboldt. Programa de Inventario de la Biodiversidad Grupo de Exploraciones y Monitoreo Ambiental GEMA. | |
| dc.relation.references | Janzen, D. H. (1988). Tropical dry forests: The most endangered major tropical ecosystem. En Eop. F. Wilson (Ed.), Biodiversity (1a ed., Vol. 14, pp. 130–137). National Academy Press. https://www.researchgate.net/publication/303444053 | |
| dc.relation.references | Jiang, F., Sun, H., Ma, K., Fu, L., y Tang, J. (2022). Improving aboveground biomass estimation of natural forests on the Tibetan Plateau using spaceborne LiDAR and machine learning algorithms. Ecological Indicators, 143, 109365. https://doi.org/10.1016/J.ECOLIND.2022.109365 | |
| dc.relation.references | Jordan, C. F. (1969). Derivation of Leaf‐Area Index from Quality of Light on the Forest Floor. Ecology, 50(4), 663–666. https://doi.org/10.2307/1936256 | |
| dc.relation.references | Kaufman, Y. J., y Tanré, D. (1992). Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 261–270. https://doi.org/10.1109/36.134076 | |
| dc.relation.references | Li, C., Zhou, L., y Xu, W. (2021). Estimating Aboveground Biomass Using Sentinel-2 MSI Data and Ensemble Algorithms for Grassland in the Shengjin Lake Wetland, China. Remote Sensing 2021, Vol. 13, Page 1595, 13(8), 1595. https://doi.org/10.3390/RS13081595 | |
| dc.relation.references | Li, Y., Li, M., Li, C., y Liu, Z. (2020). Forest aboveground biomass estimation using Landsat 8 and Sentinel1A data with machine learning algorithms. Scientific Reports 2020 10:1, 10(1), 1–12. https://doi.org/10.1038/s41598-020-67024-3 | |
| dc.relation.references | Liu, K., Wang, J., Zeng, W., Song, J., Kumar, L., Mutanga, O., Baghdadi, N., y Thenkabail, P. S. (2017). Comparison and Evaluation of Three Methods for Estimating Forest above Ground Biomass Using TM and GLAS Data. Remote Sensing 2017, Vol. 9, Page 341, 9(4), 341. https://doi.org/10.3390/RS9040341 | |
| dc.relation.references | Liu, Z., Peng, C., Work, T., Candau, J. N., Desrochers, A., y Kneeshaw, D. (2018). Application of machinelearning methods in forest ecology: recent progress and future challenges. https://doi.org/10.1139/er-2018-0034, 26(4), 339–350. https://doi.org/10.1139/ER-2018-0034 | |
| dc.relation.references | Louppe, G. (2014). Understanding Random Forests: From Theory to Practice. https://arxiv.org/abs/1407.7502v3 | |
| dc.relation.references | Marchesan, J., Alba, E., Schuh, M. S., Favarin, J. A. S., Fantinel, R. A., Marchesan, L., y Pereira, R. S. (2023). Aboveground biomass stock and change estimation in Amazon rainforest using airborne light detection and ranging, multispectral data, and machine learning algorithms. https://doi.org/10.1117/1.JRS.17.024509, 17(2), 024509. https://doi.org/10.1117/1.JRS.17.024509 | |
| dc.relation.references | Mason, L., Baxter, J., Bartlett, P., y Frean, M. (1999). Boosting Algorithms as Gradient Descent. Advances in Neural Information Processing Systems, 12. | |
| dc.relation.references | Mejia Salazar, C. E., Andrade Castañeda, H. J., y Segura Madrigal, M. A. (2023). Estimación de biomasa y carbono con herramientas de teledetección en bosques secos tropicales del Tolima, Colombia. Revista de teledetección: Revista de la Asociación Española de Teledetección, ISSN 1133-0953, No. 62, 2023, págs. 57-70, 62, 57–70. | |
| dc.relation.references | Miles, L., Newton, A. C., DeFries, R. S., Ravilious, C., May, I., Blyth, S., Kapos, V., y Gordon, J. E. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33(3), 491–505. https://doi.org/10.1111/j.1365-2699.2005.01424.x | |
| dc.relation.references | Murphy, P. G., y Lugo, A. E. (1986). ECOLOGY OF TROPICAL DRY FOREST. Annual Review of Ecology and Systematics, 17, 67–88. https://doi.org/10.1146/annurev.es.17.110186.000435 | |
| dc.relation.references | Ng, A., y Ma, T. (2023). CS229 Lecture Notes. | |
| dc.relation.references | Pedregosa, F., Michel, V., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Vanderplas, J., Cournapeau, D., Pedregosa, F., Varoquaux, G., Gramfort, A., Thirion, B., Grisel, O., Dubourg, V., Passos, A., Brucher, M., Perrot, M., y Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html | |
| dc.relation.references | Pennington, R. T., Lavin, M., y Oliveira-Filho, A. (2009). Woody Plant Diversity, Evolution and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests. Annual Review of Ecology, Evolution, and Systematics, 40, 437–457. https://doi.org/10.1146/annurev.ecolsys.110308.120327 | |
| dc.relation.references | Pichler, M., y Hartig, F. (2022). Machine Learning and Deep Learning -- A review for Ecologists. Methods in Ecology and Evolution, 14(4), 994–1016. https://doi.org/10.1111/2041-210X.14061 | |
| dc.relation.references | Pizano, C., Cabrera, M., y García, H. (2014). Bosque Seco Tropical En Colombia; Generalidades Y Contexto. En C. Pizano & H. García (Eds.), El Bosque Seco Tropical en Colombia (1a ed., pp. 36–47). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). | |
| dc.relation.references | Plevris, V., Solorzano, G., Bakas, N. P., y Ben Seghier, M. E. A. (2022). Investigation of performance metrics in regression analysis and machine learning-based prediction models. ECCOMAS Congress 2022 - 8th European Congress on Computational Methods in Applied Sciences and Engineering. https://doi.org/10.23967/ECCOMAS.2022.155 | |
| dc.relation.references | Probst, P., Boulesteix, A. L., y Bischl, B. (2018). Tunability: Importance of Hyperparameters of Machine Learning Algorithms. Journal of Machine Learning Research, 20. https://arxiv.org/abs/1802.09596v3 | |
| dc.relation.references | Rana, P., Popescu, S., Tolvanen, A., Gautam, B., Srinivasan, S., y Tokola, T. (2023). Estimation of tropical forest aboveground biomass in Nepal using multiple remotely sensed data and deep learning. International Journal of Remote Sensing, 44, 5147–5171. https://doi.org/10.1080/01431161.2023.2240508 | |
| dc.relation.references | Rodríguez González, J., Ugalde Saborio, E., Rodríguez González, J., y Ugalde Saborio, E. (2021). Impacto de la estandarización y escalado: factor para predicción de costos en proyectos a través de una red neuronal artificial. Ingeniare. Revista chilena de ingeniería, 29(2), 265–275. https://doi.org/10.4067/S0718-33052021000200265 | |
| dc.relation.references | Rouse, J. W. , Jr., Haas, R. H., Schell, J. A., y Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA. Goddard Space Flight Center 3d ERTS-1 Symp., Vol. 1, Sect. A. | |
| dc.relation.references | Salazar Villegas, M. H., Qasim, M., Csaplovics, E., González-Martinez, R., Rodriguez-Buritica, S., Ramos Abril, L. N., y Salazar Villegas, B. (2023). Examining the Potential of Sentinel Imagery and Ensemble Algorithms for Estimating Aboveground Biomass in a Tropical Dry Forest. Remote Sensing, 15(21), 5086. https://doi.org/10.3390/RS15215086/S1 | |
| dc.relation.references | Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2, 160. https://doi.org/10.1007/s42979-021-00592-x | |
| dc.relation.references | Seltman, H. J. (2018). Experimental Design and Analysis (1a ed., Vol. 1). Carnegie Mellon University. | |
| dc.relation.references | Serrano, P. M. L., Nieva, D. J. V., Aldaba, H. R., Montiel, E. G., y Rivas, J. J. C. (2021). Estimation of forest parameters using Sentinel 2A data in Pueblo Nuevo, state of Durango. Revista Mexicana de Ciencias Forestales, 12(68), 81–106. https://doi.org/10.29298/rmcf.v12i68.1075 | |
| dc.relation.references | Singh, C., Karan, S. K., Sardar, P., y Samadder, S. R. (2022). Remote sensing-based biomass estimation of dry deciduous tropical forest using machine learning and ensemble analysis. Journal of Environmental Management, 308, 114639. https://doi.org/10.1016/J.JENVMAN.2022.114639 | |
| dc.relation.references | Soloff, J. A., Barber, R. F., y Willett, R. (2023). Bagging Provides Assumption-free Stability. https://arxiv.org/abs/2301.12600v2 | |
| dc.relation.references | Tadese, S., Soromessa, T., Bekele, T., Bereta, A., y Temesgen, F. (2020). Above Ground Biomass Estimation Methods and Challenges: A Review. Article in International Journal of Energy Technology and Policy, 9(8). https://doi.org/10.7176/JETP/9-8-02 | |
| dc.relation.references | Torres-Rodríguez, S., Díaz-Triana, J. E., Villota, A., Gómez, W., y Avella-M., A. (2019). Diagnóstico ecológico, formulación e implementación de estrategias para la restauración de un bosque seco tropical interandino (Huila, Colombia). Caldasia, 41(1), 42–59. https://doi.org/10.15446/caldasia.v41n1.71275 | |
| dc.relation.references | Vafaei, S., Soosani, J., Adeli, K., Fadaei, H., Naghavi, H., Pham, T. D., y Bui, D. T. (2018). Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran). Remote Sensing 2018, Vol. 10, Page 172, 10(2), 172. https://doi.org/10.3390/RS10020172 | |
| dc.relation.references | Vazquez, P. M., Adema, E. O., y Fernández, B. (2013). Dinámica de la fenología de la vegetación a partir de series temporales de NDVI de largo plazo en la provincia de La Pampa. Ecología Austral 23 (2) : 77-142. (2013). https://repositorio.inta.gob.ar/handle/20.500.12123/7603 | |
| dc.relation.references | Vorster, A. G., Evangelista, P. H., Stovall, A. E. L., y Ex, S. (2020). Variability and uncertainty in forest biomass estimates from the tree to landscape scale: The role of allometric equations. Carbon Balance and Management, 15(1), 1–20. https://doi.org/10.1186/S13021-020-00143-6/FIGURES/9 | |
| dc.relation.references | Willmott, C. J., y Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82. https://doi.org/10.3354/CR030079 | |
| dc.relation.references | Wu, Z., y Benkeser, D. (2022). A Huber loss-based super learner with applications to healthcare expenditures. https://arxiv.org/abs/2205.06870v1 | |
| dc.relation.references | Xu, L., Saatchi, S. S., Yang, Y., Yu, Y., Pongratz, J., Anthony Bloom, A., Bowman, K., Worden, J., Liu, J., Yin, Y., Domke, G., McRoberts, R. E., Woodall, C., Nabuurs, G. J., De-Miguel, S., Keller, M., Harris, N., Maxwell, S., y Schimel, D. (2021). Changes in global terrestrial live biomass over the 21st century. Science Advances, 7(27). https://doi.org/10.1126/SCIADV.ABE9829/SUPPL_FILE/ABE9829_SM.PDF | |
| dc.relation.references | Xue, J., y Su, B. (2017). Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. https://doi.org/10.1155/2017/1353691 | |
| dc.relation.references | Yin, F., Lewis, P. E., y Gómez-Dans, J. L. (2022). Bayesian atmospheric correction over land: Sentinel2/MSI and Landsat 8/OLI. Geosci. Model Dev, 15, 7933–7976. https://doi.org/10.5194/gmd-157933-2022 | |
| dc.relation.references | Young, S. R., Rose, D. C., Karnowski, T. P., Lim, S. H., y Patton, R. M. (2015). Optimizing deep learning hyper-parameters through an evolutionary algorithm. Proceedings of MLHPC 2015: Machine Learning in High-Performance Computing Environments - Held in conjunction with SC 2015: The International Conference for High Performance Computing, Networking, Storage and Analysis. https://doi.org/10.1145/2834892.2834896 | |
| dc.relation.references | Yu, T., y Zhu, H. (2020). Hyper-Parameter Optimization: A Review of Algorithms and Applications. https://arxiv.org/abs/2003.05689v1 | |
| dc.relation.references | Zhang, Q., Yang, L. T., Chen, Z., y Li, P. (2018). A survey on deep learning for big data. Information Fusion, 42, 146–157. https://doi.org/10.1016/J.INFFUS.2017.10.006 | |
| dc.rights.acceso | Restringido (Solo Referencia) | |
| dc.rights.accessrights | RestrictedAccess | |
| dc.subject | Bosque seco tropical | |
| dc.subject | Aprendizaje automático | |
| dc.subject | Biomasa aérea | |
| dc.subject | Proyecto hidroeléctrico El Quimbo | |
| dc.subject | Imagenes satelitales | |
| dc.subject.keyword | Tropical dry forest | |
| dc.subject.keyword | Machine learning | |
| dc.subject.keyword | Aboveground biomass | |
| dc.subject.keyword | El Quimbo | |
| dc.subject.keyword | Satellite images | |
| dc.subject.lemb | Ingeniería Forestal -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Modelos predictivos en ecología | |
| dc.subject.lemb | Aprendizaje automático aplicado a ecosistemas | |
| dc.subject.lemb | Biomasa aérea y almacenamiento de carbono | |
| dc.subject.lemb | Teledetección y monitoreo ambiental | |
| dc.title | Desarrollo de un modelo predictivo basado en machine learning para la biomasa aérea del bosque seco tropical en el sector suroccidental del área de compensación ambiental del proyecto hidroeléctrico el Quimbo | |
| dc.title.titleenglish | Development of a machine learning-based predictive model for aboveground biomass in the tropical dry forest of the southwestern environmental compensation area of the el Quimbo hydroelectric projec | |
| dc.type | bachelorThesis | |
| dc.type.degree | Investigación-Innovación | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque original
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- BarretoPuertoEddySantiago2024.pdf
- Tamaño:
- 2.49 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado
No hay miniatura disponible
- Nombre:
- BarretoPuertoEddySantiagoAnexos2024.zip
- Tamaño:
- 1.11 MB
- Formato:
- Descripción:
- Anexos
No hay miniatura disponible
- Nombre:
- Licencia de uso y publicación.pdf
- Tamaño:
- 233.71 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Licencia de uso y publicación
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
