Desarrollo de un modelo predictivo basado en machine learning para la biomasa aérea del bosque seco tropical en el sector suroccidental del área de compensación ambiental del proyecto hidroeléctrico el Quimbo

dc.contributor.advisorAvella Muñoz, Edgar Andrés
dc.contributor.authorBarreto Puerto, Eddy Santiago
dc.contributor.orcidAvella Muñoz, Edgar Andrés [0000-0002-1595-1154]
dc.date.accessioned2025-05-07T17:13:33Z
dc.date.available2025-05-07T17:13:33Z
dc.date.created2024-04-19
dc.descriptionEl bosque seco tropical (bs-T) es uno de los ecosistemas más vulnerables a nivel global debido a su alto grado de deforestación y fragmentación, lo que resalta su importancia para la conservación de la biodiversidad y su papel crucial en el almacenamiento de carbono. En este contexto, se desarrolló un modelo predictivo utilizando algoritmos de aprendizaje automático (Machine Learning) para estimar la biomasa aérea en las inmediaciones del proyecto hidroeléctrico El Quimbo. El objetivo de este estudio fue identificar el modelo que mejor predijera el stock de biomasa aérea en dicha región. Para ello, se emplearon imágenes satelitales Sentinel-2 junto con diversas variables topográficas, como el Modelo Digital de Elevación (DEM), el aspecto y la pendiente, además de datos de campo para la predicción de biomasa aérea. Se implementaron tres modelos predictivos: XGBoost, Random Forest (RF) y Redes Neuronales Artificiales (ANN). Entre estos, el modelo XGBoost demostró el mejor desempeño, con un coeficiente de determinación (R²) de 0,72, un error medio absoluto (MAE) de 17,38 t ha⁻¹, una raíz del error cuadrático medio (RMSE) de 27,61 t ha⁻¹ y un Huber Loss de 22,62 t ha⁻¹.
dc.description.abstractThe tropical dry forest (bs-T) is among the most vulnerable ecosystems globally due to extensive deforestation and fragmentation. This underscores its critical importance for biodiversity conservation and its essential role in carbon storage. In this context, a predictive model was developed using machine learning algorithms to accurately estimate aboveground biomass in the tropical dry forest near the El Quimbo hydroelectric project. The objective of this study was to identify the model that most accurately predicted the aboveground biomass stock in this region. To achieve this, Sentinel-2 satellite images were utilized alongside various topographic variables, such as the Digital Elevation Model (DEM), aspect, and slope, in addition to field data for aboveground biomass prediction. Three predictive models were implemented: XGBoost, Random Forest (RF), and Artificial Neural Networks (ANN). Among these, the XGBoost model demonstrated the best performance, with a coefficient of determination (R²) of 0.72, a mean absolute error (MAE) of 17.38 t ha⁻¹, a root mean square error (RMSE) of 27.61 t ha⁻¹, and a Huber Loss of 22.62 t ha⁻¹.
dc.description.sponsorshipFundación Natura Colombia
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/95270
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAcosta Mireles, M., Vargas Hernández, J. J., Velázquez Martínez, A., y Etchevers Barra, J. D. (2002). Estimación de la biomasa aérea mediante el uso de relaciones alométricas en seis especies arbóreas en Oaxaca, México. Agrociencia, ISSN 2521-9766, ISSN-e 1405-3195, Vol. 36, No. 6, 2002, págs. 725-736, 36(6), 725–736.
dc.relation.referencesAkiba, T., Sano, S., Yanase, T., Ohta, T., y Koyama, M. (2019). Optuna: A Next-generation Hyperparameter Optimization Framework. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2623–2631. https://doi.org/10.1145/3292500.3330701
dc.relation.referencesAlcázar Caicedo, C., Avella Muñoz, E. A., Norden Medina, N. N., García Villalobos, D. H., García Martínez, H., Castellanos Castro, C., y González Martínez, R. (2021). Programa Nacional para la Conservación y Restauración del Bosque Seco Tropical en Colombia. En Ministerio de Ambiente y Desarrollo Sostenible & Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (Eds.), Programa nacional para la conservación y restauración del bosque seco tropical en Colombia. Plan de Acción 2020-2030 (1a ed., Vol. 1). Ministerio de Ambiente y Desarrollo Sostenible.
dc.relation.referencesAli, J., Khan, R., Ahmad, N., y Maqsood, I. (2012). Random Forests and Decision Trees. IJCSI International Journal of Computer Science Issues, 9(5). www.IJCSI.org
dc.relation.referencesAlvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de las Salas, G., del Valle, I., Lema, A., Moreno, F., Orrego, S., y Rodríguez, L. (2012). Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management, 267, 297–308. https://doi.org/10.1016/J.FORECO.2011.12.013
dc.relation.referencesAlvarez-Mendoza, C. I., Teodoro, A., y Ramirez-Cando, L. (2019). Spatial estimation of surface ozone concentrations in Quito Ecuador with remote sensing data, air pollution measurements and meteorological variables. Environmental monitoring and assessment, 191(3). https://doi.org/10.1007/S10661-019-7286-6
dc.relation.referencesArnold, C., Biedebach, L., Küpfer, A., y Neunhoeffer, M. (2024). The role of hyperparameters in machine learning models and how to tune them. Political Science Research and Methods, 1–8. https://doi.org/10.1017/PSRM.2023.61
dc.relation.referencesAvella-M, A., García-G, N., Fajardo-Gutiérrez, F., y González-Melo, A. (2019). Patrones de sucesión secundaria en un bosque seco tropical interandino de Colombia: implicaciones para la restauración ecológica. Caldasia, 41(1). https://doi.org/10.15446/caldasia.v41n1.65859
dc.relation.referencesBaret, F., Jacquemoud, S., y Hanocq, J. F. (1993). About the soil line concept in remote sensing. Advances in Space Research, 13(5), 281–284. https://doi.org/10.1016/0273-1177(93)90560-X
dc.relation.referencesBecknell, J. M., Kissing Kucek, L., y Powers, J. S. (2012). Aboveground biomass in mature and secondary seasonally dry tropical forests: A literature review and global synthesis. Forest Ecology and Management, 276, 88–95. https://doi.org/10.1016/J.FORECO.2012.03.033
dc.relation.referencesBerrar, D. (2019). Cross-Validation. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1–3, 542–545. https://doi.org/10.1016/B978-0-12-809633-8.20349-X
dc.relation.referencesBischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A. L., Deng, D., y Lindauer, M. (2021). Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2). https://doi.org/10.1002/widm.1484
dc.relation.referencesBreiman, L. (2001). Statistical Modeling: The Two Cultures. Statistical Science, 16(3), 199–231.
dc.relation.referencesBrown, S., Gillespie, A. J. R., y Lugo, A. E. (1989). Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data. Forest Science, 35(4), 881–902. https://doi.org/10.1093/FORESTSCIENCE/35.4.881
dc.relation.referencesBzdok, D., Altman, N., y Krzywinski, M. (2018). Statistics versus machine learning. Nature Methods 2018 15:4. https://www.nature.com/articles/nmeth.4642
dc.relation.referencesChan, J. Y. Le, Leow, S. M. H., Bea, K. T., Cheng, W. K., Phoong, S. W., Hong, Z. W., y Chen, Y. L. (2022). Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review. Mathematics 2022, Vol. 10, Page 1283, 10(8), 1283. https://doi.org/10.3390/MATH10081283
dc.relation.referencesChave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., MullerLandau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629
dc.relation.referencesChen, T., y Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794. https://doi.org/10.1145/2939672.2939785
dc.relation.referencesCohen, J., Aiken, L. S., Cohen, P., y West, S. G. (2002). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (3a ed.). https://doi.org/10.4324/9780203774441
dc.relation.referencesDavid, R. M., Rosser, N. J., y Donoghue, D. N. M. (2022). Improving above ground biomass estimates of Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 multispectral imagery. Remote Sensing of Environment, 282, 113232. https://doi.org/10.1016/J.RSE.2022.113232
dc.relation.referencesFarrell, A., Wang, G., Rush, S. A., Martin, J. A., Belant, J. L., Butler, A. B., y Godwin, D. (2019). Machine learning of large-scale spatial distributions of wild turkeys with high-dimensional environmental data. Ecology and evolution, 9(10), 5938–5949. https://doi.org/10.1002/ECE3.5177
dc.relation.referencesForkuor, G., Benewinde Zoungrana, J. B., Dimobe, K., Ouattara, B., Vadrevu, K. P., y Tondoh, J. E. (2020). Above-ground biomass mapping in West African dryland forest using Sentinel-1 and 2 datasets - A case study. Remote Sensing of Environment, 236, 111496. https://doi.org/10.1016/J.RSE.2019.111496
dc.relation.referencesGarcía, H., Corzo, G., Issacs, P., y Etter, A. (2014). Distribución y estado actual de los remanentes del bioma de Bosque Seco Tropical en Colombia: Insumos para su gestión. En C. Pizano & H. García (Eds.), El Bosque Seco Tropical en Colombia (1a ed., pp. 229–251). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH).
dc.relation.referencesGeurts, P., Irrthum, A., y Wehenkel, L. (2009). Supervised learning with decision tree-based methods in computational and systems biology. Molecular BioSystems, 12, 1593–1605. https://doi.org/10.1039/B907946G
dc.relation.referencesGhosh, S. M., y Behera, M. D. (2018). Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest. Applied Geography, 96, 29–40. https://doi.org/10.1016/J.APGEOG.2018.05.011
dc.relation.referencesGitelson, A. A. (2004). Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. Journal of Plant Physiology, 161(2), 165–173. https://doi.org/10.1078/0176-1617-01176
dc.relation.referencesGoetz, S. J., Hansen, M., Houghton, R. A., -, al, Kim, J. B., Monier, E., Gibbs, H. K., Brown, S., Niles, J. O., y Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2(4), 045023. https://doi.org/10.1088/1748-9326/2/4/045023
dc.relation.referencesHasnat, G. N. T., y Hossain, M. K. (2019). Global Overview of Tropical Dry Forests. En R. Bhadouria, S. Tripathi, P. Srivastava, & P. Singh (Eds.), Handbook of Research on the Conservation and Restoration of Tropical Dry Forests (pp. 1–23). https://doi.org/10.4018/978-1-7998-0014-9.ch001
dc.relation.referencesHastie, T., Tibshirani, R., y Friedman, J. (2009). The Elements of Statistical Learning (2a ed.). Springer New York. https://doi.org/10.1007/978-0-387-84858-7
dc.relation.referencesHernández, J., y Sánchez, H. (1992). Biomas terrestres de Colombia. En G. Halffter (Ed.), La Diversidad Biológica de Iberoamérica I (1a ed., Vol. 1, pp. 153–174). Acta Zoologica Mexicana.
dc.relation.referencesHuete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., y Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2
dc.relation.referencesIAvH. (1998). El Bosque seco Tropical (Bs-T) en Colombia. Instituto Alexander von Humboldt. Programa de Inventario de la Biodiversidad Grupo de Exploraciones y Monitoreo Ambiental GEMA.
dc.relation.referencesJanzen, D. H. (1988). Tropical dry forests: The most endangered major tropical ecosystem. En Eop. F. Wilson (Ed.), Biodiversity (1a ed., Vol. 14, pp. 130–137). National Academy Press. https://www.researchgate.net/publication/303444053
dc.relation.referencesJiang, F., Sun, H., Ma, K., Fu, L., y Tang, J. (2022). Improving aboveground biomass estimation of natural forests on the Tibetan Plateau using spaceborne LiDAR and machine learning algorithms. Ecological Indicators, 143, 109365. https://doi.org/10.1016/J.ECOLIND.2022.109365
dc.relation.referencesJordan, C. F. (1969). Derivation of Leaf‐Area Index from Quality of Light on the Forest Floor. Ecology, 50(4), 663–666. https://doi.org/10.2307/1936256
dc.relation.referencesKaufman, Y. J., y Tanré, D. (1992). Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 261–270. https://doi.org/10.1109/36.134076
dc.relation.referencesLi, C., Zhou, L., y Xu, W. (2021). Estimating Aboveground Biomass Using Sentinel-2 MSI Data and Ensemble Algorithms for Grassland in the Shengjin Lake Wetland, China. Remote Sensing 2021, Vol. 13, Page 1595, 13(8), 1595. https://doi.org/10.3390/RS13081595
dc.relation.referencesLi, Y., Li, M., Li, C., y Liu, Z. (2020). Forest aboveground biomass estimation using Landsat 8 and Sentinel1A data with machine learning algorithms. Scientific Reports 2020 10:1, 10(1), 1–12. https://doi.org/10.1038/s41598-020-67024-3
dc.relation.referencesLiu, K., Wang, J., Zeng, W., Song, J., Kumar, L., Mutanga, O., Baghdadi, N., y Thenkabail, P. S. (2017). Comparison and Evaluation of Three Methods for Estimating Forest above Ground Biomass Using TM and GLAS Data. Remote Sensing 2017, Vol. 9, Page 341, 9(4), 341. https://doi.org/10.3390/RS9040341
dc.relation.referencesLiu, Z., Peng, C., Work, T., Candau, J. N., Desrochers, A., y Kneeshaw, D. (2018). Application of machinelearning methods in forest ecology: recent progress and future challenges. https://doi.org/10.1139/er-2018-0034, 26(4), 339–350. https://doi.org/10.1139/ER-2018-0034
dc.relation.referencesLouppe, G. (2014). Understanding Random Forests: From Theory to Practice. https://arxiv.org/abs/1407.7502v3
dc.relation.referencesMarchesan, J., Alba, E., Schuh, M. S., Favarin, J. A. S., Fantinel, R. A., Marchesan, L., y Pereira, R. S. (2023). Aboveground biomass stock and change estimation in Amazon rainforest using airborne light detection and ranging, multispectral data, and machine learning algorithms. https://doi.org/10.1117/1.JRS.17.024509, 17(2), 024509. https://doi.org/10.1117/1.JRS.17.024509
dc.relation.referencesMason, L., Baxter, J., Bartlett, P., y Frean, M. (1999). Boosting Algorithms as Gradient Descent. Advances in Neural Information Processing Systems, 12.
dc.relation.referencesMejia Salazar, C. E., Andrade Castañeda, H. J., y Segura Madrigal, M. A. (2023). Estimación de biomasa y carbono con herramientas de teledetección en bosques secos tropicales del Tolima, Colombia. Revista de teledetección: Revista de la Asociación Española de Teledetección, ISSN 1133-0953, No. 62, 2023, págs. 57-70, 62, 57–70.
dc.relation.referencesMiles, L., Newton, A. C., DeFries, R. S., Ravilious, C., May, I., Blyth, S., Kapos, V., y Gordon, J. E. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33(3), 491–505. https://doi.org/10.1111/j.1365-2699.2005.01424.x
dc.relation.referencesMurphy, P. G., y Lugo, A. E. (1986). ECOLOGY OF TROPICAL DRY FOREST. Annual Review of Ecology and Systematics, 17, 67–88. https://doi.org/10.1146/annurev.es.17.110186.000435
dc.relation.referencesNg, A., y Ma, T. (2023). CS229 Lecture Notes.
dc.relation.referencesPedregosa, F., Michel, V., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Vanderplas, J., Cournapeau, D., Pedregosa, F., Varoquaux, G., Gramfort, A., Thirion, B., Grisel, O., Dubourg, V., Passos, A., Brucher, M., Perrot, M., y Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html
dc.relation.referencesPennington, R. T., Lavin, M., y Oliveira-Filho, A. (2009). Woody Plant Diversity, Evolution and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests. Annual Review of Ecology, Evolution, and Systematics, 40, 437–457. https://doi.org/10.1146/annurev.ecolsys.110308.120327
dc.relation.referencesPichler, M., y Hartig, F. (2022). Machine Learning and Deep Learning -- A review for Ecologists. Methods in Ecology and Evolution, 14(4), 994–1016. https://doi.org/10.1111/2041-210X.14061
dc.relation.referencesPizano, C., Cabrera, M., y García, H. (2014). Bosque Seco Tropical En Colombia; Generalidades Y Contexto. En C. Pizano & H. García (Eds.), El Bosque Seco Tropical en Colombia (1a ed., pp. 36–47). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH).
dc.relation.referencesPlevris, V., Solorzano, G., Bakas, N. P., y Ben Seghier, M. E. A. (2022). Investigation of performance metrics in regression analysis and machine learning-based prediction models. ECCOMAS Congress 2022 - 8th European Congress on Computational Methods in Applied Sciences and Engineering. https://doi.org/10.23967/ECCOMAS.2022.155
dc.relation.referencesProbst, P., Boulesteix, A. L., y Bischl, B. (2018). Tunability: Importance of Hyperparameters of Machine Learning Algorithms. Journal of Machine Learning Research, 20. https://arxiv.org/abs/1802.09596v3
dc.relation.referencesRana, P., Popescu, S., Tolvanen, A., Gautam, B., Srinivasan, S., y Tokola, T. (2023). Estimation of tropical forest aboveground biomass in Nepal using multiple remotely sensed data and deep learning. International Journal of Remote Sensing, 44, 5147–5171. https://doi.org/10.1080/01431161.2023.2240508
dc.relation.referencesRodríguez González, J., Ugalde Saborio, E., Rodríguez González, J., y Ugalde Saborio, E. (2021). Impacto de la estandarización y escalado: factor para predicción de costos en proyectos a través de una red neuronal artificial. Ingeniare. Revista chilena de ingeniería, 29(2), 265–275. https://doi.org/10.4067/S0718-33052021000200265
dc.relation.referencesRouse, J. W. , Jr., Haas, R. H., Schell, J. A., y Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA. Goddard Space Flight Center 3d ERTS-1 Symp., Vol. 1, Sect. A.
dc.relation.referencesSalazar Villegas, M. H., Qasim, M., Csaplovics, E., González-Martinez, R., Rodriguez-Buritica, S., Ramos Abril, L. N., y Salazar Villegas, B. (2023). Examining the Potential of Sentinel Imagery and Ensemble Algorithms for Estimating Aboveground Biomass in a Tropical Dry Forest. Remote Sensing, 15(21), 5086. https://doi.org/10.3390/RS15215086/S1
dc.relation.referencesSarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2, 160. https://doi.org/10.1007/s42979-021-00592-x
dc.relation.referencesSeltman, H. J. (2018). Experimental Design and Analysis (1a ed., Vol. 1). Carnegie Mellon University.
dc.relation.referencesSerrano, P. M. L., Nieva, D. J. V., Aldaba, H. R., Montiel, E. G., y Rivas, J. J. C. (2021). Estimation of forest parameters using Sentinel 2A data in Pueblo Nuevo, state of Durango. Revista Mexicana de Ciencias Forestales, 12(68), 81–106. https://doi.org/10.29298/rmcf.v12i68.1075
dc.relation.referencesSingh, C., Karan, S. K., Sardar, P., y Samadder, S. R. (2022). Remote sensing-based biomass estimation of dry deciduous tropical forest using machine learning and ensemble analysis. Journal of Environmental Management, 308, 114639. https://doi.org/10.1016/J.JENVMAN.2022.114639
dc.relation.referencesSoloff, J. A., Barber, R. F., y Willett, R. (2023). Bagging Provides Assumption-free Stability. https://arxiv.org/abs/2301.12600v2
dc.relation.referencesTadese, S., Soromessa, T., Bekele, T., Bereta, A., y Temesgen, F. (2020). Above Ground Biomass Estimation Methods and Challenges: A Review. Article in International Journal of Energy Technology and Policy, 9(8). https://doi.org/10.7176/JETP/9-8-02
dc.relation.referencesTorres-Rodríguez, S., Díaz-Triana, J. E., Villota, A., Gómez, W., y Avella-M., A. (2019). Diagnóstico ecológico, formulación e implementación de estrategias para la restauración de un bosque seco tropical interandino (Huila, Colombia). Caldasia, 41(1), 42–59. https://doi.org/10.15446/caldasia.v41n1.71275
dc.relation.referencesVafaei, S., Soosani, J., Adeli, K., Fadaei, H., Naghavi, H., Pham, T. D., y Bui, D. T. (2018). Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran). Remote Sensing 2018, Vol. 10, Page 172, 10(2), 172. https://doi.org/10.3390/RS10020172
dc.relation.referencesVazquez, P. M., Adema, E. O., y Fernández, B. (2013). Dinámica de la fenología de la vegetación a partir de series temporales de NDVI de largo plazo en la provincia de La Pampa. Ecología Austral 23 (2) : 77-142. (2013). https://repositorio.inta.gob.ar/handle/20.500.12123/7603
dc.relation.referencesVorster, A. G., Evangelista, P. H., Stovall, A. E. L., y Ex, S. (2020). Variability and uncertainty in forest biomass estimates from the tree to landscape scale: The role of allometric equations. Carbon Balance and Management, 15(1), 1–20. https://doi.org/10.1186/S13021-020-00143-6/FIGURES/9
dc.relation.referencesWillmott, C. J., y Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82. https://doi.org/10.3354/CR030079
dc.relation.referencesWu, Z., y Benkeser, D. (2022). A Huber loss-based super learner with applications to healthcare expenditures. https://arxiv.org/abs/2205.06870v1
dc.relation.referencesXu, L., Saatchi, S. S., Yang, Y., Yu, Y., Pongratz, J., Anthony Bloom, A., Bowman, K., Worden, J., Liu, J., Yin, Y., Domke, G., McRoberts, R. E., Woodall, C., Nabuurs, G. J., De-Miguel, S., Keller, M., Harris, N., Maxwell, S., y Schimel, D. (2021). Changes in global terrestrial live biomass over the 21st century. Science Advances, 7(27). https://doi.org/10.1126/SCIADV.ABE9829/SUPPL_FILE/ABE9829_SM.PDF
dc.relation.referencesXue, J., y Su, B. (2017). Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. https://doi.org/10.1155/2017/1353691
dc.relation.referencesYin, F., Lewis, P. E., y Gómez-Dans, J. L. (2022). Bayesian atmospheric correction over land: Sentinel2/MSI and Landsat 8/OLI. Geosci. Model Dev, 15, 7933–7976. https://doi.org/10.5194/gmd-157933-2022
dc.relation.referencesYoung, S. R., Rose, D. C., Karnowski, T. P., Lim, S. H., y Patton, R. M. (2015). Optimizing deep learning hyper-parameters through an evolutionary algorithm. Proceedings of MLHPC 2015: Machine Learning in High-Performance Computing Environments - Held in conjunction with SC 2015: The International Conference for High Performance Computing, Networking, Storage and Analysis. https://doi.org/10.1145/2834892.2834896
dc.relation.referencesYu, T., y Zhu, H. (2020). Hyper-Parameter Optimization: A Review of Algorithms and Applications. https://arxiv.org/abs/2003.05689v1
dc.relation.referencesZhang, Q., Yang, L. T., Chen, Z., y Li, P. (2018). A survey on deep learning for big data. Information Fusion, 42, 146–157. https://doi.org/10.1016/J.INFFUS.2017.10.006
dc.rights.accesoRestringido (Solo Referencia)
dc.rights.accessrightsRestrictedAccess
dc.subjectBosque seco tropical
dc.subjectAprendizaje automático
dc.subjectBiomasa aérea
dc.subjectProyecto hidroeléctrico El Quimbo
dc.subjectImagenes satelitales
dc.subject.keywordTropical dry forest
dc.subject.keywordMachine learning
dc.subject.keywordAboveground biomass
dc.subject.keywordEl Quimbo
dc.subject.keywordSatellite images
dc.subject.lembIngeniería Forestal -- Tesis y disertaciones académicas
dc.subject.lembModelos predictivos en ecología
dc.subject.lembAprendizaje automático aplicado a ecosistemas
dc.subject.lembBiomasa aérea y almacenamiento de carbono
dc.subject.lembTeledetección y monitoreo ambiental
dc.titleDesarrollo de un modelo predictivo basado en machine learning para la biomasa aérea del bosque seco tropical en el sector suroccidental del área de compensación ambiental del proyecto hidroeléctrico el Quimbo
dc.title.titleenglishDevelopment of a machine learning-based predictive model for aboveground biomass in the tropical dry forest of the southwestern environmental compensation area of the el Quimbo hydroelectric projec
dc.typebachelorThesis
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
BarretoPuertoEddySantiago2024.pdf
Tamaño:
2.49 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
No hay miniatura disponible
Nombre:
BarretoPuertoEddySantiagoAnexos2024.zip
Tamaño:
1.11 MB
Formato:
Descripción:
Anexos
No hay miniatura disponible
Nombre:
Licencia de uso y publicación.pdf
Tamaño:
233.71 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia de uso y publicación

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: