Sistema de monitoreo del nivel de atención, meditación y retención de información en estudiantes de ingeniería de software
| dc.contributor.advisor | Guevara Bolaños, Juan Carlos | |
| dc.contributor.author | González Díaz, Daniel Eduardo | |
| dc.contributor.author | Culma Villalobos, Miguel Angel | |
| dc.contributor.orcid | Guevara Bolaños Juan Carlos [0000-0001-9580-0374] | |
| dc.date.accessioned | 2025-09-01T13:20:35Z | |
| dc.date.available | 2025-09-01T13:20:35Z | |
| dc.date.created | 2025-07-18 | |
| dc.description | El panorama global actual se caracteriza por una extraordinaria evolución tecnológica, con el Internet de las Cosas (IoT) emergiendo como una de las innovaciones más trascendentales. El IoT, que permite la interconexión de dispositivos y el intercambio de información en tiempo real, ha catalizado el desarrollo de sistemas de monitoreo [8]. Estas herramientas, mediante el uso de sensores y otros dispositivos, facilitan la observación, medición y registro de diversas condiciones y parámetros, proporcionando datos cruciales para la toma de decisiones y la mejora de la eficiencia en múltiples procesos y la gestión de recursos. En el ámbito educativo, la integración de los sistemas de monitoreo y el IoT está redefiniendo la enseñanza y el aprendizaje. Estas tecnologías abren un abanico de oportunidades para implementar metodologías más dinámicas y adaptativas, que pueden ajustarse de forma precisa a las necesidades individuales de cada estudiante. Al permitir un seguimiento detallado del progreso académico, se allana el camino hacia una educación más personalizada y efectiva [3]. Sin embargo, a pesar de estos avances, los estudiantes universitarios continúan enfrentando desafíos significativos que impactan su rendimiento. El uso inadecuado de la tecnología y los dispositivos electrónicos, aunque ha ampliado las posibilidades de aprendizaje, también ha generado un considerable aumento en las distracciones, afectando los niveles de atención. Adicionalmente, el estrés y la ansiedad, que son fenómenos comunes en el entorno universitario, pueden mermar la capacidad de concentración, incidiendo negativamente en el desempeño académico [2]. Es por ello que el desarrollo de habilidades de autorregulación se vuelve fundamental para los estudiantes, permitiéndoles planificar, evaluar y ajustar su propio proceso de aprendizaje, superar las distracciones tecnológicas y manejar el estrés de manera más efectiva, lo que se traduce en un mejor desempeño académico [2]. Para abordar esta compleja problemática, este documento propone el desarrollo de un sistema de monitoreo innovador que integra un dispositivo electroencefalográfico (EEG). Este sistema capturará datos sobre la atención, la meditación (calma y relajación), los diferentes tipos de ondas cerebrales y el nivel de retención de información. La implementación de esta tecnología permitirá un seguimiento continuo y detallado de estos parámetros durante las actividades educativas en cursos de ingeniería de software. Al obtener información precisa sobre el estado mental y emocional de los estudiantes, los educadores podrán identificar tempranamente distracciones o niveles elevados de estrés, facilitando la implementación de estrategias pedagógicas más efectivas para optimizar el entorno de aprendizaje y apoyar el rendimiento académico de los estudiantes. El presente documento se estructura para abordar los aspectos clave de este proyecto. Se inicia con la formulación clara del problema, seguida de la presentación de los objetivos y la justificación del estudio. Posteriormente, se realiza una revisión de antecedentes que contextualiza la investigación y se explora el marco teórico que sustenta el proyecto, incluyendo conceptos como IoT, sistemas de monitoreo y su aplicación en la educación. La metodología detallada, que combina la revisión rápida de literatura y el marco de trabajo SCRUM, se describe a continuación. Finalmente, se abordan los alcances y la factibilidad del proyecto, incluyendo la planificación y estimación de costos, y se concluye con un mapeo de objetivos, un cronograma de actividades y las referencias bibliográficas. | |
| dc.description.abstract | The current global landscape is characterized by extraordinary technological evolution, with the Internet of Things (IoT) emerging as one of the most significant innovations. The IoT, which enables the interconnection of devices and the exchange of information in real time, has catalyzed the development of monitoring systems [8]. These tools, through the use of sensors and other devices, facilitate the observation, measurement, and recording of various conditions and parameters, providing crucial data for decision-making and improving efficiency in multiple processes and resource management. In the educational field, the integration of monitoring systems and IoT is redefining teaching and learning. These technologies open a range of opportunities to implement more dynamic and adaptive methodologies that can be precisely tailored to the individual needs of each student. By enabling detailed tracking of academic progress, they pave the way toward more personalized and effective education [3]. However, despite these advances, university students continue to face significant challenges that impact their performance. The inappropriate use of technology and electronic devices, while expanding learning possibilities, has also led to a considerable increase in distractions, affecting attention levels. Additionally, stress and anxiety—common phenomena in the university environment—can diminish the ability to concentrate, negatively influencing academic performance [2]. Therefore, the development of self-regulation skills becomes essential for students, allowing them to plan, evaluate, and adjust their own learning process, overcome technological distractions, and manage stress more effectively, resulting in better academic performance [2]. To address this complex issue, this document proposes the development of an innovative monitoring system that integrates an electroencephalographic (EEG) device. This system will capture data on attention, meditation (calmness and relaxation), different types of brain waves, and the level of information retention. The implementation of this technology will enable continuous and detailed tracking of these parameters during educational activities in software engineering courses. By obtaining precise information on students’ mental and emotional states, educators will be able to identify distractions or high stress levels early, facilitating the implementation of more effective pedagogical strategies to optimize the learning environment and support students’ academic performance. This document is structured to address the key aspects of this project. It begins with a clear formulation of the problem, followed by the presentation of the objectives and the justification of the study. Next, a review of the background is provided to contextualize the research, and the theoretical framework underpinning the project is explored, including concepts such as IoT, monitoring systems, and their application in education. The detailed methodology, which combines a rapid literature review and the SCRUM framework, is then described. Finally, the scope and feasibility of the project are addressed, including planning and cost estimation, and the document concludes with a mapping of objectives, an activity schedule, and the bibliographic references. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/98762 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | [1] Su, M.-C., Cheng, C.-T., Chang, M.-C., & Hsieh, Y.-Z. (2021). A video analytic in-class student concentration monitoring system. IEEE Transactions on Consumer Electronics, 67(4), 294–304. https://doi.org/10.1109/TCE.2021.3126877 [2] Zheng, J., Zhang, Q., Xu, S., Peng, H., & Wu, Q. (2018). Cognition-based context-aware cloud computing for intelligent robotic systems in mobile education. IEEE Access, 6, 49103– 49111. https://doi.org/10.1109/ACCESS.2018.2867880 [3] Jamil, N., Belkacem, A. N., Ouhbi, S., & Guger, C. (2021). Cognitive and affective brain– computer interfaces for improving learning strategies and enhancing student capabilities: A systematic literature review. IEEE Access, 9, 134122–134147. https://doi.org/10.1109/ACCESS.2021.3115263 [4] Kalra, J., Bhowmick, A., Anand, R. S., Tiwary, U. S., & Kaur, P. (2023). How Visual Stimuli Evoked P300 is Transforming the Brain–Computer Interface Landscape: A PRISMA Compliant Systematic Review. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 1429–1439. https://doi.org/10.1109/TNSRE.2023.3246588 [5] Grubov, V. V., Zyrianov, A. A., Lyakhov, P. A., Yashina, M. V., & Tatyana, K. (2024). Open-loop neuroadaptive system for enhancing student’s cognitive abilities in learning. IEEE Access, 12, 49034–49049. https://doi.org/10.1109/ACCESS.2024.3383847 [6] Yu, S., & Peng, X. (2024). Wearable sensor-based exercise monitoring system for higher education students using a multi-attribute fuzzy evaluation model. IEEE Access, 12, 177412– 177426. https://doi.org/10.1109/ACCESS.2024.3494885 [7] Yang, T., Xu, W., Wang, L., & Petrovna, M. O. (2025). A deep learning model for psychological support in student entrepreneurship. IEEE Access, 13, 40931–40942. https://doi.org/10.1109/ACCESS.2025.3547833 [8] Liu, Y., Zhou, Z., Wang, A., Samuel, R. D. J., & Kumar, P. (2021). Brain-computer interaction enabled AAC for visual interactive paradigm. International Journal on Artificial Intelligence Tools, 30(6-8), 2140013. https://doi.org/10.1142/S0218213021400133 128 [9] Wang, X. (2024). Construction and application of a high-quality smart classroom education simulation platform in a cloud system environment. Service Oriented Computing and Applications. Advance online publication. https://doi.org/10.1007/s11761-024-00424-9 [10] Rocha-Doria, J. S., Mosquera-Arevalo, O. A., Angeles-Camacho, C., Espinel-Ortega, A., & Calderón-Guizar, J. G. (2018). Design and implementation of a real-time monitoring tool for power engineering education. Computer Applications in Engineering Education, 26(1), 37–48. https://doi.org/10.1002/cae.21859 [11] Kim, H., Chae, Y., Kim, S., & Im, C.-H. (2023). Development of a computer-aided education system inspired by face-to-face learning by incorporating EEG-based neurofeedback into online video lectures. IEEE Transactions on Learning Technologies, 16(1), 78–91. https://doi.org/10.1109/TLT.2022.3200394 [12] Aruna, S., & Kuchibhotla, S. (2022). Enhancement of student attentiveness using deep learning techniques. International Journal of e-Collaboration, 18(3). https://doi.org/10.4018/IJeC.307129 [13] Folgieri, R., Lucchiari, C., Gričar, S., Baldigara, T., & Gil, M. (2025). Exploring the potential of BCI in education: An experiment in musical training. Information, 16(4), Article 261. https://doi.org/10.3390/info16040261 [14] Rodriguez-Sanchez, C., Orellana, R., Fernandez Barbosa, P. R., Borromeo, S., & Vaquero, J. (2024). Insights 4.0: Transformative learning in industrial engineering through problem-based learning and project-based learning. Computer Applications in Engineering Education, 32(4), e22736. https://doi.org/10.1002/cae.22736 [15] Olagoke, A. S., Ibrahim, H., & Teoh, S. S. (2020). Literature survey on multi-camera system and its application. IEEE Access, 8, 172892–172922. https://doi.org/10.1109/ACCESS.2020.3024568 [16] Fuentes-Martinez, V. J., Romero, S., Lopez-Gordo, M. A., Minguillon, J., & Rodríguez- Álvarez, M. (2023). Low-cost EEG multi-subject recording platform for the assessment of students’ attention and the estimation of academic performance in secondary school. Sensors, 23(23), 9361. https://doi.org/10.3390/s23239361 129 [17] Zhou, K., Li, D., & Alatas, B. (2024). Optimizing interactive online education through advanced multimodal emotion recognition techniques. Journal of Organizational and End User Computing, 36(1). https://doi.org/10.4018/JOEUC.355765 [18] Trabelsi, Z., Alnajjar, F., Parambil, M. M. A., Gochoo, M., & Ali, L. (2023). Real-time attention monitoring system for classroom: A deep learning approach for student’s behavior recognition. Big Data and Cognitive Computing, 7(1), Article 48. https://doi.org/10.3390/bdcc7010048 [19] Du, Y. (2024). Research on augmented reality teaching strategies for civics courses oriented to history education. Applied Mathematics and Nonlinear Sciences, 9(1), Article 20242935. https://doi.org/10.2478/amns-2024-2935 [20] Liu, Z., & Ran, J. (2024). Research on monitoring teaching activities based on image recognition in educational management informatization construction of colleges and universities. Applied Mathematics and Nonlinear Sciences, 9(1), Article 20242810. https://doi.org/10.2478/amns-2024-2810 [21] Bench, S., Winter, C., & Francis, G. (2019). Use of a virtual reality device for basic life support training: Prototype testing and an exploration of users' views and experience. Journal of Nursing Education, 58(4), 1–10. https://doi.org/10.1097/SIH.0000000000000387 [22] Lee, S., Kang, W., Hong, J. H., & Kong, D. J. (2024). Beyond the screen with DanceSculpt: A 3D dancer reconstruction and tracking system for learning dance. International Journal of Human–Computer Interaction, 41(9), 5406–5419. https://doi.org/10.1080/10447318.2024.2360773 [23] Niforatos, E., He, T., Vourvopoulos, A., & Giannakos, M. (2024). Democratizing EEG: Embedding electroencephalography in a head-mounted display for ubiquitous brain- computer interfacing. International Journal of Human–Computer Interaction, 41(11), 7015– 7039. https://doi.org/10.1080/10447318.2024.2388368 [24] Vařeka, L., & Ladouce, S. (2021). Prediction of navigational decisions in the real-world: A visual P300 event-related potentials brain-computer interface. International Journal of Human–Computer Interaction, 37(14), 1375–1389. https://doi.org/10.1080/10447318.2021.1888510 130 [25] L. Sanabria Rodríguez, J. Ibáñez Ibáñez, y N. Valencia Vallejo, “Barras bravas: Ambiente metacognitivo digital para apoyar el aprendizaje de las matemáticas,” Revista Papeles, vol. 7, no. 14, pp. 42–54, 2015. [Online]. Disponible: https://revistas.uan.edu.co/index.php/papeles/article/view/426/360 [26] J. S. Rueda-Rueda, J. A. Manrique Hernández, y J. D. Cabrera Cruz, “Internet de las Cosas en las Instituciones de Educación Superior,” en CIINATIC 2017, sep. 2017. [27] A. M. Barra Salazar y P. A. Ceballos Garrido, “Instrumentos de monitoreo aplicados a programas estructurados con base a competencias,” Revista de Ciencias Sociales (Ve), vol. 26, 2020. [Online]. Disponible: https://www.redalyc.org/articulo.oa?id=28064146001 [28] M. C. Sáiz-Manzanares et al., “Monitoring of Student Learning in Learning Management Systems: An Application of Educational Data Mining Techniques ” MDPI, vol. 11, no. 6, p. 2677, mar. 2021. [Online]. Disponible: https://www.mdpi.com/2076-3417/11/6/2677 [29] A. L. Hananto, B. Priyatna, y A. Haris, “Application of Prototype Method on Student Monitoring System Based on WEB,” bit-cs, vol. 1, no. 1, pp. 1–4, ene. 2020. [30] C. K. Kumar y A. Al-Besher, “IoT enabled e-learning system for higher education,” Measurement: Sensors, vol. 24, p. 100480, dic. 2022. [Online]. Disponible: https://www.sciencedirect.com/science/article/pii/S2665917422001143 [31] J. Francisti et al., “Application experiences using IoT devices in education,” MDPI, vol. 10, no. 20, p. 7286, oct. 2020. [Online]. Disponible: https://www.mdpi.com/2076- 3417/10/20/7286 [32] D. F. Terraza et al., “Student’s attention monitoring system in learning environments based on artificial intelligence,” IEEE Latin America Transactions, vol. 20, no. 1, pp. 1–10, ene. 2022. [33] C.-M. Chen y J.-Y. Wang, “Effects of online synchronous instruction with an attention- monitoring and alarm mechanism on sustained attention and learning performance,” Interactive Learning Environments, vol. 26, no. 6, pp. 806–818, jun. 2017. [Online]. 131 Disponible: https://www.tandfonline.com/doi/epdf/10.1080/10494820.2017.1341938?needAccess=true [34] Z. Trabelsi et al., “Real-Time Attention Monitoring System for Classroom: A Deep Learning Approach for Student’s Behavior Recognition,” MDPI, vol. 7, no. 1, p. 48, 2023. [Online]. Disponible: https://www.mdpi.com/2504-2289/7/1/48 [35] L. Q. Thao et al., “Monitoring and improving student attention using deep learning and wireless sensor networks,” Sensors and Actuators A: Physical, vol. 38, p. 48, 2024. [Online]. Disponible: https://www.sciencedirect.com/science/article/pii/S0924424724000487 [36] M. H. Alonso Mosquera, J. E. Gonzálvez Vallés, y Á. B. Muñoz de Luna, “Ventajas e inconvenientes del uso de dispositivos electrónicos en el aula: Percepción de los estudiantes de grados en comunicación,” Revista de Comunicación de la SEECI, vol. 41, pp. 136–154, nov. 2016. [37] G. Rodríguez-Miranda, R. Santos-Osorio, N. Ledesma-Uribe, y J. Camacho-Ramírez, “Estudio de las señales electroencefalográficas (EEG) desarrollando una aplicación basada en interfaz cerebro-computadora (BCI), para el apoyo del aprendizaje infantil,” Universidad Tecnológica de San Juan del Río, Vista Hermosa, Qro., México. 2016. [38] R. Marco, E. Iáñez, M. García y J. Azorín, “Reconocimiento del estado emocional mediante señales EEG,” SPUDC, pp. 21–27, 2020. doi: 10.17979/spudc.9788497497565.0021 [39] R. Cerino, D. Pinto, S. Vergara, y F. Pérez-Téllez, “Estimulación visual basada en conceptos y su análisis mediante electroencefalografía,” Computación y Sistemas, vol. 27, no. 1, pp. 107–126, 2023. doi: 10.13053/cys-27-1-4417 [40] G. Domínguez y A. Elisa, “Análisis de ondas cerebrales para determinar emociones a partir de estímulos visuales,” 2015. [41] C. A. Vinueza Bonilla, “Implementación de una interfaz gráfica en LabVIEW para la manipulación de sonidos binaurales theta y su efecto en procesos cognitivos y emocionales,” Tesis de pregrado, Universidad San Francisco de Quito, 2016. [Online]. Disponible: http://repositorio.usfq.edu.ec/handle/23000/5163 132 [42] S. An, Z. Yu, y C.-L. Chen, “Mental and Emotional Recognition of College Students Based on Brain Signal Features and Data Mining,” Security and Communication Networks, 2022. doi: 10.1155/2022/4198353 [43] Y. Li et al., “A real-time EEG-based BCI system for attention recognition in ubiquitous environment,” en Proc. of 2011 International Workshop on Ubiquitous Affective Awareness and Intelligent Interaction (UAAII '11), pp. 33–40, 2011. doi: 10.1145/2030092.2030099 [44] S.-M. Yang, C.-M. Chen, y C.-M. Yu, “Assessing the Attention Levels of Students by Using a Novel Attention Aware System Based on Brainwave Signals,” en 2015 IIAI 4th Int. Congress on Advanced Applied Informatics, Okayama, Japan, 2015, pp. 379–384. doi: 10.1109/IIAI-AAI.2015.224 [45] M. Andujar y J. E. Gilbert, “A user-centered approach towards attention visualization for learning activities” en Proc. of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp '17), pp. 871–876. doi: 10.1145/3123024.3125505 [46] Y. Liu y O. Sourina, “EEG-based Dominance Level Recognition for Emotion-Enabled Interaction,” en Proc. of the 2012 IEEE Int. Conf. on Multimedia and Expo (ICME '12), pp. 1039–1044. doi: 10.1109/ICME.2012.20 [47] M. K. M. Al-shammari, T. Gao, R. K. Mohammed, y S. Zhou, “Attention enhancement system for college students with brain biofeedback signals based on virtual reality,” Multimedia Tools and Applications, vol. 81, no. 14, pp. 19097–19112, jun. 2022. doi: 10.1007/s11042-020-10159-2 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Sistema de monitoreo | |
| dc.subject | atención | |
| dc.subject | meditación | |
| dc.subject | retención de información | |
| dc.subject | educación | |
| dc.subject.keyword | Monitoring system | |
| dc.subject.keyword | Attention | |
| dc.subject.keyword | Meditation | |
| dc.subject.keyword | Information retention | |
| dc.subject.keyword | Education | |
| dc.subject.lemb | Tecnología en Sistematización de Datos -- Tesis y disertaciones académicas | |
| dc.title | Sistema de monitoreo del nivel de atención, meditación y retención de información en estudiantes de ingeniería de software | |
| dc.title.titleenglish | Monitoring system for attention level, meditation, and information retention in software engineering students | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Monografía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque original
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- GONZÁLEZ DÍAZ DANIEL EDUARDO2025
- Tamaño:
- 2.5 MB
- Formato:
- Adobe Portable Document Format
No hay miniatura disponible
- Nombre:
- GONZÁLEZ DÍAZ DANIEL EDUARDO2025 anexos
- Tamaño:
- 8.77 MB
- Formato:
No hay miniatura disponible
- Nombre:
- Licencia de uso y publicacion.pdf
- Tamaño:
- 239.87 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
