Modelo de encriptación de imágenes utilizando atractores caóticos y principios de computación cuántica
| dc.contributor.advisor | Alvarado Nieto, Luz Deicy | |
| dc.contributor.advisor | Amaya Barrera, Edilma Isabel | |
| dc.contributor.author | Rico García, Miguel Ángel | |
| dc.contributor.orcid | Alvarado Nieto Luz Deicy [0000-0002-1305-3123] | |
| dc.contributor.orcid | Amaya Barrera Edilma Isabel [0000-0002-8845-5901] | |
| dc.date.accessioned | 2025-09-22T16:03:51Z | |
| dc.date.available | 2025-09-22T16:03:51Z | |
| dc.date.created | 2025-08-14 | |
| dc.description | El presente trabajo muestra un sistema de encriptación de imágenes digitales a partir del uso de atractores caóticos y principios de computación cuántica, el cual estará basado en trabajos recientes que hacen uso de estos conceptos. El proceso general de encriptación parte de una imagen digital la cual se somete a dos procesos de transformación, siendo el primero la difusión del plano de la imagen en donde se transforma la estructura general y la organización de los pixeles, para luego llevar a cabo lo que se denomina confusión del plano, en donde se modifican los rangos y valores de los pixeles mediante el uso de cadenas generadas a partir de sistemas caóticos, obteniendo así, la imagen encriptada. Para validar el algoritmo propuesto se aplicaron algunas de las métricas de desempeño más reconocidas y utilizadas en artículos similares, como lo son los índices NPCR y UACI, análisis de espacio de llaves y de histogramas, etc. Lo anterior, con el objetivo de obtener indicadores equiparables a los reportados en literatura actual con la cual se contrasta y analiza. | |
| dc.description.abstract | This project presents a digital image encryption system based on chaotic attractors and quantum computing principles. This system is based on recent work that leverages these concepts. The general encryption process begins with a digital image, which undergoes two transformation processes. The first involves image plane diffusion, transforming the overall structure and organization of the pixels. This is followed by plane confusion, which modifies the pixel ranges and values using strings generated from chaotic systems, thereby obtaining the encrypted image. To validate the proposed algorithm, some of the most recognized and widely used performance metrics were applied in similar papers, such as the NPCR and UACI indices, key space and histogram analysis, and so on. This was done with the aim of obtaining indicators comparable to those reported in current literature, which is then compared and analyzed. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/99130 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Kraft, J., & Washington, L. (2022). An Introduction to Number Theory with Cryptography (2nd). CRC Press. | |
| dc.relation.references | Kaur, M., & Kumar, V. (2020). A Comprehensive Review on Image Encryption Techniques. Arch Computat Methods Eng. https://doi.org/10.1007/s11831-018-9298-8 | |
| dc.relation.references | Nehal, M. E.-S. A., Aliaa, Y., & Hala, E.-S. A.-G. (2022). Fast and Robust Image Encryption Scheme Based on Quantum Logistic Map and Hyperchaotic System. Complexity. https://doi.org/https://doi.org/10.1155/2022/3676265 | |
| dc.relation.references | Nehal, M. E.-S. A., Hala, E.-S., & Aliaa, Y. (2023). Mixed Multi-Chaos Quantum Image Encryption Scheme Based on Quantum Cellular Automata (QCA). Fractal and Fractional, 7 (10). https://doi.org/10.3390/fractalfract7100734 | |
| dc.relation.references | Kamal, S. T., Hosny, K. M., Elgindy, T. M., Darwish, M. M., & Fouda, M. M. (2021). A New Image Encryption Algorithm for Grey and Color Medical Images. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3063237 | |
| dc.relation.references | Zhenjie, B., Ru, X., & Yadong, J. (2021). Image scrambling adversarial autoencoder based on the asymmetric encryption. Springer link. https://doi.org/https://doi.org/10. 1007/s11042-021-11043-3 | |
| dc.relation.references | Universidad de los Andes. (2024). El primer computador cuántico llega a Colombia [Consultado el 8 de abril de 2025]. https://www.uniandes.edu.co/es/noticias/cienciasaplicadas/ el-primer-computador-cuantico-llega-a-colombia | |
| dc.relation.references | Lopez, M. L. (2022). Criptografía y Seguridad en Computadores. Universidad de Jaén. https: //ccia.esei.uvigo.es/docencia/SSI/cripto.pdf | |
| dc.relation.references | Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27 (3). https://people.math.harvard.edu/~ctm/home/text/others/shannon/ entropy/entropy.pdf | |
| dc.relation.references | Diffie, B. W., & Hellman, M. E. (1976). New Directions in Cryptography. IEEE Transactions on Information Theory, 22 (6). https://ee.stanford.edu/~hellman/publications/24. pdf | |
| dc.relation.references | Kumari, M., Gupta, S., & Sardana, P. (2017). A Survey of Image Encryption Algorithms. Springer Link. https://doi.org/10.1007/s13319-017-0148-5 | |
| dc.relation.references | Stallings, W. (2017). Cryptography and Network Security: Principles and Practice (7th). Pearson. https : / /www. cs . vsb . cz / ochodkova / courses / kpb / cryptography - and - network-security_-principles-and-practice-7th-global-edition.pdf | |
| dc.relation.references | Pourasad, Y., Ranjbarzadeh, R., & Mardani, A. (2021). A New Algorithm for Digital Image Encryption Based on Chaos Theory. Entropy, 23. https://doi.org/10.3390/e23030341 | |
| dc.relation.references | Zhenlong, M., Jinqing, L., Xiaoqiang, D., Yaohui, S., & Zefei, L. (2021). Double image encryption algorithm based on neural network and chaos. Chaos, Solitons & Fractals, 152. https://doi.org/https://doi.org/10.1016/j.chaos.2021.111318 | |
| dc.relation.references | Simmons, G. J. (1979). Symmetric and Asymmetric Encryption. Computing Surveys, 11 (4). https://doi.org/10.1145/356789.356793 | |
| dc.relation.references | Strogatz, S. H. (2015). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (2nd). CRC Press. | |
| dc.relation.references | Universidad EAFIT. (s.f.). ¿Cómo se creó la primera computadora? [Accedido: 7 de junio de 2024]. https://www.eafit.edu.co/ninos/reddelaspreguntas/Paginas/como-se-creo-laprimera- computadora.aspx | |
| dc.relation.references | Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20 (2). | |
| dc.relation.references | Devaney, R. (2021). An Introduction to Chaotic Dynamical Systems. CRC Press. https : //doi.org/10.1201/9780429280801 | |
| dc.relation.references | Hamadi, S., & Mohammed, E. (2024). CHAOTIC SYSTEMS IN CRYPTOGRAPHY: AN OVERVIEW OF FEATURE-BASED METHODS. Al-Salam Journal for Engineering and Technology. https://doi.org/10.55145/ajest.2025.04.01.016 | |
| dc.relation.references | Lü, J., & Chen, G. (2002). A NEW CHAOTIC ATTRACTOR COINED. International Journal of Bifurcation and Chaos, 12 (03), 659-661. https : / / doi . org / 10 . 1142 / S0218127402004620 | |
| dc.relation.references | Qi, G., Chen, G., Du, S., Chen, Z., & Yuan, Z. (2005). Analysis of a new chaotic system. Physica A: Statistical Mechanics and its Applications, 352 (2). https://doi.org/https: //doi.org/10.1016/j.physa.2004.12.040 | |
| dc.relation.references | Goggin, M., Sundaram, B., & Milonni, P. (1990). Quantum logistic map. Physical review. A, 41. https://doi.org/10.1103/PhysRevA.41.5705 | |
| dc.relation.references | Hosseinzadeh, R., Khedmati, Y., & Parvaz, R. (2021). A hybrid chaos map with two control parameters to secure image encryption algorithms. arXiv. https://arxiv.org/abs/ 2110.15586 | |
| dc.relation.references | Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., & O’Brien, J. L. (2010). Quantum computers. Nature. https://doi.org/https://doi.org/10.1038/nature08812 | |
| dc.relation.references | Hughes, C., Isaacson, J., Perry, A., Sun, R. F., & Turner, J. (2021). What Is a Qubit? Springer International Publishing. https://doi.org/10.1007/978-3-030-61601-4_2 | |
| dc.relation.references | LaPierre, R. (2021). Introduction to Quantum Computing. Springer International Publishing. https://doi.org/10.1007/978-3-030-69318-3_18 | |
| dc.relation.references | Kockum, A. F., & Nori, F. (2019). Quantum Bits with Josephson Junctions. Springer Nature. https://doi.org/10.1007/978-3-030-20726-7_17 | |
| dc.relation.references | Botsinis, P., Alanis, D., Babar, Z., Nguyen, H., Chandra, D., Ng, S., & Hanzo, L. (2018). Quantum Search Algorithms for Wireless Communications. IEEE Communications Surveys & Tutorials, PP, 1-1. https://doi.org/10.1109/COMST.2018.2882385 | |
| dc.relation.references | Cornejo, J. E. G. (2021). Conceptos Matemáticos Básicos de Computación Cuántica. Consultado el 29 de julio de 2024, desde https://docirs.cl/math_computacion_cuantica. asp#vectores_numeros | |
| dc.relation.references | Bradski, G. (2000). OpenCV (Versión 4.x) [Paquete de software]. | |
| dc.relation.references | Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., et al. (2020). NumPy (Versión 1.x) [Paquete de software]. | |
| dc.relation.references | Legrandin, D. (2019). PyCryptodome (Versión 3.x) [Paquete de software]. | |
| dc.relation.references | Rossum, G. (2023). concurrent.futures (Versión 3.11+) [Módulo estándar de Python]. | |
| dc.relation.references | Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y., Bucher, D., et al. (2019). Qiskit (Versión 0.x) [Marco de trabajo de código abierto para computación cuántica]. | |
| dc.relation.references | Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., et al. (2020). SciPy (Versión 1.x) [Paquete de software]. | |
| dc.relation.references | Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., et al. (2014). scikit-image (Versión 0.22) [Paquete de software]. | |
| dc.relation.references | Hunter, J. D. (2007). Matplotlib (Versión 3.x) [Paquete de software]. | |
| dc.relation.references | Ghebleh, M., Kanso, A., & Noura, H. (2014). An image encryption scheme based on irregularly decimated chaotic maps. Signal Processing: Image Communication, 29. https: //doi.org/https://doi.org/10.1016/j.image.2013.09.009 | |
| dc.relation.references | Wu, Y. (2011). NPCR and UACI Randomness Tests for Image Encryption. Cyber Journals: Journal of Selected Areas in Telecommunications. https://www.researchgate.net/ publication / 259190481_NPCR_and_UACI_Randomness_Tests_for_Image_ Encryption | |
| dc.relation.references | Khan, J. S., & Ahmad, J. (2019). Chaos based efficient selective image encryption. Multidimensional Systems and Signal Processing, 30. https://doi.org/10.1007/s11045-018- 0589-x | |
| dc.relation.references | Wang, Y., Chen, L., Yu, K., Gao, Y., & Ma, Y. (2022). An Image Encryption Scheme Based on Logistic Quantum Chaos. Entropy, 24 (2). https://doi.org/10.3390/e24020251 | |
| dc.relation.references | Noshadian, S., Ebrahimzade, A., & Kazemitabar, S. J. (2018). Optimizing chaos based image encryption. Multimedia Tools and Applications, 77. https://doi.org/10.1007/s11042- 018-5807-x | |
| dc.relation.references | Carlson, A., Gang, G., Gang, T., Ghosh, B., & Dutta, I. K. (2021). Evaluating True Cryptographic Key Space Size. 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). https://doi.org/10.1109/ UEMCON53757.2021.9666530 | |
| dc.relation.references | Biryukov, A. (2011). Chosen Plaintext Attack (H. C. A. van Tilborg & S. Jajodia, Eds.). Springer US. https://doi.org/10.1007/978-1-4419-5906-5_557 | |
| dc.relation.references | Ahmed, F., Anees, A., Uddin, V., & Siyal, M. Y. (2014). A Noisy Channel Tolerant Image Encryption Scheme. Wireless Personal Communications, 77 (4). https://doi.org/10. 1007/s11277-014-1667-5 | |
| dc.relation.references | May A, A.-O., Alhumyani, H., Ibrahim, S., & Abbas, A. M. (2022). Efficient Medical Image Encryption Framework against Occlusion Attack. Intelligent Automation & Soft Computing, 34 (3). https://doi.org/10.32604/iasc.2022.027138 | |
| dc.relation.references | Liang, J., Song, Z., Sun, Z., Lv, M., & Ma, H. (2023). Coupling Quantum RandomWalks with Long- and Short-Term Memory for High Pixel Image Encryption Schemes. Entropy, 25 (2). https://doi.org/10.3390/e25020353 | |
| dc.relation.references | Hoffstein, J., Pipher, J., & Silverman, J. H. (2008). An Introduction to Mathematical Cryptography. Springer. https://doi.org/10.1007/978-0-387-77994-2 | |
| dc.relation.references | Shannon, C. E. (1945). A Mathematical Theory of Cryptography. Memorandum. https : //www.iacr.org/museum/shannon/shannon45.pdf | |
| dc.relation.references | Hu, M., Li, J., & Di, X. (2023). Quantum image encryption scheme based on 2D Sine2 − Logistic chaotic map. Nonlinear Dynamics, 111, 2815-2839. https://doi.org/10.1007/ s11071-022-07942-1 | |
| dc.relation.references | Zhang, Y., Lu, K., Gao, Y., & Wang, M. (2013). NEQR: A novel enhanced quantum representation of digital images. Quantum Information Processing, 12 (8), 2833-2860. https://doi.org/10.1007/s11128-013-0567-z | |
| dc.relation.references | Ya-jun, G., Hong-wei, X., Jun, Z., & Zhang, H. (2022). A novel quantum image encryption technique based on improved controlled alternated quantum walks and hyperchaotic system. Physica A: Statistical Mechanics and its Applications, 598. https://doi.org/ 10.1016/j.physa.2022.127334 | |
| dc.relation.references | Khan, M., & Waseem, H. M. (2018). A novel image encryption scheme based on quantum dynamical spinning and rotations. PLOS ONE, 13 (11). https://doi.org/10.1371/ journal.pone.0206460 | |
| dc.relation.references | USC-SIPI Image Database. (s.f.). Miscellaneous Volume: Image 23 [University of Southern California]. | |
| dc.relation.references | Masood, F., Ahmad, J., Shah, S. A., Jamal, S. S., & Hussain, I. (2020). A Novel Hybrid Secure Image Encryption Based on Julia Set of Fractals and 3D Lorenz Chaotic Map. Entropy, 22 (3). https://doi.org/10.3390/e22030274 | |
| dc.relation.references | Maqsood, F., Ahmed, M., Mumtaz, M., & Shah, M. (2017). Cryptography: A Comparative Analysis for Modern Techniques. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/IJACSA.2017.080659 | |
| dc.relation.references | Shraida, G. K., Younis, H. A., Al-Amiedy, T. A., Anbar, M., Younis, H. A., & Hasbullah, I. H. (2023). An Efficient Color-Image Encryption Method Using DNA Sequence and Chaos Cipher. Computers, Materials & Continua, 75 (2). http://www.techscience. com/cmc/v75n2/52067 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Encriptación | |
| dc.subject | Imágenes | |
| dc.subject | Atractor | |
| dc.subject | Caos | |
| dc.subject | Computación | |
| dc.subject | Cuántica | |
| dc.subject.keyword | Image | |
| dc.subject.keyword | Encryption | |
| dc.subject.keyword | Attractor | |
| dc.subject.keyword | Chaos | |
| dc.subject.keyword | Quantum | |
| dc.subject.keyword | Computing | |
| dc.subject.lemb | Ingeniería de Sistemas -- Tesis y disertaciones académicas | |
| dc.title | Modelo de encriptación de imágenes utilizando atractores caóticos y principios de computación cuántica | |
| dc.title.titleenglish | Image encryption model using chaotic attractors and quantum computing principles | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Monografía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
