Estado del conocimiento sobre aditivos utilizados en la fabricación de mezclas asfálticas tibias (MAT). Caso de estudio: periodo 2017-2023

dc.contributor.advisorRondón Quintana, Hugo Alexander
dc.contributor.authorBermúdez Daza, Denis Estephania
dc.contributor.orcidRondón Quintana, Hugo Alexander [0000-0003-2946-9411]
dc.date.accessioned2025-04-01T14:31:51Z
dc.date.available2025-04-01T14:31:51Z
dc.date.created2024-07-03
dc.descriptionEl uso de mezclas de concreto asfáltico para la conformación de capas asfálticas usadas en la construcción de proyectos de infraestructura vial es común. Esto se debe a que poseen propiedades que las hacen ideales para la construcción de cualquier superficie de tráfico. Adicionalmente, comparándolas con las mezclas en frío, tienden a ser más resistentes y durables bajo cargas de tráfico. Sin embargo, su uso tiene un impacto negativo en el medio ambiente, ya que deben ser fabricadas en plantas de asfalto, extendidas y compactadas en obra a muy altas temperaturas, generando emisiones de gases de efecto invernadero. Con el fin de ayudar a mitigar este impacto ambiental negativo, se han desarrollado las mezclas asfálticas tibias (MAT). Estas mezclas tienen como propósito disminuir las altas temperaturas requeridas para la fabricación de mezclas en caliente, usando técnicas como el espumado y el uso de aditivos, ya sean orgánicos o químicos, entre otros. Actualmente los grupos de investigación TOPOVIAL, Centro de Estudios en Pavimentos y Materiales Sostenibles y el Grupo de Investigación en Vías y Pavimentos, se encuentran desarrollando el proyecto: - “Desarrollo de una Mezcla Asfáltica Tibia (MAT) con Agregado de Concreto Reciclado (ACR)”, financiado por la Convocatoria 01-2023 de la Universidad Distrital Francisco José de Caldas. Dentro de las actividades y objetivos del proyecto, está el realizar un estado del conocimiento sobre MATs, y a su vez dentro de este estudio, el desarrollo de un estado del conocimiento sobre los aditivos utilizados para fabricar dichas mezclas. Por lo anterior, el presente proyecto busca apoyar a los grupos de investigación mencionados anteriormente, realizando una revisión bibliográfica para detectar el estado del conocimiento sobre el uso de aditivos usados en la fabricación de MATs. El presente estudio pretende identificar tendencias, analizando los diferentes aditivos usados para la fabricación de MATs, compilando y comparando información referente a los procesos de fabricación, características de cada uno de los aditivos, y los cambios en las propiedades de la mezcla asfáltica. Dicha revisión bibliográfica se realizará a partir de una búsqueda de información en bases de datos académicas, como Science Direct, Taylor & Francis, Scielo, ASCE, Springer, entre otras, incluyendo artículos científicos, documentos técnicos, como reportes finales de investigaciones, tesis de doctorado y maestría publicados en los últimos cinco años. Finalmente se espera contar con una base de datos referente a las características de los diferentes aditivos utilizados en la fabricación de MATs, lo que proporcionará información útil para técnicos, ingenieros e investigadores que trabajen en el desarrollo y mejoramiento de MATs. Adicionalmente, esta información será fuente de consulta y apoyo para los grupos de investigación que trabajan en el proyecto mencionado anteriormente.
dc.description.abstractThe use of asphalt concrete mixtures for the formation of asphalt layers in road infrastructure construction projects is common. This is due to their properties, which make them ideal for the construction of any traffic surface. Additionally, compared to cold mix asphalt, they tend to be more resistant and durable under traffic loads. However, their use has a negative impact on the environment, as they must be manufactured in asphalt plants, laid, and compacted on-site at very high temperatures, generating greenhouse gas emissions. To help mitigate this negative environmental impact, warm mix asphalt (WMA) has been developed. These mixtures aim to reduce the high temperatures required for hot mix asphalt manufacturing, using techniques such as foaming and the use of additives, whether organic or chemical, among others. Currently, the research groups TOPOVIAL, the Center for Studies in Pavements and Sustainable Materials, and the Research Group in Roads and Pavements are developing the project: - 'Development of a Warm Mix Asphalt (WMA) with Recycled Concrete Aggregate (RCA),' funded by Call 01-2023 of the Universidad Distrital Francisco José de Caldas. Within the activities and objectives of the project, there is the performance of a state-of-the-art review on WMAs, and, in turn, within this study, the development of a state-of-the-art review on the additives used to manufacture these mixtures. Therefore, the present project seeks to support the aforementioned research groups by conducting a literature review to identify the state of knowledge on the use of additives in WMA manufacturing. This study aims to identify trends by analyzing the different additives used in WMA manufacturing, compiling and comparing information regarding manufacturing processes, characteristics of each additive, and changes in asphalt mixture properties. This literature review will be conducted through an information search in academic databases, such as Science Direct, Taylor & Francis, Scielo, ASCE, Springer, among others, including scientific articles, technical documents such as final research reports, and doctoral and master's theses published in the last five years. Finally, it is expected to have a database regarding the characteristics of the different additives used in WMA manufacturing, which will provide useful information for technicians, engineers, and researchers working on the development and improvement of WMAs. Additionally, this information will be a source of consultation and support for the research groups working on the aforementioned project.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/94422
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAbed, A., Thom, N., & Grenfell, J. (2019). A novel approach for rational determination of warm mix asphalt production temperatures. Construction and Building Materials, 200, 80–93. https://doi.org/10.1016/j.conbuildmat.2018.12.082.
dc.relation.referencesAdepu, R., Venkat Ramayya, V., Mamatha, A., & Vinayaka Ram, V. (2023). Fracture studies on basalt fiber reinforced asphalt mixtures with reclaimed asphalt pavement derived aggregates and warm mix additives. Construction and Building Materials, 386, 131548. https://doi.org/10.1016/j.conbuildmat.2023.131548.
dc.relation.referencesAkisetty, C., Xiao, F., Gandhi, T., & Amirkhanian, S. (2011). Estimating correlations between rheological and engineering properties of rubberized asphalt concrete mixtures containing warm mix asphalt additive. Construction and Building Materials, 25(2), 950–956.
dc.relation.referencesAkisetty, C., Xiao, F., Gandhi, T., & Amirkhanian, S. (2011). Estimating correlations between rheological and engineering properties of rubberized asphalt concrete mixtures containing warm mix asphalt additive. Construction and Building Materials, 25(2), 950–956.
dc.relation.referencesAlinezhad, M., & Sahaf, A. (2019). Investigation of the fatigue characteristics of warm stone matrix asphalt (WSMA) containing electric arc furnace (EAF) steel slag as coarse aggregate and Sasobit as warm mix additive. Case Studies in Construction Materials, 11, e00265. https://doi.org/10.1016/j.cscm.2019.e00265.
dc.relation.referencesAmoni, B. C., Freitas, A. D. L., Bessa, R. A., Oliveira, C. P., Bastos-Neto, M., Azevedo, D. C. S., Lucena, S. M. P., Sasaki, J. M., Soares, J. B., Soares, S. A., & Loiola, A. R. (2022). Effect of coal fly ash treatments on synthesis of high-quality zeolite A as a potential additive for warm mix asphalt. Materials Chemistry and Physics, 275, 125197. https://doi.org/10.1016/j.matchemphys.2021.125197.
dc.relation.referencesAmeli, A., Nasr, D., Babagoli, R., Hossein Pakshir, A., Norouzi, N., & Davoudinezhad, S. (2020). Laboratory evaluation of rheological behavior of binder and performance of stone matrix asphalt (SMA) mixtures containing zycotherm nanotechnology, sasobit, and rheofalt warm mixture additives. Construction and Building Materials, 262, 120757. https://doi.org/10.1016/j.conbuildmat.2020.120757.
dc.relation.referencesBastidas, J. G. y Rondón, H. A. Caracterización de mezclas de concreto asfáltico. (2020). Editorial Universidad Piloto de Colombia, Bogotá D.C., Colombia. ISBN: 978- 958-510-618-5.
dc.relation.referencesAwazhar, N. A., Khairuddin, F. H., Rahmad, S., Fadzil, S. M., Omar, H. A., Md. Yusoff, N. I., & Badri, K. H. (2020). Engineering and leaching properties of asphalt binders modified with polyurethane and Cecabase additives for warm-mix asphalt application. Construction and Building Materials, 238, 117699. https://doi.org/10.1016/j.conbuildmat.2019.117699.
dc.relation.referencesBastidas, J. G. y Rondón, H. A. Caracterización de mezclas de concreto asfáltico. (2020). Editorial Universidad Piloto de Colombia, Bogotá D.C., Colombia. ISBN: 978- 958-510-618-5.
dc.relation.referencesBehnood, A., Karimi, M. M., & Cheraghian, G. (2020). Coupled effects of warm mix asphalt (WMA) additives and rheological modifiers on the properties of asphalt binders. Cleaner Engineering and Technology, 1, 100028. https://doi.org/10.1016/j.clet.2020.100028.
dc.relation.referencesCovarrubias, P. L., Galaviz-González, J. R., Cueva, D. Á., & Aguilar, S. C. (2019). Impact of addition of greasy diamide on the rheological-mechanical properties of warm-mix asphalt. Construction and Building Materials, 211, 308–316. https://doi.org/10.1016/j.conbuildmat.2019.03.149. da Costa, L. F., de Medeiros Melo Neto, O., de Macêdo, A. L. F., de Figueiredo Lopes
dc.relation.referencesLucena, L. C., & de Figueiredo Lopes Lucena, L. (2023). Optimizing recycled asphalt mixtures with zeolite, cottonseed oil, and varied RAP content for enhanced performance and circular economy impact. Case Studies in Construction Materials, 20, e02707. https://doi.org/10.1016/j.cscm.2023.e02707.
dc.relation.referencesde Sousa, T. M., de Medeiros Melo Neto, O., Elísio de Figueiredo Lopes Lucena, A., & Nóbrega, E. R. (2023). Enhancing workability and sustainability of asphalt mixtures:
dc.relation.referencesInvestigating the performance of beeswax as a novel additive for warm mix asphalt. Construction and Building Materials, 405, 133306. https://doi.org/10.1016/j.conbuildmat.2023.133306.
dc.relation.referencesDuan, P., Lei, T., Han, Y., Dai, H., Hou, M., Yao, W., Zhou, Q., Zeng, S., & Min, Z. (2023). Effect of warm-mixing wax’s molecular weights on microstructure, rheological and mechanical properties of asphalt composites. Construction and Building Materials, 408, 133620. https://doi.org/10.1016/j.conbuildmat.2023.133620.
dc.relation.referencesFeitosa, J. P. M., de Alencar, A. E. V., Filho, N. W., de Souza, J. R. R., Castelo Branco, V. T. F., Soares, J. B., Soares, S. A., & Ricardo, N. M. P. S. (2016). Evaluation of sun-oxidized carnauba wax as warm mix asphalt additive. Construction and Building Materials, 115, 294–298. https://doi.org/10.1016/j.conbuildmat.2016.03.219.
dc.relation.referencesFlávia Justino Uchoa, A., da Silva Rocha, W., Peter Macedo Feitosa, J., Lopes Nogueira, R., Hellen Almeida de Brito, D., Barbosa Soares, J., & de Aguiar Soares, S. (2021). Bio-based palm oil as an additive for asphalt binder: Chemical characterization and rheological properties. Construction and Building Materials, 285, 122883. https://doi.org/10.1016/j.conbuildmat.2021.122883.
dc.relation.referencesGao, J., Yan, K., He, W., Yang, S., & You, L. (2018). High temperature performance of asphalt modified with Sasobit and Deurex. Construction and Building Materials, 164, 783–791. https://doi.org/10.1016/j.conbuildmat.2017.12.164.
dc.relation.referencesGong, J., Liu, Y., Wang, Q., Xi, Z., Cai, J., Ding, G., & Xie, H. (2019). Performance evaluation of warm mix asphalt additive modified epoxy asphalt rubbers. Construction and Building Materials, 204, 288–295. https://doi.org/10.1016/j.conbuildmat.2019.01.197.
dc.relation.referencesGupta, L., & Bellary, A. (2018). Comparative study on the behavior of bituminous concrete mix and warm mix asphalt prepared using lime and zycotherm as additive. Materials Today: Proceedings, 5(1), 2074–2081. https://doi.org/10.1016/j.matpr.2017.09.203.
dc.relation.referencesHerrera de la Rosa, R., Alonso Aenlle, A., Villegas Muñoz, N., (2018). Evaluation of natural additives for warm asphalt mix. Revista de la construcción, 17(2), 330–336. https://doi.org/10.7764/rdlc.17.2.330.
dc.relation.referencesHosseinian, S. M., Bazoobandi, P., Mousavi, S. R., & Karimi, F. (2023). Presentation of machine learning methods and multi-objective optimization of fracture indices for asphalt rubber mixtures containing wax-based warm mix additives modified by nano calcium carbonate. Construction and Building Materials, 409, 134136. https://doi.org/10.1016/j.conbuildmat.2023.134136.
dc.relation.referencesJattak, Z. A., Hassan, N. A., & Mohd Satar, M. K. I. (2021). Moisture susceptibility and environmental impact of warm mix asphalt containing bottom ash. Case Studies in Construction Materials, 15, e00636. https://doi.org/10.1016/j.cscm.2021.e00636.
dc.relation.referencesKöse, H., Çelik, O. N., & Arslan, D. (2024). A novel approach to warm mix asphalt additive production from polypropylene waste plastic via pyrolysis. Construction and Building Materials, 411, 134151. https://doi.org/10.1016/j.conbuildmat.2023.134151.
dc.relation.referencesLi, J., Wang, Z., Chen, C., & Zhang, Z. (2024). A novel reactive warm-mix rejuvenator and its effects of synergistic rejuvenation and temperature reduction on aged SBS modified bitumen. Construction and Building Materials, 416, 135266. https://doi.org/10.1016/j.conbuildmat.2024.135266.
dc.relation.referencesLiang, X., Yu, X., Chen, C., Ding, G., & Huang, J. (2022). Towards the low-energy usage of high viscosity asphalt in porous asphalt pavements: A case study of warm-mix asphalt additives. Case Studies in Construction Materials, 16, e00914. https://doi.org/10.1016/j.cscm.2022.e00914.
dc.relation.referencesLi, Q., Zhang, H., Shi, C., & Chen, Z. (2021). A novel warm-mix additive for SBR modified asphalt binder: Effects of Sasobit/epoxidized soybean oil compound on binder rheological and long-term aging performance. Journal of Cleaner Production, 326(129405), 129405. https://doi.org/10.1016/j.jclepro.2021.129405
dc.relation.referencesLiu, K., Zhu, J., Zhang, K., Wu, J., Yin, J., & Shi, X. (2019). Effects of mixing sequence on mechanical properties of graphene oxide and warm mix additive composite modified asphalt binder. Construction and Building Materials, 217, 301–309. https://doi.org/10.1016/j.conbuildmat.2019.05.073.
dc.relation.referencesLopera Palacio, C. H., & Córdoba Maquilón, J. E. (2013). Diseño de mezcla asfáltica tibia a partir de la mezcla de asfalto y aceite crudo de palma. Dyna, 80(179), 99–108. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S001273532013000300011&lang=es.
dc.relation.referencesLu, D. X., Saleh, M., & Nguyen, N. H. T. (2019). Effect of rejuvenator and mixing methods on behaviour of warm mix asphalt containing high RAP content. Construction and Building Materials, 197, 792–802. https://doi.org/10.1016/j.conbuildmat.2018.11.205.
dc.relation.referencesLuo, H., Leng, H., Ding, H., Xu, J., Lin, H., Ai, C., & Qiu, Y. (2020). Low-temperature cracking resistance, fatigue performance and emission reduction of a novel silica gel warm mix asphalt binder. Construction and Building Materials, 231(117118), 117118. https://doi.org/10.1016/j.conbuildmat.2019.117118.
dc.relation.referencesMaciejewski, K., Chomicz-Kowalska, A., & Remisova, E. (2022). Effects of water-foaming and liquid warm mix additive on the properties and chemical composition of asphalt binders in terms of short-term ageing process. Construction and Building Materials, 341, 127756. https://doi.org/10.1016/j.conbuildmat.2022.127756.
dc.relation.referencesMirzaaghaeian, E., & Modarres, A. (2019). Rheological properties of bituminous mastics containing chemical warm additive at medium temperatures and its relationship to warm mix asphalt fatigue behavior. Construction and Building Materials, 225, 44–54. https://doi.org/10.1016/j.conbuildmat.2019.07.236.
dc.relation.referencesOliveira, J. R. M., Silva, H. M. R. D., Abreu, L. P. F., & Fernandes, S. R. M. (2013). Use of a warm mix asphalt additive to reduce the production temperatures and to improve the performance of asphalt rubber mixtures. Journal of Cleaner Production, 41, 15–22. https://doi.org/10.1016/j.jclepro.2012.09.047.
dc.relation.referencesOzturk, H. I., & Kamran, F. (2019). Laboratory evaluation of dry process crumb rubber modified mixtures containing Warm Mix Asphalt Additives. Construction and Building Materials, 229, 116940. https://doi.org/10.1016/j.conbuildmat.2019.116940.
dc.relation.referencesPatel, R., Nanjegowda, V. H., Mahimaluru, J., & Biligiri, K. P. (2022). Characterization of aluminosilicate-based warm-mix asphalt additive using experimental techniques. En RILEM Bookseries (pp. 339–346). Springer International Publishing.
dc.relation.referencesPodolsky, J. H., Buss, A., Williams, R. C., & Cochran, E. (2016). Comparative performance of bio-derived/chemical additives in warm mix asphalt at low temperature. Materials and Structures, 49(1–2), 563–575. https://doi.org/10.1617/s11527-014-0520-3.
dc.relation.referencesRahmad, S., Atmaja P. Rosyidi, S., Aziz Memon, N., Haji Badri, K., Widyatmoko, I., Kamil Arshad, A., Koting, S., Izzi Md Yusoff, N., & Rosli Hainin, M. (2021). Physical, thermal and micro-surface characteristics of PG76 binder incorporated with liquid chemical WMA additive. Construction and Building Materials, 272, 121626. https://doi.org/10.1016/j.conbuildmat.2020.121626.
dc.relation.referencesRoja, K. L., Padmarekha, A., & Krishnan, J. M. (2019). Influence of warm mix additive and loading rate on rutting of warm mix asphalt pavement. International Journal of Pavement Engineering, 20(3), 366–381. https://doi.org/10.1080/10298436.2017.1293269.
dc.relation.referencesRondón, H. A., Fernández, W. D. y Zafra, C. (2018). Desarrollo de una mezcla asfáltica tibia bajo criterios técnicos y medioambientales. Ed. Espacios – Universidad Distrital Francisco José de Caldas, Bogotá D.C., Colombia, 124 p. ISBN: 978-958-787-000-8.
dc.relation.referencesRondón, H. A., Noguera, J. A. and Reyes, F. A. (2015). A review of warm mix asphalt technology: Technical, economical and environmental aspects. Ingeniería e Investigación, 35(3), 5-18.
dc.relation.referencesRondón Quintana, H. A., León Vergara, O. I., Fernández Gómez, W. D. (2017). Behavior of a warm mix asphalt made in an asphalt plant. Ingeniería y Desarrollo, 35(1), 153–173. https://doi.org/10.14482/inde.35.1.8947.
dc.relation.referencesRondón-Quintana, H. A., Reyes-Lizcano, F. A., Chaves-Pabón, S. B., Bastidas-Martínez, J. G., & Zafra-Mejía, C. A. (2022). Use of Biochar in asphalts: Review. Sustainability, 14(8), 4745. https://doi.org/10.3390/su14084745.
dc.relation.referencesRondón Quintana, H. A., & Reyes Lizcano, F. A. (2022). Pavimentos. Materiales, construcción y diseño (2da ed.). Ecoe Ediciones.
dc.relation.referencesRondón, H. A., Ocampo, M. S., Vacca, H. A., Reyes, F. A., Nieto, J. P., & Beltrán, D.P. (2016). The mechanical behavior of two warm-mix asphalts. Ingeniería e Investigación, 36(3), 29–38.
dc.relation.referencesRondón, H. A., Fernández, W. D., & Zafra, C. (2016a). Behavior of a warm mix asphalt using a chemical additive to foam the asphalt binder. Revista Facultad de Ingeniería, Universidad de Antioquia, 78, 129-138. https://doi.org/10.17533/udea.redin.n78a17.
dc.relation.referencesAlonso, E., Valdes-Vidal, G., & Calabi-Floody, A. (2020). Experimental study to design warm mix asphalts and recycled warm mix asphalts using natural zeolite as additive for sustainable pavements. Sustainability, 12(3), 980. https://doi.org/10.3390/su12030980
dc.relation.referencesSesay, T., You, Q., Chuan, J., Qiao, H., Zhang, H., & Tian, S. (2023). High and intermediate temperature performance of warm asphalt rubber containing conventional warm mix additives and novel chemical surfactant. Construction and Building Materials, 394, 132214. https://doi.org/10.1016/j.conbuildmat.2023.132214.
dc.relation.referencesSu, J.-F. (2020). Self-healing pavements using microcapsules containing rejuvenator: from idea to real application, Eco-Efficient Pavement Construction Materials, 249–314. https://doi.org/10.1016/B978-0-12-818981-8.00011-4.
dc.relation.referencesStienss, M., & Szydlowski, C. (2020). Influence of selected warm mix asphalt additives on cracking susceptibility of asphalt mixtures. Materials, 13(1), 202. https://doi.org/10.3390/ma13010205.
dc.relation.referencesSukhija, M., Wagh, V. P., & Saboo, N. (2021). Development of workability based approach for assessment of production temperatures of warm mix asphalt mixtures. Construction and Building Materials, 305, 124808. https://doi.org/10.1016/j.conbuildmat.2021.124808.
dc.relation.referencesTang, N., Deng, Z., Dai, J.-G., Yang, K., Chen, C., & Wang, Q. (2018). Geopolymer as an additive of warm mix asphalt: Preparation and properties. Journal of Cleaner Production, 192, 906–915. https://doi.org/10.1016/j.jclepro.2018.04.276.
dc.relation.referencesThives, L. P., & Ghisi, E. (2017). Asphalt mixtures emission and energy consumption: A review. Renewable and Sustainable Energy Reviews, 72, 473–484. https://doi.org/10.1016/j.rser.2017.01.087.
dc.relation.referencesONU - United Nations. (s/f). Objetivo 9—Infraestructuras con un futuro sostenible | Naciones Unidas. Recuperado el 13 de octubre de 2023, de https://www.un.org/es/chronicle/article/objetivo-9-infraestructuras-con-un-futuro-sostenible.
dc.relation.referencesVatanparast, M., Sarkar, A., & Sahaf, S. A. (2023). Optimization of asphalt mixture design using response surface method for stone matrix warm mix asphalt incorporating crumb rubber modified binder. Construction and Building Materials, 369, 130401. https://doi.org/10.1016/j.conbuildmat.2023.130401.
dc.relation.referencesWang, D., Miao, C., Song, Y., Yi, Y., Long, J., Zhang, Z., & Lei, T. (2024). Optimizing aged asphalt performance: Innovative warm mix agent blends and rheological insights. Construction and Building Materials, 416, 135107. https://doi.org/10.1016/j.conbuildmat.2024.135107.
dc.relation.referencesWang, H., Liu, X., Apostolidis, P., & Scarpas, T. (2018). Review of warm mix rubberized asphalt concrete: Towards a sustainable paving technology. Journal of Cleaner Production, 177, 302–314. https://doi.org/10.1016/j.jclepro.2017.12.245
dc.relation.referencesWoszuk, A., Panek, R., Madej, J., Zofka, A., & Franus, W. (2018). Mesoporous silica material MCM-41: Novel additive for warm mix asphalts. Construction and Building Materials, 183, 270–274. https://doi.org/10.1016/j.conbuildmat.2018.06.177.
dc.relation.referencesYousefi, A., Behnood, A., Nowruzi, A., & Haghshenas, H. (2021). Performance evaluation of asphalt mixtures containing warm mix asphalt (WMA) additives and reclaimed asphalt pavement (RAP). Construction and Building Materials, 268, 121200. https://doi.org/10.1016/j.conbuildmat.2020.121200.
dc.relation.referencesYu, H., Chen, Q., Lin, Y., & Dong, N. (2023). Effect of wax additives on asphalt rheological behavior as road paving material. Materials Today. Communications, 37, 107044. https://doi.org/10.1016/j.mtcomm.2023.107044.
dc.relation.referencesYuan, H., Liu, J., Ding, H., Xie, Q., & Qiu, Y. (2024). Evaluation of physical hardening of wax-based warm mix asphalt binders from low-temperature rheological properties. Construction and Building Materials, 419, 135496. https://doi.org/10.1016/j.conbuildmat.2024.135496.
dc.relation.referencesYuan, Q. Yuan, Z. Liu, K. Zheng, & C. Ma, Liu, Z., Zheng, K., & Ma, C. (2021). Asphalt., Civil Engineering Materials. 287–325. ISBN: 978-012-823-077-0.
dc.relation.referencesZhang, R., Moshfeghi, A. R., Zhou, F., & Mishra, D. (deb). (2023). Effect of chemical warm-mix additives on asphalt binder rheological and chemical properties in the context of aging. Construction and Building Materials, 393, 132061. https://doi.org/10.1016/j.conbuildmat.2023.132061.
dc.relation.referencesZhao, P., Ren, R., Zhou, H., Ouyang, J., Li, Z., & Sun, D. (2021). Preparation and properties of imidazoline surfactant as additive for warm mix asphalt. Construction and Building Materials, 273(121692), 121692. https://doi.org/10.1016/j.conbuildmat.2020.121692.
dc.relation.referencesZhao, Y., Chen, M., Wu, S., Zhu, Y., Zhou, X., Yang, C., Zhao, Z., Zhang, J., & Chen, D. (2023). Feasibility assessment of palmitamide derived from waste edible oil as a warm mix asphalt additive. Construction and Building Materials, 401, 132972. https://doi.org/10.1016/j.conbuildmat.2023.132972.
dc.relation.referencesZhu, J., Zhang, K., Liu, K., & Shi, X. (2019). Performance of hot and warm mix asphalt mixtures enhanced by nano-sized graphene oxide. Construction and Building Materials, 217, 273–282. https://doi.org/10.1016/j.conbuildmat.2019.05.054.
dc.relation.referencesZou, F., Leng, Z., Cao, R., Li, G., Zhang, Y., & Sreeram, A. (2022). Performance of zeolite synthesized from sewage sludge ash as a warm mix asphalt additive. Resources, Conservation, and Recycling, 181, 106254. https://doi.org/10.1016/j.resconrec.2022.106254.
dc.relation.referencesZou, F., Xu, X., Chen, R., Lan, J., Li, G., Tan, Z., Xu, J., Jiang, X., & Leng, Z. (2024). A novel foaming additive derived from waste polyethylene terephthalate (PET) for low-carbon warm mix asphalt. Resources, Conservation, and Recycling, 202, 107377. https://doi.org/10.1016/j.resconrec.2023.107377.
dc.relation.referencesZaumanis, M., & Mallick, R. B. (2015). Review of very high-content reclaimed asphalt use in plant-produced pavements: state of the art. International Journal of Pavement Engineering, 16(1), 39–55. https://doi.org/10.1080/10298436.2014.893331.
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectAsfalto
dc.subjectAditivos
dc.subjectMezclas asfalticas tibias
dc.subjectSostenibilidad
dc.subject.keywordAsphalt
dc.subject.keywordAdditives
dc.subject.keywordWarm asphalt mixtures
dc.subject.keywordSustainability
dc.subject.lembIngeniería Topográfica -- Tesis y Disertaciones Académicas
dc.subject.lembMateriales de construcción
dc.subject.lembResistencia de materiales
dc.subject.lembHormigón
dc.subject.lembHormigón reforzado
dc.titleEstado del conocimiento sobre aditivos utilizados en la fabricación de mezclas asfálticas tibias (MAT). Caso de estudio: periodo 2017-2023
dc.title.titleenglishState of Knowledge on Additives Used in the Manufacture of Warm Mix Asphalt (WMA). Case Study: Period 2017-2023
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeMonografía
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
BermúdezDazaDenisEstephania2024.pdf
Tamaño:
868.7 KB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
No hay miniatura disponible
Nombre:
Licencia de uso y publicación.pdf
Tamaño:
346.77 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia de uso y publicación

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: