Determinación del modelo geoidal regional con la técnica clásica stokes–helmert para el departamento del Valle Del Cauca Colombia

dc.contributor.advisorCárdenas Contreras, Andrés
dc.contributor.authorGutierrez Hernandez, Angelica
dc.contributor.authorGaleano Sánchez, Paula Valentina
dc.contributor.orcidCárdenas Contreras Andrés [0000-0002-6033-4331]
dc.date.accessioned2025-09-10T20:20:59Z
dc.date.available2025-09-10T20:20:59Z
dc.date.created2025-08-12
dc.descriptionEste estudio presenta el desarrollo de un modelo geoidal regional para el departamento del Valle del Cauca (Colombia), calculado mediante la técnica clásica de Stokes–Helmert. Para ello, se integraron de forma conjunta datos gravimétricos terrestres, aéreos y satelitales con un modelo digital de elevación de alta resolución, lo que permitió aprovechar las características complementarias de las distintas fuentes de información. El procesamiento comprendió una fase inicial de organización, estandarización y depuración rigurosa de mas de un millón de observaciones gravimétricas de las diferentes fuentes mencionadas, seguida de la aplicación de la corrección del terreno y del ajuste de las anomalías de gravedad obtenidas a partir de los datos gravimétricos, empleando como referencia el modelo global XGM2019e, truncado al grado 630 y con expansión local hasta el grado 145. Asimismo, el cálculo se implementó en un software científico libre, adaptando la metodología del paquete CSHSOFT (Abbak et al., 2024) a Python (GRAV_UD), lo que posibilitó implementar un flujo de trabajo más flexible y reproducible. Como resultado, se obtuvo un geoide en del departamento del Valle del Cauca con la técnica Stokes - Helmert, el cual presentó mejoras significativas en zonas montañosas, donde la resolución y precisión adquieren mayor relevancia. Consecuentemente, la validación de los resultados frente al modelo global confirmó que un geoide regional presenta mayor exactitud, dado que incorpora parámetros locales que capturan mejor la variabilidad gravimétrica. En particular, el parámetro m0, que representa la raíz cuadrada media de las diferencias entre las ondulaciones geoidales calculadas y las del modelo de referencia, se redujo de 48,2 cm a 43,21 cm. Esta disminución indica una mejora en la concordancia con la realidad física, especialmente en zonas montañosas, donde la ondulación geoidal muestra variaciones abruptas y la resolución del modelo adquiere mayor relevancia.
dc.description.abstractThis study presents the development of a regional geoidal model for the Valle del Cauca department (Colombia), calculated using the classical Stokes-Helmert technique. To accomplish this, terrestrial, aerial, and satellite gravimetric data were jointly integrated with a high-resolution digital elevation model, which allowed leveraging the complementary characteristics of the different information sources. The processing comprised an initial phase of organization, standardization, and rigorous purification of more than one million gravimetric observations from the different aforementioned sources, followed by the application of terrain correction and adjustment of gravity anomalies obtained from the gravimetric data, using the global model XGM2019e as reference, truncated to degree 630 and with local expansion up to degree 145. Likewise, the calculation was implemented in free scientific software, adapting the CSHSOFT package methodology (Abbak et al., 2024) to Python (GRAV_UD), which enabled implementing a more flexible and reproducible workflow. As a result, a geoid was obtained for the Valle del Cauca department using the Stokes-Helmert technique, which presented significant improvements in mountainous areas, where resolution and precision acquire greater relevance. Consequently, validation of the results against the global model confirmed that a regional geoid presents greater accuracy, since it incorporates local parameters that better capture gravimetric variability. In particular, the m0 parameter, which represents the root mean square of the differences between the calculated geoidal undulations and those of the reference model, was reduced from 48.2 cm to 43.21 cm. This decrease indicates an improvement in concordance with physical reality, especially in mountainous areas, where geoidal undulation shows abrupt variations and model resolution acquires greater relevance.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/98893
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAbbak, R. A., Goyal, R., & Ustun, A. (2024). A user-friendly software package for modelling gravimetric geoid by the classical Stokes-Helmert method. Earth Science Informatics. https://doi.org/10.1007/s12145-024-01328-0
dc.relation.referencesAbbak, R. A. (2014). Effect of aster dem on the prediction of mean gravity anomalies: A case study over the auvergne test region. Acta Geodaetica et Geophysica, 49 (3), 337-352. https://doi.org/10.1007/s40328-014-0061-4
dc.relation.referencesAvalos, D. (2009, febrero). Shgeo software package: The unb application to stokeshelmert approach for precise geoid computation - reference manual i [Theory section by A. Ellmann (September 2005)]. Department of Geodesy y Geomatics Engineering. University of New Brunswick, Fredericton, New Brunswick, Canada.
dc.relation.referencesBertiger, W. I., Bar-Sever, Y. E., Christensen, E. J., Davis, E. S., Guinn, J. R., Haines, B. J., Ibanez-Meier, R. W., Jee, J. R., Lichten, S. M., Melbourne, W. G., Muellerschoen, R. J., Munson, T. N., Vigue, Y., Wu, S. C., & Yunck, T. P. (1994). Gps precise tracking of topex/poseidon: Results and implications. Journal of Geophysical Research: Oceans, 99 (C12), 24449-24464.
dc.relation.referencesBjerhammar, A. (1973). Theory of errors and generalized matrix inverses. Elsevier.
dc.relation.referencesCid, R., & Ferrer, S. (1997). Geodesia: Geométrica, física y por satélites. Instituto Geográfico Nacional.
dc.relation.referencesCorchete, V. (2009a). Determinación gravimétrica del geoide - gravimetric geoid computation. https://doi.org/10.13140/RG.2.2.34931.55844
dc.relation.referencesCorchete, V. (2009b). Geodesia geométrica y geodesia física: Objetivo y aplicaciones. https://doi.org/10.13140/RG.2.2.30527.53920
dc.relation.referencesCorporación Autónoma Regional del Valle del Cauca. (2014). CVC presentará sistema de referencia para medir alturas en el valle del cauca. https : / / cvc . gov . co / carousel/866-geoides
dc.relation.referencesDecreto 1895 de 1973 (1973, 15 de septiembre).
dc.relation.referencesDMA & Agency. (1988). Word geodetic system 1984: Parameters, formulas and graphics for the practical application of wgs84 (Technical Report, part two, 601-610).
dc.relation.referencesEllmann, A., & Vaníček, P. (2007). UNB application of stokes–helmert’s approach to geoid computation. Journal of Geodynamics, 23, 200-213.
dc.relation.referencesElshewy, M. A., Trung Thanh, P., Elsheshtawy, A. M., Refaat, M., & Freeshah, M. (2024). A novel approach for optimizing regional geoid modeling over rugged terrains based on global geopotential models and artificial intelligence algorithms. Egyptian Journal of Remote Sensing and Space Sciences, 27 (4), 656-668. https: //doi.org/10.1016/j.ejrs.2024.09.002
dc.relation.referencesErol, B., Erol, S., & Celik, R. N. (2005). Precise geoid model determination using GPS technique and geodetic applications. Proceedings of the 2nd International Conference on Recent Advances in Space Technologies (RAST 2005), 395-399. https://doi.org/10.1109/RAST.2005.1512599
dc.relation.referencesFarr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45 (2), RG2004. https://doi.org/10. 1029/2005RG000183
dc.relation.referencesForsberg, R., & Olesen, A. V. (2010). Airborne gravity field determination. En F. Sansò (Ed.), Sciences of geodesy – i: Advances and future directions (pp. 83-104, Vol. 1). Springer. https://doi.org/10.1007/978-3-642-11741-1_3
dc.relation.referencesGauss, C. F. (1828). Bestimmung des breitenunterschiedes zwischen den sternwarten von goettingen und altona durch beobachtungen am ramsdenschen zenithsector. Vandenhoeck und Ruprecht.
dc.relation.referencesGMT Team. (2025). Gmt – generic mapping tools documentation. SOEST, University of Hawaii. https://docs.generic-mapping-tools.org/
dc.relation.referencesHeck, B. (1992). A revision of helmert’s second method of condensation in the geoid and quasigeoid determination [No. 112, Potsdam, October 1992]. 7th I.A.G. Symposium "Geodesy and Physics of the Earth".
dc.relation.referencesHeiskanen, W. A., & Moritz, H. (1967). Physical geodesy. Freeman; Company.
dc.relation.referencesHirt, C., Filmer, M., & Featherstone, W. (2010). Comparison and validation of recent freely-available aster-gdem ver1, srtm ver4.1 and geodata dem-9s ver3 digital elevation models over australia. Australian Journal of Earth Sciences, 57 (3), 337-347. https://doi.org/10.1080/08120091003677553
dc.relation.referencesHofmann, B., & Moritz, H. (2005). Physical geodesy (2nd). Springer.
dc.relation.referencesHuang, J., Vaníček, P., Pagiatakis, S. D., & Brink, W. (2001). Effect of topographical density on geoid in the canadian rocky mountains. Journal of Geodesy, 74 (11- 12), 805-815. https://doi.org/10.1007/s001900000145
dc.relation.referencesIGAC. (2024a). Modelo geoidal de colombia. https://antiguo.igac.gov.co/es/contenido/ areas-estrategicas/modelo-geoidal-de-colombia
dc.relation.referencesIGAC. (2024b). Red geodésica nacional [Acceso el 10 de julio de 2025]. https : / / redgeodesica.igac.gov.co/
dc.relation.referencesInstituto Nacional de Estadística y Geografía. (2019). Cálculo del geoide gravimétrico mexicano: Técnica Stokes-Helmert. INEGI.
dc.relation.referencesJalal, S. J., Musa, T. A., Din, A. H. M., Aris, W. A. W., Shen, W., & Pa’suya, M. F. (2019). Influencing factors on the accuracy of local geoid model. Geodesy and Geodynamics, 10 (6), 439-445.
dc.relation.referencesJanák, J., Vaníček, P., Foroughi, I., Kingdon, R., Sheng, M. B., & Santos, M. C. (2017). Computation of precise geoid model of auvergne using current unb stokes–helmert’s approach. Contributions to Geophysics and Geodesy, 47 (3), 201-229. https://doi.org/10.1515/congeo-2017-0015
dc.relation.referencesKeys, R. G. (1981). Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29 (6), 1153-1160. https://doi.org/10.1109/TASSP.1981.1163711
dc.relation.referencesKlu, M. A. (2015). Determination of a geoid model for ghana using the stokes–helmert method [Master’s thesis]. University of New Brunswick.
dc.relation.referencesKoch, K. R. (2019). Manual de métodos analíticos y teóricos potenciales de geodesia matemática funcional. International Journal of Geomathematics, 10, 17. https: //doi.org/10.1007/s13137-019-0125-7
dc.relation.referencesLeal, A., & Pérez, S. A. (2017). Modelo geoidal para la zona norte de colombia: Propuesta metodológica.
dc.relation.referencesLerma, M. J. S. (2012). Introducción histórica a la geodesia. Pensamiento Matemático, (2), 4-63.
dc.relation.referencesLiu, Q., Schmidt, M., Sánchez, L., Moisés, L., & Cortez, D. (2024). High-resolution regional gravity field modeling in data-challenging regions for the realization of geopotential-based height systems. Earth, Planets and Space, 76 (35). https: //doi.org/10.1186/s40623-024-01981-1
dc.relation.referencesMarotta, G. (2017). Development of a local geoid model at the federal district, brazil, patch by the remove–compute–restore technique, following helmert’s condensation method. Boletim de Ciências Geodésicas, 23 (3), 520-538. https://doi.org/ 10.1590/S1982-21702017000300035
dc.relation.referencesMartinec, Z., Matyska, C., Grafarend, E. W., & Vaníček, P. (1993). On helmert’s 2nd condensation method. Manuscripta Geodaetica, 18.
dc.relation.referencesMartínez, W., Sanchez, L., & Flórez, J. (1995). Determinación de nuevas estaciones absolutas de gravedad en colombia.
dc.relation.referencesMolodensky, M. S., Yeremeev, V. F., & Yurkina, M. I. (1962). Methods for study of the external gravitational field and figure of the earth. Israel Program for Scientific Translation.
dc.relation.referencesMorelli, C., Gantar, C., Honkasalo, T., McConnell, R., Tanner, J., Szabo, B., Uotila, U., & Whalen, C. (1971). The international gravity standardization: Net 1971 (igsn 71). Bureau central de l’Association internationale de Geodesie.
dc.relation.referencesMoritz, H. (1980). Geodetic reference system 1980. Journal of Geodesy, 54 (3), 395-405.
dc.relation.referencesNASA JPL. (2006). Nasa’s topex/poseidon oceanography mission ends [Disponible en: http://www.nasa.gov/centers/jpl/news/topex-20060105.html].
dc.relation.referencesNovák, P. (2000). Evaluation of gravity data for the stokes-helmert solution to the geodetic boundary-value problem.
dc.relation.referencesOlgun, S., Üstün, A., & Akyılmaz, O. (2023). tc-cylinder: An optimized algorithm for accurate topography effect from high-resolution digital elevation models. Computers & Geosciences, 170, 105264. https://doi.org/10.1016/j.cageo.2022.105264
dc.relation.referencesQuirós Rosado, E. (2015, febrero). Introducción a la fotogrametría y cartografía aplicadas a la ingeniería civil.
dc.relation.referencesRexer, M., & Hirt, C. (2014). Comparison of free high-resolution digital elevation data sets (aster gdem2, srtm v2.1/v4.1) and validation against accurate heights from the australian national gravity database. Australian Journal of Earth Sciences, 61 (2), 213-226. https://doi.org/10.1080/08120099.2014.884983
dc.relation.referencesRodríguez, M. F., & Rojas, K. F. (2019). Determinación de la dorsal malpelo a partir de gravimetría satelital. Universidad Distrital Francisco José de Caldas, Facultad de Ingeniería.
dc.relation.referencesSánchez, L., & Martínez, O. (1999). MAGNA-SIRGAS y su impacto en la geodesia en colombia.
dc.relation.referencesSánchez, L., Ågren, J., Huang, J., Wang, Y., Mäkinen, J., Pail, R., Barzaghi, R., Vergos, G. S., Ahlgren, K., & Liu, Q. (2021). Strategy for the realisation of the international height reference system (ihrs). Journal of Geodesy, 95 (33), 1-33. https://doi.org/10.1007/s00190-021-01481-0
dc.relation.referencesSantana, L. M., & Vásquez, J. (2002). Características geográficas del departamento del Valle del Cauca. Entorno Geográfico, (1). https://doi.org/10.25100/eg.v0i1.3556
dc.relation.referencesScholz, E. (2005). Carl f. gauss, el "gran triángulo 2 los fundamentos de la geometría. La Gaceta de la RSME, 8, 683-712.
dc.relation.referencesShen, W., & H, J. (2013). Modelado y evaluación de geoides globales. InTech. https: //doi.org/10.5772/54649
dc.relation.referencesSjöberg, L. E. (1998). The atmospheric geoid and gravity corrections. Bollettino di Geodesia e Scienze Affini, 57 (4), 421-435.
dc.relation.referencesSjöberg, L. E. (1999). The IAG approach to the atmospheric geoid correction in stokes’ formula and a new strategy. Journal of Geodesy, 73 (7), 362-366. https://doi. org/10.1007/s001900050254
dc.relation.referencesSmith, D. A., Holmes, S. A., Li, X., Guillaume, S., Wang, Y. M., Bürki, B., Roman, D. R., & Damiani, T. M. (2013). Confirming regional 1 cm differential geoid accuracy from airborne gravimetry: The geoid slope validation survey of 2011. Journal of Geodesy, 87 (9), 885-907. https://doi.org/10.1007/s00190-013-0653-0
dc.relation.referencesStokes, G. G. (1849). On the variation of gravity on the surface of the earth. Transactions of the Cambridge Philosophical Society, 8.
dc.relation.referencesTenzer, R., & Janak, J. (2002). Stokes-Helmert’s scheme for precise geoid determination. Revista Cartográfica, (74-75), 136-145.
dc.relation.referencesTenzer, R., Novák, P., Janák, J., Huang, J., Najafi, M., Vajda, P., & Santos, M. (2003). A review of the UNB approach for precise geoid determination based on the stokes–helmert method. En Honouring the academic life of petr vanicek (pp. 132-178, Vol. 218).
dc.relation.referencesTocho, C. N., Späth, F. G. E., & Antokoletz, E. D. (2017). Determinación gravimétrica del geoide. En Geodesia (pp. 109-110). Facultad de Ciencias Astronómicas y Geofísicas, UNLP.
dc.relation.referencesTorge, W. (2001). Geodesy. Walter de Gruyter.
dc.relation.referencesU.S. Geological Survey. (2018). USGS EROS Archive - Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global [Disponible en: https : / / www . usgs . gov/centers/eros/ science/usgs - eros - archive - digital - elevation - shuttle - radar - topography-mission-srtm-1].
dc.relation.referencesVaníček, P., & Featherstone, W. E. (1998). Performance of three types of Stokes’s kernel in the combined solution for the geoid. Journal of Geodesy, 72.
dc.relation.referencesVaníček, P., Huang, J., Novák, P., Pagiatakis, S. D., Véronneau, M., Martinec, Z., & Featherstone, W. E. (1999). Determination of the boundary values for the Stokes-Helmert problem. Journal of Geodesy, 73.
dc.relation.referencesVaníček, P., & Janák, J. (2001). The UNB technique for precise geoid determination [Presented at CGU annual meeting, Banff, May 26, 2000]. CGU annual meeting.
dc.relation.referencesVaníček, P., & Kleusberg, A. (1987). The Canadian geoid – Stokesian approach. compilation of a precise regional geoid. Manuscripta Geodaetica, 12.
dc.relation.referencesVaníček, P., & Martinec, Z. (1994). The Stokes-Helmert scheme for the evaluation of a precise geoid. Manuscripta Geodaetica, 19.
dc.relation.referencesVaníček, P., Najafi, M., Martinec, Z., Harrie, L., & Sjöberg, L. E. (1995). Higher-degree reference field in the generalised Stokes-Helmert scheme for geoid computation. Journal of Geodesy, 70.
dc.relation.referencesVaníček, P., Santos, M., Tenzer, R., & Navarro, A. H. (2003). Algunos aspectos sobre alturas ortométricas y normales. Revista Cartográfica, 76, 79-86.
dc.relation.referencesVaníček, P., & Sjöberg, L. E. (1991). Reformulation of Stokes’s Theory for Higher Than Second Degree Reference Field and Modification of Integration Kernels. Journal of Geophysical Research, 96 (B4).
dc.relation.referencesVaníček, P., Sun, W., Ong, P., Martinec, Z., Najafi, M., Vajda, P., & Horst, B. (1996). Downward continuation of Helmert’s gravity. Journal of Geodesy, 71.
dc.relation.referencesVaníček, P., Kingdon, R., Kuhn, M., Ellmann, A., Featherstone, W. E., Santos, M. C., Martinec, Z., Hirt, C., & Avalos–Naranjo, D. (2013). Testing stokes–helmert geoid model computation on a synthetic gravity field: Experiences and shortcomings. Studia Geophysica et Geodaetica, 57. https://doi.org/10.1007/s11200- 012-0270-z
dc.relation.referencesVerdú, A., Almazán, J. L., & Primo, S. (2008). Aplicación de las matemáticas en el primer enlace geodésico entre Europa y África. Mapping, (124), 52-56.
dc.relation.referencesVilla Caro, R. (2016). El datum, el geoide, el elipsoide y la cartografía. Revista General de Marina, 270, 27-37.
dc.relation.referencesWang, Y., Sánchez, L., Ågren, J., Huang, J., Forsberg, R., Abd-Elmotaal, H., Barzaghi, R., Basić, T., Carrión, D., Claessens, S., Erol, B., Erol, S., Filmer, M., Grigoriadis, V., Isik, M., Jiang, T., Koç, Ö., Li, X., Ahlgren, K., . . . Zingerle, P. (2021).Colorado geoid computation experiment – overview and summary. Journal of Geodesy, 95 (127), 1-21. https://doi.org/10.1007/s00190-021-01567-9
dc.relation.referencesWessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic mapping tools: Improved version released. Eos, Transactions American Geophysical Union, 94 (45), 409-410. https://doi.org/10.1002/2013EO450001
dc.relation.referencesZingerle, P., Pail, R., Gruber, T., & Oikonomidou, X. (2020). The combined global gravity field model XGM2019e. Journal of Geodesy, 94, 66. https://doi.org/10. 1007/s00190-020-01398-0
dc.relation.referencesZingerle, P., Pail, R., Scheinert, M., & Schaller, T. (2019). Evaluation of terrestrial and airborne gravity data over antarctica—a generic approach. Journal of Geodetic Science, 9 (1), 29-40. https://doi.org/10.1515/jogs-2019-0004
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectCorrección del terreno
dc.subjectGeoide
dc.subjectGravimetría
dc.subjectStokes–Helmert
dc.subjectValle del Cauca
dc.subject.keywordTerrain correction
dc.subject.keywordGeoid
dc.subject.keywordGravimetry
dc.subject.keywordStokes–Helmert
dc.subject.keywordValle del Cauca
dc.subject.lembIngeniería Catastral y Geodesia -- Tesis y disertaciones académicas
dc.titleDeterminación del modelo geoidal regional con la técnica clásica stokes–helmert para el departamento del Valle Del Cauca Colombia
dc.title.titleenglishdetermination of the regional geoidal model using the classical stokes-helmert technique for the Valle Del Cauca department, Colombia
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeMonografía
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
Licencia de Uso y Publicación.pdf
Tamaño:
896.82 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
GutierrezHernandezAngelica2025.pdf
Tamaño:
23.5 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
GutierrezHernandezAngelica2025Anexos.zip
Tamaño:
633.32 MB
Formato:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: