Preferencias de nidificación de la abeja nativa mancita (M. favosa) en sabanas inundables de San Luis de Palenque, Casanare

dc.contributor.advisorBogotá Ángel, Raúl
dc.contributor.advisorRamírez Correal, Beatriz
dc.contributor.authorSánchez Leal, Mateo
dc.contributor.orcidBogotá Ángel, Raúl [0000-0003-3846-4735]
dc.date.accessioned2025-11-26T20:15:14Z
dc.date.available2025-11-26T20:15:14Z
dc.date.created2025-05-19
dc.descriptionLos llanos orientales colombianos han tenido un incremento en su area trasformada producto de diversos motores de cambio. Estos tienen consecuencias directas sobre el medio biótico de la zona, una de estas consecuencias es la afectación al soporte de la biota acuática y terrestre. En las Sabanas Inundables del Casanare se encuentra la especie de abeja nativa sin aguijón Melipona favosa (Fabricius, 1798), llamada localmente abeja mancita. Esta es una especie que ha sido utilizada principalmente para el desarrollo de la meliponicultura tradicional de la zona mediante la recolección de nidos en troncos. Esta actividad extractiva a baja escala no es preocupante, pero su expansión sin control puede tener consecuencias importantes en la polinización de plantas nativas. A pesar de ser una especie nacionalmente amenazada, y al mismo tiempo promisoria, es poco lo que se conoce sobre su biología y ecología reproductiva. Por ejemplo, no hay información disponible sobre las preferencias de nidificación en términos de especies vegetales preferidas, características de los árboles hospederos y de la ubicación de los nidos. En este trabajo se evaluaron las preferencias mediante la recopilación del conocimiento local, la correspondencia e identificación anatómica de troncos y la descripción de características de nidos mediante transectos. Dentro del conocimiento local se encontraron características como el desarrollo de nidos en árboles con cavidades, la preferencia por especies con resinas y la variabilidad en la forma de la piquera. El análisis de troncos mostró una correspondencia del 92% entre la identificación de especies por parte de meliponicultores y su identificación dendrológica en el laboratorio. Se identificaron cuatro especies vegetales principales, entre ellas el Vitex orinocensis, el cual además presenta una alta frecuencia (52%) en las coberturas boscosas evaluadas. Se encontró una ligera mayor densidad de nidos de M. favosa en los Bosques de Galería (52%; 2.8 nidos/ha) respecto a las Matas de Monte (48%; 1.9 nidos/ha). En esta última cobertura se registraron árboles hospederos con altos DAPs (94.70 cm ± 1.26), con dos alturas dominantes de nidos (1 m; 3.5 m) y con la presencia de hasta dos piqueras por árbol. Los Bosques de Galería por su parte concentraron sus nidos en proporción relativamente equitativa entre árboles muertos (51%) y vivos (49%). En ambas coberturas los nidos se orientaron principalmente hacia el SE (48%) y se ubicaron en fustes de árboles (32%). La recopilación de estas características es clave para el diseño de planes de restauración y manejo asociados al hábitat de M. favosa, con el fin de garantizar sostenibilidad en la meliponicultura de la zona.
dc.description.abstractThe Colombian eastern plains (Llanos Orientales) have seen an increase in their transformed area due to various driving forces of change. These changes have direct consequences on the region's biotic environment, one of which is the negative impact on the support of aquatic and terrestrial biota. The native stingless bee species, Melipona favosa (Fabricius, 1798), locally called abeja mancita, is found in the Flooded Savannas of Casanare. This species has been primarily used for the development of traditional meliponiculture in the area through the harvesting of nests from tree trunks. This low-scale extractive activity is not concerning, but its uncontrolled expansion can have significant consequences for the pollination of native plants. Despite being a nationally threatened and simultaneously promising species, little is known about its reproductive biology and ecology. For example, there is no available information on nesting preferences in terms of preferred plant species, characteristics of host trees, and nest location. In this work, these preferences were evaluated by compiling local knowledge, analyzing the correspondence and anatomical identification of tree trunks, and describing nest characteristics through transects. Local knowledge highlighted characteristics such as the development of nests in trees with cavities, a preference for resin-producing species, and variability in the shape of the nest entrance (piquera). Trunk analysis showed a 92% correspondence between the identification of species by meliponiculturists and their dendrological identification in the lab. Four main plant species were identified, including Vitex orinocensis, which also showed a high frequency (52%) in the evaluated forest cover types. A slightly higher nest density of M. favosa was found in the Gallery Forests (52%; 2.8 nests/ha) compared to the Matas de Monte (forest patches) (48%; 1.9 nests/ha). In the latter cover type (Matas de Monte), host trees were recorded with high DBH (Diameter at Breast Height) (94.70 cm±1.26)$, with two dominant nest heights (1 m;3.5 m), and the presence of up to two nest entrances per tree. Gallery Forests, on the other hand, concentrated their nests in a relatively equal proportion between dead trees (51%) and live trees (49%). In both cover types, nests were mainly oriented toward the SE (Southeast) (48%) and were located in tree trunks (32%). The compilation of these characteristics is key for the design of restoration and management plans associated with the habitat of M. favosa, in order to ensure sustainability in local meliponiculture.
dc.description.sponsorshipFrontera Energy Corp.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/99973
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesÁlvarez, S. J., Arciniegas, N., Yang, S., Salazar, F., & Forero, G. (2023). Uso del suelo en la Orinoquia: cambios recientes y escenario futuro tendencial. In L. A. Moreno & G. Andrade (Eds.), Biodiversidad: umbrales de transformación. Estado y tendencias de la biodiversidad continental de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. http://reporte.humboldt.org.co/biodiversidad/2022/cap2/202/#seccion7
dc.relation.referencesAmat, G., & Andrade, G. (2007). Libro rojo de los invertebrados terrestres de Colombia. In … Nacional de Colombia, …. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Libro+Rojo+de+los+Invertebrados+Terrestres+de+Colombia#1
dc.relation.referencesAnderson, D., Laake, J. L., Crain, B. R., & Burnham, K. P. (1979). Guidelines for Line Transect Sampling of Biological Populations. The Journal of Wildlife Management, 43(1), 70. https://doi.org/10.2307/3800636
dc.relation.referencesAnderson, R. G., Ward Thomas, J., Maser, C., & Bull, E. L. (1979). Snags. In F. S. Department of Agriculture (Ed.), Wildlife Habitats in Managed Forests the Blue Mountains of Oregon and Washington (pp. 62–77). Department of Agriculture, Forest Service. https://www.fs.usda.gov/research/treesearch/6630
dc.relation.referencesArega, A., & Tashoma, G. (2021). Assessment of current status, nesting ecology and potential threats of stingless bees in selected districts of East Wollega Zone. Oromia Regional State, Ethiopia. Int. J. Adv. Res. Biol. Sci, 8(6), 1–5. http://dx.doi.org/10.22192/ijarbs.2021.08.06.001
dc.relation.referencesAyala, R., Gonzalez, V. H., & Engel, M. S. (2012). Mexican stingless bees (hymenoptera: Apidae): Diversity, distribution, and indigenous knowledge. In Pot-Honey: A Legacy of Stingless Bees (pp. 135–152). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4960-7_9
dc.relation.referencesBaddeley, A., Rubak, E., & Turner, R. (2016). Spatial Point Patterns: Methodology and Applications with R (Vol. 75). https://doi.org/10.18637/jss.v075.b02
dc.relation.referencesBaddeley, A., & Turner, R. (2005). spatstat: An R package for analyzing spatial point patterns. Journal of Statistical Software, 12, 1–42. https://doi.org/10.18637/jss.v012.i06
dc.relation.referencesBarbiéri, C., & Francoy, T. M. (2020). Theoretical model for interdisciplinary analysis of human activities: Meliponiculture as an activity that promotes sustainability. Ambiente e Sociedade, 23, e00202. https://doi.org/10.1590/1809-4422ASOC20190020R2VU2020L4AO
dc.relation.referencesBeck, H. (2008). Tropical Ecology. In Encyclopedia of Ecology, Five-Volume Set (Vols. 1–5, pp. 3616–3624). Academic Press. https://doi.org/10.1016/B978-008045405-4.00880-6
dc.relation.referencesBivand, R. S., & Wong, D. W. S. (2018). Comparing implementations of global and local indicators of spatial association. Test, 27(3), 716–748. https://doi.org/10.1007/s11749-018-0599-x
dc.relation.referencesBonilla-Gómez, M. A., Ospina-Torres, R., Nates-Parra, G., Currea-Moncaleano, S., Arias-Landínez, M. F., Vanegas, J. S., Guevara, D., & Triana, V. (2021). Listado del Monitoreo de Abejas Nativas en los municipios de San Luis de Palenque y Trinidad- Casanare, Colombia.
dc.relation.referencesBrosi, B. J., Daily, G. C., & Ehrlich, P. R. (2007). Bee community shifts with landscape context in a tropical countryside. Ecological Applications, 17(2), 418–430. https://doi.org/10.1890/06-0029
dc.relation.referencesBuriticá Mejía, N. (2016). Sabanas Inundables de la Orinoquía Colombiana.
dc.relation.referencesCabrera-Amaya, D. M., & Rivera-Díaz, O. (2016). Composición florística y estructura de los bosques ribereños de la cuenca baja del Río Pauto, Casanare, Colombia. Caldasia, 38(1), 53–85. https://doi.org/10.15446/caldasia.v38n1.57829
dc.relation.referencesCameron, E. C., Franck, P., & Oldroyd, B. P. (2004). Genetic structure of nest aggregations and drone congregations of the southeast Asian stingless bee Trigona collina. Molecular Ecology, 13(8), 2357–2364. https://doi.org/10.1111/J.1365-294X.2004.02194.X
dc.relation.referencesCárdenas-Torres, M. A. (2014). ESTUDIO COMPARATIVO DE LA COMPOSICIÓN FLORÍSTICA, ESTRUCTURA Y DIVERSIDAD DE FUSTALES EN DOS ECOSISTEMAS DEL CAMPO DE PRODUCCIÓN 50k CPO-09, LLANOS DEL ORINOCO COLOMBIANO. Colombia Forestal, 17(2), 203. https://doi.org/10.14483/udistrital.jour.colomb.for.2014.2.a06
dc.relation.referencesCardona-Cardozo, A., Pinzón-Pérez, L., Castellanos-Castro, C., Mora-Fernández, C., & Vargas-Ríos, J. O. (2011). Amenazas para la conservación de las comunidades vegetales de la cuenca baja del río Pauto, Casanare (Colombia). In Mamíferos, reptiles y ecosistemas del Bloque Cubiro (Casanare) (Issue January, pp. 191–226). Universidad nacional de Colombia. https://www.researchgate.net/publication/264555390_Amenazas_para_la_conservacion_de_las_comunidades_vegetales_de_la_cuenca_baja_del_Rio_Pauto_Casanare_Colombia
dc.relation.referencesCartwright, C. R. (2015). The principles, procedures and pitfalls in identifying archaeological and historical wood samples. In Annals of Botany (Vol. 116, Issue 1, pp. 1–13). Oxford Academic. https://doi.org/10.1093/aob/mcv056
dc.relation.referencesCastellanos Castro, C., Pinzón Pérez, L., Cardona Cardozo, A., Fernández Mora, C., & Vargas Ríos, O. (2011). Estado de conservación de la vegetación del bajo Río Pauto, Casanare (Colombia). In T. León Sicard (Ed.), Mamíferos, reptiles y ecosistemas del Bloque Cubiro (Casanare) (pp. 155–190). Universidad Nacional de Colombia. https://www.researchgate.net/publication/264555382_Estado_de_conservacion_de_la_vegetacion_del_bajo_Rio_Pauto_Casanare_Colombia
dc.relation.referencesCorrales, E., & Nieto Moreno, O. (2017). La ganadería y las sabanas inundables. In Biodiversidad 2016. Estado y tendencias de la biodiversidad continental de Colombia (pp. 49–50). https://doi.org/10.21068/b001.2016.407
dc.relation.referencesCortopassi-Laurino, M., Imperatriz-Fonseca, V. L., Roubik, D. W., Dollin, A., Heard, T., Aguilar, I., Venturieri, G. C., Eardley, C., & Noguera-Neto, P. (2006). Global meliponiculture: Challenges and opportunities. In Apidologie (Vol. 37, Issue 2, pp. 275–292). EDP Sciences. https://doi.org/10.1051/apido:2006027
dc.relation.referencesCunningham, S. A., Crane, M. J., Evans, M. J., Hingee, K. L., & Lindenmayer, D. B. (2022). Density of invasive western honey bee (Apis mellifera) colonies in fragmented woodlands indicates potential for large impacts on native species. Scientific Reports, 12(1), 1–10. https://doi.org/10.1038/s41598-022-07635-0
dc.relation.referencesCurrea-Moncaleano, S., Urbano, S., & Sossa, M. (2021). Listado de morfoespecies que hacen parte de la dieta de M. favosa en los municipios de Trinidad y San Luis de Palenque –Casanare (Colombia).
dc.relation.referencesDamara, I. M. G. W., Watiniasih, N. L., & Suartini, N. M. (2018). Variation of Entrances, Food Storage and Brood Cells of Trigona laeviceps Bees from Various Habitat. Advances in Tropical Biodiversity and Environmental Sciences, 1(2), 50. https://doi.org/10.24843/atbes.2017.v01.i02.p06
dc.relation.referencesDelgado, C., Mejía, K., Rasmussen, C., & Romero, R. (2023). Traditional Knowledge of Stingless Bees (Hymenoptera: Apidae: Meliponini) in the Peruvian Amazon. Ethnobiology Letters, 14(1), 1–9. https://doi.org/10.14237/ebl.14.1.2023.1772
dc.relation.referencesDickison, W. C. (1972). Anatomical Studies in the Connaraceae. II. Wood Anatomy. Journal of Elisha Mitchel Scientific Society, 88(3), 120–136. https://www.jstor.org/stable/24334876
dc.relation.referencesDickison, W. C. (1973). Anatomical studies in the Connaraceae. IV. The bark and young stem. Journal of the Elisha Mitchell Scientific Society. https://www.jstor.org/stable/24334495
dc.relation.referencesDixon, K. W. (2009). Pollination and restoration. In Science (Vol. 325, Issue 5940, pp. 571–573). American Association for the Advancement of Science. https://doi.org/10.1126/science.1176295
dc.relation.referencesEltz, T., Brühl, C. A., Van der Kaars, S., & Eduard Linsenmair, K. (2002). Determinants of stingless bee nest density in lowland dipterocarp forests of Sabah, Malaysia. Oecologia, 131(1), 27–34. https://doi.org/10.1007/s00442-001-0848-6
dc.relation.referencesEngel, M. S., Rasmussen, C., Ayala, R., & de Oliveira, F. F. (2023). Stingless bee classification and biology (Hymenoptera, Apidae): a review, with an updated key to genera and subgenera. ZooKeys, 1172, 239–312. https://doi.org/10.3897/zookeys.1172.104944
dc.relation.referencesEngel, M. S., Rozen, J. G., Sepúlveda-Cano, P. A., Smith, C. S., Thomas, J. C., Ospina-Torres, R., & Gonzalez, V. H. (2019). Nest Architecture, Immature Stages, and Ethnoentomology of a New Species of Trigonisca from Northern Colombia (Hymenoptera: Apidae). American Museum Novitates, 2019(3942). https://doi.org/10.1206/3942.1
dc.relation.referencesFAO. (2023). Polinización. Servicios de Regulación. https://www.fao.org/ecosystem-services-biodiversity/background/regulatingservices/es/
dc.relation.referencesFaseeh, P., & Shanas, S. (2019). Occurrence of multiple nest entrance in the stingless bee tetragonula travancorica (Hymenoptera: Meliponini). Entomon, 44(4), 275–282. https://doi.org/10.33307/ENTOMON.V44I4.479
dc.relation.referencesFernández Mora, C., Castellano Castro, C., Cardona Cardozo, A., Pinzón Pérez, L., & Vargas Ríos, O. (2011). Geología, geomorfología, clima y vegetación. In Mamíferos, reptiles y ecosistemas del Bloque Cubiro (1st ed.). Universidad Nacional de Colombia. https://www.researchgate.net/publication/264555369_Geologia_geomorfologia_clima_y_vegetacion_Llanos_de_Casanare
dc.relation.referencesFierro, M. M., Cruz-López, L., Sánchez, D., Villanueva-Gutiérrez, R., & Vandame, R. (2012). Effect of Biotic Factors on the Spatial Distribution of Stingless Bees (Hymenoptera: Apidae, Meliponini) in Fragmented Neotropical Habitats. Neotropical Entomology, 41(2), 95–104. https://doi.org/10.1007/S13744-011-0009-5/FIGURES/4
dc.relation.referencesFlórez, N. A., Maldonado, J. D., Ospina, R., Barajas, R. A., Guevara, D. A., & Nates-Parra, G. (2023). Guía y clave ilustrada para las obreras de los géneros de abejas sociales sin aguijón (Hymenoptera: Apidae: Meliponini) de Colombia.
dc.relation.referencesGavin, M. C., McCarter, J., Mead, A., Berkes, F., Stepp, J. R., Peterson, D., & Tang, R. (2015). Defining biocultural approaches to conservation. In Trends in Ecology and Evolution (Vol. 30, Issue 3, pp. 140–145). Elsevier Ltd. https://doi.org/10.1016/j.tree.2014.12.005
dc.relation.referencesGhosh, S., Jeon, H., & Jung, C. (2020). Foraging behaviour and preference of pollen sources by honey bee (Apis mellifera) relative to protein contents. Journal of Ecology and Environment, 44(1), 1–7. https://doi.org/10.1186/s41610-020-0149-9
dc.relation.referencesGill, R. J., Baldock, K. C. R., Brown, M. J. F., Cresswell, J. E., Dicks, L. V., Fountain, M. T., Garratt, M. P. D., Gough, L. A., Heard, M. S., Holland, J. M., Ollerton, J., Stone, G. N., Tang, C. Q., Vanbergen, A. J., Vogler, A. P., Woodward, G., Arce, A. N., Boatman, N. D., Brand-Hardy, R., … Potts, S. G. (2016). Protecting an Ecosystem Service: Approaches to Understanding and Mitigating Threats to Wild Insect Pollinators. Advances in Ecological Research, 54, 135–206. https://doi.org/10.1016/BS.AECR.2015.10.007
dc.relation.referencesGinestet, C. (2011). ggplot2: Elegant Graphics for Data Analysis. Journal of the Royal Statistical Society Series A: Statistics in Society, 174(1), 245–246. https://doi.org/10.1111/j.1467-985x.2010.00676_9.x
dc.relation.referencesGoosen, D. (1964). Geomorfologia de los llanos orientales. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 12(46), 129–139. http://www.accefyn.org.co/revista/Volumen_12/46/130-139.pdf
dc.relation.referencesGrüter, C. (2020). Stingless Bees: An Overview. 1–42. https://doi.org/10.1007/978-3-030-60090-7_1
dc.relation.referencesHaase, P. (1995). Spatial pattern analysis in ecology based on Ripley’s K‐function: Introduction and methods of edge correction. Journal of Vegetation Science, 6(4), 575–582. https://doi.org/10.2307/3236356
dc.relation.referencesHamisi, I. (2016). Diversity, Status and threats to Stingless bees (Apidae:Meliponini) of Ipembampazi Forest Reserve. Applied Microbiology and Biotechnology, 85(1), 2071–2079.
dc.relation.referencesHubbell, S. P., & Johnson, L. K. (1977). Competition and nest spacing in a tropical stingless bee community. Ecology, 58(5), 949–963. https://doi.org/10.2307/1936917
dc.relation.referencesIAWA. (1989). List of microscopic features for hardwood identification. IAWA Bulletin, 10(3), 219–332. https://www.researchgate.net/publication/294088872_IAWA_List_of_Microcopie_Features_for_Hardwood_Identification
dc.relation.referencesIDEAM. (2010). Leyenda nacional de coberturas de la tierra. Metodología CORINE Land Cover adaptada para Colombia, escala 1:100.000. Area, TH-62-04-1(257), 16. https://www.researchgate.net/publication/303960063_LEYENDA_NACIONAL_DE_COBERTURAS_DE_LA_TIERRA_METODOLOGIA_CORINE_LAND_COVER_ADAPTADA_PARA_COLOMBIA_ESCALA_1100000
dc.relation.referencesIDEAM, I. de H. M. y E. A., & UPME, U. D. P. M. E. (2007). Atlas de Viento y Energía Eólica de Colombia.
dc.relation.referencesImaña-Encinas, J. (2001). Inventario forestal por transectos de muestreo en bosques de galería en el Brasil. Congreso Forestal Español. https://secforestales.org/publicaciones/index.php/congresos_forestales/article/view/15482
dc.relation.referencesnfante, J., Sánchez, I., Salas, E., Escalona†, C., & Pérez, A. (2021). Caracterización de la meliponicultura en comunidades urbanas, periurbanas e indígenas del estado Amazonas, Venezuela. Zootecnia Tropical, 39, 1–20. https://n9.cl/m3ovq
dc.relation.referencesJiménez, J. U., Fábrega, J., Mora, D., Tejedor, N., & Sánchez, M. (2020). Composition, Diversity, and Tree Structure of a Tropical Moist Forest in Gamboa, Colon, Panama. Https://Doi.Org/10.1177/ASWR.S33960, 9(1). https://doi.org/10.1177/ASWR.S33960
dc.relation.referencesJohnson, M. G., Glass, J. R., Dillon, M. E., & Harrison, J. F. (2023). How will climatic warming affect insect pollinators? In Advances in Insect Physiology (Vol. 64, pp. 1–115). Academic Press. https://doi.org/10.1016/bs.aiip.2023.01.001
dc.relation.referencesJohnson, M. O., Galbraith, D., Gloor, M., De Deurwaerder, H., Guimberteau, M., Rammig, A., Thonicke, K., Verbeeck, H., von Randow, C., Monteagudo, A., Phillips, O. L., Brienen, R. J. W., Feldpausch, T. R., Lopez Gonzalez, G., Fauset, S., Quesada, C. A., Christoffersen, B., Ciais, P., Sampaio, G., … Baker, T. R. (2016). Variation in stem mortality rates determines patterns of above‐ground biomass in Amazonian forests: implications for dynamic global vegetation models. Global Change Biology, 22(12), 3996. https://doi.org/10.1111/GCB.13315
dc.relation.referencesJonsson, B. G., Kruys, N., & Ranius, T. (2005). Ecology of species living on dead wood - Lessons for dead wood management. In Silva Fennica (Vol. 39, Issue 2, pp. 289–309). Finnish Society of Forest Science. https://doi.org/10.14214/sf.390
dc.relation.referencesKajobe, R. (2007). Nesting biology of equatorial Afrotropical stingless bees (Apidae; Meliponini) in Bwindi Impenetrable National Park, Uganda. Journal of Apicultural Research, 245–255. https://doi.org/10.3896/ibra.1.46.4.07
dc.relation.referencesKampstra, P. (2008). Beanplot: A Boxplot Alternative for Visual Comparison of Distributions. Journal of Statistical Software, 28(Code Snippet 1), 1–9. https://doi.org/10.18637/jss.v028.c01
dc.relation.referencesKhalifa, S. A. M., Elshafiey, E. H., Shetaia, A. A., El-Wahed, A. A. A., Algethami, A. F., Musharraf, S. G., Alajmi, M. F., Zhao, C., Masry, S. H. D., Abdel-Daim, M. M., Halabi, M. F., Kai, G., Al Naggar, Y., Bishr, M., Diab, M. A. M., & El-Seedi, H. R. (2021). Overview of bee pollination and its economic value for crop production. Insects, 12(8). https://doi.org/10.3390/insects12080688
dc.relation.referencesKindt, R., & Coe, R. (2005). Tree diversity analysis; A manual and software for common statistical methods for ecological and biodiversity studies. World, January, 196. http://www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.asp
dc.relation.referencesKonzmann, S., & Lunau, K. (2014). Divergent rules for pollen and nectar foraging bumblebees - A laboratory study with artificial flowers offering diluted nectar substitute and pollen surrogate. PLoS ONE, 9(3), 91900. https://doi.org/10.1371/journal.pone.0091900
dc.relation.referencesLeponiemi, M., Freitak, D., Moreno-Torres, M., Pferschy-Wenzig, E. M., Becker-Scarpitta, A., Tiusanen, M., Vesterinen, E. J., & Wirta, H. (2023). Honeybees’ foraging choices for nectar and pollen revealed by DNA metabarcoding. Scientific Reports, 13(1), 1–15. https://doi.org/10.1038/s41598-023-42102-4
dc.relation.referencesLichtenberg, E. M., Mendenhall, C. D., & Brosi, B. (2017). Foraging traits modulate stingless bee community disassembly under forest loss. Journal of Animal Ecology, 86(6), 1404–1416. https://doi.org/10.1111/1365-2656.12747
dc.relation.referencesLima, F. V. de O., Silvestre, R., & Balestieri, J. B. P. (2013). Nest entrance types of stingless bees (Hymenoptera: Apidae sensu lato) in a Tropical Dry Forest of mid-Western Brazil. Sociobiology, 60(4), 421–428. https://doi.org/10.13102/sociobiology.v60i4.421-428
dc.relation.referencesMartins, A. C., Proença, C. E. B., Vasconcelos, T. N. C., Aguiar, A. J. C., Farinasso, H. C., de Lima, A. T. F., Faria, J. E. Q., Norrana, K., Costa, M. B. R., Carvalho, M. M., Dias, R. L., Bustamante, M. M. C., Carvalho, F. A., & Keller, A. (2023). Contrasting patterns of foraging behavior in neotropical stingless bees using pollen and honey metabarcoding. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-41304-0
dc.relation.referencesMiller, R. B. (1975). Systematic Anatomy of the Xylem and Comments on the Relationships of Flacourtiaceae. Journal of the Arnold Arboretum., 56(1), 20–102. https://doi.org/10.5962/p.185846
dc.relation.referencesMontero Gonzales, M. I., Barrera García, J. A., Giraldo Benavides, B., & Lucena Mancera, A. A. (2015). Fichas Técnicas de Especies de uso Forestal y Agroforestal de la Amazonia Colombiana. https://sinchi.org.co/fichas-tecnicas-de-especies-de-uso-forestal-y-agroforestal-de-la-amazonia-colombiana1
dc.relation.referencesMoreno, F. A., & Cardozo, A. F. (2003). Field procedures for the location and identification of stingless bees (Meliponinae). Livestock Research for Rural Development, 15, Pagination missing-please provide. http://www.lrrd.org/lrrd15/2/more152.htm
dc.relation.referencesMyllymäki, M., & Mrkvička, T. (2019). GET: Global envelopes in R. http://arxiv.org/abs/1911.06583
dc.relation.referencesMyllymäki, M., & Mrkvička, T. (2019). GET: Global envelopes in R. http://arxiv.org/abs/1911.06583
dc.relation.referencesNates-Parra, G. (1990). Abejas de Colombia. III. Clave para géneros y subgéneros de Meliponini (Hymenoptera: Apidae). Acta Biológica Colombiana, 2(6), 115–128. https://repositorio.unal.edu.co/handle/unal/37770
dc.relation.referencesNates-Parra, G. (1995). Las abejas sin aguijon del genero Melipona (Hymenoptera: Meliponinae) en Colombia. Bol. Mus. Ent. Univ. Valle, 3(2), 21–33.
dc.relation.referencesNates-Parra, G. (2001). Las Abejas sin Aguijón (Hymenoptera: Apidae:\nMeliponini) de Colombia. Biota Colombiana, 2(3), 233–248. https://revistas.humboldt.org.co/index.php/biota/article/view/101
dc.relation.referencesNates-Parra, G., & Rosso, J. M. (2013). Diversidad de abejas sin aguijón (Hymenoptera:Meliponini) utilizadas en meliponicultura en Colombia. Acta Biológica Colombiana, 18(3), 415–426. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-548X2013000300001&lng=en&nrm=iso&tlng=es
dc.relation.referencesNates-Parra, G., & Roubik, D. W. (1990). Sympatry among Subspecies of Melipona favosa in Colombia and a Taxonomic Revision. Journal of the Kansas Entomological Society, 63(1), 200–203. https://www.jstor.org/stable/25085163
dc.relation.referencesNicholls, E., & Hempel de Ibarra, N. (2017). Assessment of pollen rewards by foraging bees. In Functional Ecology (Vol. 31, Issue 1, pp. 76–87). Blackwell Publishing Ltd. https://doi.org/10.1111/1365-2435.12778
dc.relation.referencesOsorio González, J. (2023). Meliponicultura en Caldas: desafíos y potencialidades. Instituto de Estudios Ambientales. https://repositorio.unal.edu.co/handle/unal/84771
dc.relation.referencesPalacios, E. (2004). Estructura de la comunidad de abejas sin aguijón en tres unidades de paisaje del piedemonte llanero Colombiano (Meta, Colombia). 87.
dc.relation.referencesPebesma, E., & Bivand, R. (2023). Spatial Data Science: With Applications in R. In Spatial Data Science: With Applications in R. CRC Press. https://doi.org/10.1201/9780429459016
dc.relation.referencesPereira da Silva, M., & Sarmiento, G. (1997). Un modelo de estados y transiciones de la sabana hiperestacional de los llanos venezolanos.pdf. Ecotrópicos, 10(2), 79–86.
dc.relation.referencesPhillips, O., Baker, T., Feldpausch, T., Brienen, R., Almeida, S., Arroyo, L., Aymard, G., Chave, J., Cardozo, D., Chao, K.-J., Higuchi, N., Honorio, E., Jiménez, E., Lewis, S. L., Lloyd, J., López-González, G., Malhi, Y., Marimon, B., Monteagudo, A., … Vásquez, R. (2001). RAINFOR Manual de Campo para el Establecimiento y la Remedición de Parcelas.
dc.relation.referencesPinzón Pérez, L., Castellano Castro, Carolina Cardona Cardozo, A., Mora Fernández, C., & Vargas Ríos, O. (2011). Caracterización de las comunidades vegetales presentes en el Bloque Cubiro, cuenca baja del Río Pauto, Casanare (Colombia). Mamíferos, Reptiles y Ecosistemas Del Bloque Cubiro, 99–154.
dc.relation.referencesPires, C. S. S., & Maués, M. M. (2020). Insect Pollinators, Major Threats and Mitigation Measures. In Neotropical Entomology (Vol. 49, Issue 4, pp. 469–471). Springer. https://doi.org/10.1007/s13744-020-00805-7
dc.relation.referencesPotts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: Trends, impacts and drivers. In Trends in Ecology and Evolution (Vol. 25, Issue 6, pp. 345–353). Elsevier Current Trends. https://doi.org/10.1016/j.tree.2010.01.007
dc.relation.referencesPotts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G., & Willmer, P. (2003). Linking bees and flowers: How do floral communities structure pollinator communities? Ecology, 84(10), 2628–2642. https://doi.org/10.1890/02-0136
dc.relation.referencesPyke, G. H., & Starr, C. K. (2021). Orientation by Central-Place Foragers. Encyclopedia of Social Insects, 690–695. https://doi.org/10.1007/978-3-030-28102-1_187
dc.relation.referencesR Core Team. (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
dc.relation.referencesRamalho, M. (2004). Stingless bees and mass flowering trees in the canopy of Atlantic Forest: a tight relationship. Acta Botanica Brasilica, 18(1), 37–47. https://doi.org/10.1590/s0102-33062004000100005
dc.relation.referencesRamírez, V. M., Calvillo, L. M., & Kevan, P. G. (2013). Effects of human disturbance and habitat fragmentation on stingless bees. Pot-Honey: A Legacy of Stingless Bees, 9781461449, 269–282. https://doi.org/10.1007/978-1-4614-4960-7_19/COVER
dc.relation.referencesRangel-ch, J. O. (2019). Ecosystem services of the savannas and wetlands territory of Arauca, Colombia. Colombia Diversidad Biótica, XX, 743–760. https://repositorio.unal.edu.co/handle/unal/81528?show=full
dc.relation.referencesReal-Luna, N., Rivera-Hernández, J. E., Alcántara-Salinas, G., Rojas-Malavasi, G., Morales-Vargas, A. P., Pérez-Sato, J. A., Real-Luna, N., Rivera-Hernández, J. E., Alcántara-Salinas, G., Rojas-Malavasi, G., Morales-Vargas, A. P., & Pérez-Sato, J. A. (2022). Stingless bees (Tribe Meliponini) in Latin American agroecosystems. Revista Mexicana de Ciencias Agrícolas, 13(2), 331–344. https://doi.org/10.29312/REMEXCA.V13I2.2866
dc.relation.referencesRodríguez Cabra, J. S. (2023). Sabanas bravas, limpias y sucias: Relatos de la ganadería familiar y colonización de la sabana inundable de Casanare.
dc.relation.referencesRomero-Ruiz, M. H., Flantua, S. G. A., Tansey, K., & Berrio, J. C. (2012). Landscape transformations in savannas of northern South America: Land use/cover changes since 1987 in the Llanos Orientales of Colombia. Applied Geography, 32(2), 766–776. https://doi.org/10.1016/j.apgeog.2011.08.010
dc.relation.referencesRot, C. (2006). Introdución al análisis de datos mapeados o algunas de las (muchas) cosas que puedo hacer si tengo coordenadas. Ecosistemas, 3, 20–40.
dc.relation.referencesRoubik, D. W. (1993). Tropical pollinators in the canopy and understory: Field data and theory for stratum “preferences.” Journal of Insect Behavior, 6(6), 659–673. https://doi.org/10.1007/BF01201668
dc.relation.referencesRoubik W., D. (2006). Stingless bee nesting biology. Apidologie, 37(2), 124–143. http://dx.doi.org/10.1051/apido:2006026
dc.relation.referencesRozendaal, D. M. A., Phillips, O. L., Lewis, S. L., Affum-Baffoe, K., Alvarez-Davila, E., Andrade, A., Aragão, L. E. O. C., Araujo-Murakami, A., Baker, T. R., Bánki, O., Brienen, R. J. W., Camargo, J. L. C., Comiskey, J. A., Djuikouo Kamdem, M. N., Fauset, S., Feldpausch, T. R., Killeen, T. J., Laurance, W. F., Laurance, S. G. W., … Vanderwel, M. C. (2020). Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 101(7), 3052. https://doi.org/10.1002/ECY.3052
dc.relation.referencesSalatnaya, H., Fuah, A. M., Engel, M. S., Sumantri, C., Widiatmaka, & Kahono, S. (2021). Diversity, Nest Preferences, and Forage Plants of Stingless Bees (Hymenoptera: Apidae: Meliponini) from West Halmahera, North Moluccas, Indonesia. Jurnal Ilmu Ternak Dan Veteriner, 26(4), 167–178. https://doi.org/10.14334/JITV.V26I4.2896
dc.relation.referencesSalazar Bermudez, V. (2013). Valoración económica ambiental de las sabanas inundables. In L. Peñuela Recio & C. Mora-Fernandez (Eds.), Salud Ecosistémica de las sabanas inundables asociadas a la cuenca del rio Pauto Casanare, Colombia (pp. 61–75). YOLUKA ONG, Fundación de Investigación en Biodiversidad y Conservación Fundación Horizonte Verde-FHV,.
dc.relation.referencesSánchez-Cuervo, A. M., Aide, T. M., Clark, M. L., & Etter, A. (2012). Land Cover Change in Colombia: Surprising Forest Recovery Trends between 2001 and 2010. PLoS ONE, 7(8). https://doi.org/10.1371/JOURNAL.PONE.0043943
dc.relation.referencesSchmitz, N., Beeckman, H., Blanc-Jolivet, C., Boeschoten, L. E., Braga, J., Cabezas, J. A., Chaix, G., Crameri, S., Deklerck, V., Degen, B., Deklerck, V., Dormontt, E., Espinoza, E., Gasson, P., Haag, V., Helmling, S., Horacek, M., Koch, G., Lancaster, C., … Zuidema, P. (2020). Overview of current practices in data analysis for wood identification. A guide for the different timber tracking methods. Global Timber Tracking Network, June, 141. https://www.researchgate.net/publication/342281916_Overview_of_current_practices_in_data_analysis_for_wood_identification_A_guide_for_the_different_timber_tracking_methods?channel=doi&linkId=5eeb9f16a6fdcc73be85b5d8&showFulltext=true
dc.relation.referencesSchwarze, F. W. M. R. (2004). PATHOLOGY | Heart Rot and Wood Decay. In Encyclopedia of Forest Sciences (pp. 808–816). Elsevier. https://doi.org/10.1016/b0-12-145160-7/00071-5
dc.relation.referencesSea, W. B., & Hanan, N. P. (2012). Self-thinning and Tree Competition in Savannas. Biotropica, 44(2), 189–196. https://doi.org/10.1111/J.1744-7429.2011.00789.X
dc.relation.referencesSilva, M. D., & Ramalho, M. (2016). The influence of habitat and species attributes on the density and nest spacing of a stingless bee (Meliponini) in the Atlantic Rainforest. Sociobiology, 63(3), 991–997. https://doi.org/10.13102/SOCIOBIOLOGY.V63I3.1037
dc.relation.referencesSiqueira, E. N. L., Bartelli, B. F., Nascimento, A. R. T., & Nogueira-Ferreira, F. H. (2012). Diversity and Nesting Substrates of Stingless Bees (Hymenoptera, Meliponina) in a Forest Remnant. Psyche: A Journal of Entomology, 2012(1), 370895. https://doi.org/10.1155/2012/370895
dc.relation.referencesSlaa, E. J., Sánchez Chaves, L. A., Malagodi-Braga, K. S., & Hofstede, F. E. (2006). Stingless bees in applied pollination: Practice and perspectives. In Apidologie (Vol. 37, Issue 2, pp. 293–315). https://doi.org/10.1051/apido:2006022
dc.relation.referencesTimar, M. C., Gurǎu, L., & Porojan, M. (2012). Wood species identification, a challenge of scientific conservation. International Journal of Conservation Science, 3(1), 11–22. https://www.researchgate.net/publication/289726763_Wood_Species_Identification_A_Challenge_of_Scientific_Conservation
dc.relation.referencesToledo, C. A. P., Lucas, E. J., Forero, E., Falcão, M. J. A., Shimizu, G. H., & Souza, V. C. (2024). A taxonomic revision of Neotropical Connarus (Connaraceae). In Taxon (Vol. 73, Issue 1, pp. 13–123). John Wiley & Sons, Ltd. https://doi.org/10.1002/tax.13109
dc.relation.referencesToledo-Hernández, E., Peña-Chora, G., Hernández-Velázquez, V. M., Lormendez, C. C., Toribio-Jiménez, J., Romero-Ramírez, Y., & León-Rodríguez, R. (2022). The stingless bees (Hymenoptera: Apidae: Meliponini): a review of the current threats to their survival. Apidologie, 53(1). https://doi.org/10.1007/s13592-022-00913-w
dc.relation.referencesTornyie, F., & Kwapong, P. K. (2015). Nesting ecology of stingless bees and potential threats to their survival within selected landscapes in the northern Volta region of Ghana. African Journal of Ecology, 53(4), 398–405. https://doi.org/10.1111/aje.12208
dc.relation.referencesUrbanowicz, C., Muñiz, P. A., & McArt, S. H. (2020). Honey bees and wild pollinators differ in their preference for and use of introduced floral resources. Ecology and Evolution, 10(13), 6741–6751. https://doi.org/10.1002/ece3.6417
dc.relation.referencesVeneklaas, E. J., Fajardo, A., Obregon, S., & Lozano, J. (2005). Gallery forest types and their environmental correlates in a Colombian savanna landscape. Ecography, 28(2), 236–252. https://doi.org/10.1111/j.0906-7590.2005.03934.x
dc.relation.referencesVeneklaas, E., Obregon, S., Fajardo, A., Lozano, J., & Beaulieu, N. (1998). Forests in the Colombian savanna: distribution, dynamics and conservation. https://www.researchgate.net/publication/323522161_Forests_in_the_Colombian_savanna_distribution_dynamics_and_conservation
dc.relation.referencesVit, P. (2013). Melipona favosa pot-honey from Venezuela. Pot-Honey: A Legacy of Stingless Bees, 9781461449, 363–373. https://doi.org/10.1007/978-1-4614-4960-7_25
dc.relation.referencesVit, P., Mejías, A., Rial, L., Ruiz, J., Peña, S., González, A. C., Rodríguez-Malaver, A., Arráez, M., Gutiérrez, C., Zambrano, A., & Barth, O. M. (2012). Conociendo la miel de Melipona favosa en la Península de Paraguaná, estado Falcón, Venezuela. Revista Del Instituto Nacional de Higiene “Rafael Rangel,” 43(1), 15–19.
dc.relation.referencesWheeler, E. A. (2011). InsideWood – A web resource for hardwood identification. IAWA Journal, 32(2), 199–211.
dc.relation.referencesWille, A., & Michener, C. D. (1973). The nest architecture of stingless bees with special reference to those of Costa Rica (Hymenoptera, Apidae). Revista De Biología Tropical, 21(1). https://revistas.ucr.ac.cr/index.php/rbt/article/view/26200
dc.relation.referencesWorld Bank Group, & DTU Wind Energy. (2019). Global Wind Atlas | Data Catalog. https://datacatalog.worldbank.org/search/dataset/0038957
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectMelipona favosa
dc.subjectNidificación
dc.subjectOrientación magnética
dc.subjectDAP
dc.subjectCavidades
dc.subject.keywordMelipona favosa
dc.subject.keywordNesting
dc.subject.keywordMagnetic orientation
dc.subject.keywordDBH
dc.subject.keywordSnags
dc.subject.lembIngeniería Forestal -- Tesis y disertaciones académicas
dc.titlePreferencias de nidificación de la abeja nativa mancita (M. favosa) en sabanas inundables de San Luis de Palenque, Casanare
dc.title.titleenglishNesting preferences of the native mancita bee (M. favosa) in flooded savannas of San Luis de Palenque, Casanare
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
SánchezLealMateoAndrés2025.pdf
Tamaño:
2.46 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicación.pdf
Tamaño:
227.56 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: