Diseño de una arquitectura iot sostenible para reducir desperdicios en el almacenamiento de aguacate hass en economías emergentes​

dc.contributor.advisorBeltrán Bernal, Néstor Andrés
dc.contributor.authorGuatame Vera, Stefanny
dc.contributor.authorIsaquita Torres, Juan Esteban
dc.date.accessioned2025-09-22T16:44:46Z
dc.date.available2025-09-22T16:44:46Z
dc.date.created2025-07-15
dc.descriptionEl desperdicio de alimentos representa un desafío crítico a nivel global, afectando la seguridad alimentaria, la economía y el medio ambiente. Particularmente en Colombia, el almacenamiento inadecuado de productos perecederos como el aguacate Hass genera significativas pérdidas económicas y sociales. Este trabajo de grado analiza el papel del Internet de las Cosas (IoT) como herramienta para optimizar el almacenamiento postcosecha de esta fruta, a través del diseño de una arquitectura tecnológica sostenible, adaptable y eficiente. Mediante una revisión crítica de literatura científica y técnica, se exploran las oportunidades y barreras que enfrentan estas tecnologías en contextos rurales y economías emergentes. Se identifican variables clave como temperatura, humedad y etileno, las cuales son fundamentales para evitar la maduración acelerada y el deterioro del producto. Asimismo, se evalúan soluciones basadas en sensores, plataformas digitales y redes de bajo consumo energético que puedan integrarse de forma viable a las condiciones del sector agrícola colombiano. El estudio se justifica en la necesidad de reducir pérdidas postcosecha, mejorar la trazabilidad y empoderar a pequeños productores, contribuyendo a una cadena de suministro más sostenible, resiliente y alineada con los Objetivos de Desarrollo Sostenible. La arquitectura propuesta no solo pretende mitigar el desperdicio de alimentos, sino también sentar las bases para un modelo agroalimentario más eficiente y equitativo.
dc.description.abstractFood waste represents a critical global challenge, affecting food security, the economy, and the environment. Particularly in Colombia, inadequate storage of perishable products such as Hass avocados generates significant economic and social losses. This thesis analyzes the role of the Internet of Things (IoT) as a tool to optimize post-harvest storage of this fruit through the design of a sustainable, adaptable, and efficient technological architecture. Through a critical review of scientific and technical literature, the paper explores the opportunities and barriers that these technologies face in rural contexts and emerging economies. Key variables such as temperature, humidity, and ethylene are identified, which are essential to prevent accelerated ripening and product deterioration. Additionally, solutions based on sensors, digital platforms, and low-energy networks that can be viably integrated into the conditions of the Colombian agricultural sector are evaluated. The study is justified by the need to reduce post-harvest losses, improve traceability, and empower small producers, contributing to a more sustainable and resilient supply chain aligned with the Sustainable Development Goals. The architectural proposal not only aims to mitigate food waste but also lay the foundation for a more efficient and equitable agri-food model.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/99135
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAbdulridha Taha, A., Salama, D., Abdelminaam, S., & Khalid, M. (2017). Enhancement the Security of Cloud Computing using Hybrid Cryptography Algorithms. Retrieved from https://www.researchgate.net/publication/324877911_Enhancement_the_Security_of_Clo ud_Computing_using_Hybrid_Cryptography_Algorithms
dc.relation.referencesAccorsi, R., Bortolini, M., Baruffaldi, G., Pilati, F., & Ferrari, E. (2017). Internet-of-things Paradigm in Food Supply Chains Control and Management. Procedia Manufacturing, 11, 889–895. https://doi.org/10.1016/J.PROMFG.2017.07.192
dc.relation.referencesAdelodun, B., Hyun Kim, S., dorada, O., & Sook Choi, K. (2021). Assessment of environmental and economic aspects of household food waste using a new Environmental-Economic Footprint (EN-EC) index: A case study of Daegu, South Korea. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0048969721009955?via%3Dihub
dc.relation.referencesAggarwal, S. (2024). Enhancing Supply Chain Sustainability: The Role of Blockchain and Digital Technologies. Retrieved from https://www.ijfmr.com/papers/2024/5/28451.pdf
dc.relation.referencesAhmad Dar, A., Ahmad Reegu, F., Ahmed, S., & Hussain, G. (2024). Blockchain Technology and Artificial Intelligence based Integrated Framework for Sustainable Supply Chain Management System. Retrieved from https://ieeexplore.ieee.org/document/10498149
dc.relation.referencesAhmad, S., & Kim, D. (2020). A multi-device multi-tasks management and orchestration architecture for the design of enterprise IoT applications. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0167739X19318035?via%3Dihub
dc.relation.referencesAhmed, I., Darda, M., & Nath, S. (2021). Blockchain: A New Safeguard to Cybersecurity. Retrieved from https://link.springer.com/chapter/10.1007/978-3-030-69395-4_15
dc.relation.referencesAlfian, G., Syafrudin, M., Farooq, U., Ma’arif, M. R., Syaekhoni, M. A., Fitriyani, N. L., Lee, J., & Rhee, J. (2020). Improving efficiency of RFID-based traceability system for perishable food by utilizing IoT sensors and machine learning model. Food Control, 110. https://doi.org/10.1016/j.foodcont.2019.107016
dc.relation.referencesAlfian, G., Syafrudin, M., & Rhee, J. (2017). Real-time monitoring system using smartphonebased sensors and NoSQL database for perishable supply chain. Sustainability (Switzerland), 9(11). https://doi.org/10.3390/su9112073
dc.relation.referencesAli, A., Hussain, T., Tantashutikun, N., Hussain, N., & Cocetta, G. (2023). Application of Smart Techniques, Internet of Things and Data Mining for Resource Use Efficient and Sustainable Crop Production. In Agriculture (Switzerland) (Vol. 13, Issue 2). MDPI. https://doi.org/10.3390/agriculture13020397
dc.relation.referencesAndrade, R. O., Yoo, S. G., Ortiz-Garces, I., & Barriga, J. (2022). Security Risk Analysis in IoT Systems through Factor Identification over IoT Devices. Applied Sciences (Switzerland), 12(6). https://doi.org/10.3390/app12062976
dc.relation.referencesArim, P., & Li, H. (2021). The Effect of Blockchain Technology on Supply Chain. Retrieved from https://www.mdpi.com/2071-1050/13/4/1726/pdf?version=1612539601
dc.relation.referencesAschemann Witzel, J., Giménez, A., & Ares, G. (2019). Household food waste in an emerging country and the reasons why: Consumer´s own accounts and how it differs for target groups. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0921344919301077?via%3Dihub
dc.relation.referencesAsociación Nacional de Comercio Exterior (Analdex). (2024, marzo). Cifras de aguacate a diciembre [Informe PDF]. https://www.analdex.org/wp-content/uploads/2024/03/240213- cifras-de-aguacate-a-diciembre.pdf
dc.relation.referencesAung, M. M., & Chang, Y. S. (2014). Temperature management for the quality assurance of a perishable food supply chain. Food Control, 40(1), 198–207. https://doi.org/10.1016/J.FOODCONT.2013.11.016
dc.relation.referencesBadia-Melis, R., Mc Carthy, U., Ruiz-Garcia, L., Garcia-Hierro, J., & Robla Villalba, J. I. (2018). New trends in cold chain monitoring applications - A review. Food Control, 86, 170–182. https://doi.org/10.1016/J.FOODCONT.2017.11.022
dc.relation.referencesBalamurugan, S., Ayyasamy, A., & Joseph, K. S. (2022). IoT-Blockchain driven traceability techniques for improved safety measures in food supply chain. International Journal of Information Technology (Singapore), 14(2), 1087–1098. https://doi.org/10.1007/s41870- 020-00581-y
dc.relation.referencesBarge, P., Gay, P., Merlino, V., & Tortia, C. (2014). Item-level Radio-Frequency IDentification for the traceability of food products: Application on a dairy product. Journal of Food Engineering, 125(1), 119–130. https://doi.org/10.1016/J.JFOODENG.2013.10.019
dc.relation.referencesBibi, F., Guillaume, C., Gontard, N., & Sorli, B. (2017). A review: RFID technology having sensing aptitudes for food industry and their contribution to tracking and monitoring of food products. Trends in Food Science & Technology, 62, 91–103. https://doi.org/10.1016/J.TIFS.2017.01.013
dc.relation.referencesBertino, E., Bonatti, P. A., Bravos, G., Elia, P., & Samiotis, D. (2024). IoT-enabled supply chains: Architecture, technologies, and case studies. arXiv. https://doi.org/10.48550/arXiv.2503.11162
dc.relation.referencesBodkhe, U., Mehta, D., Tanwar, S., Bhattacharya, P., Kumar Singh, P., & Hong Wei, C. (2020). A Survey on Decentralized Consensus Mechanisms for Cyber Physical Systems. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9039576
dc.relation.referencesBosona, T., & Gebresenbet, G. (2013). Food traceability as an integral part of logistics management in food and agricultural supply chain. Food Control, 33(1), 32–48. https://doi.org/10.1016/J.FOODCONT.2013.02.004
dc.relation.referencesBouzembrak, Y., Klüche, M., Gavai, A., & Marvin, H. J. P. (2019). Internet of Things in food safety: Literature review and a bibliometric analysis. In Trends in Food Science and Technology (Vol. 94, pp. 54–64). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2019.11.002}
dc.relation.referencesBravos, J., Cabrera, A., Correa, C., Danilović, D., Evangeliou, N., & Ezov, G. (2022). Cybersecurity for Industrial Internet of Things: Architecture, Models and Lessons Learned. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9964219
dc.relation.referencesBrochado, Á., Rocha, E., & Costa, D. (2024). A Modular IoT-Based Architecture for Logistics Service Performance Assessment and Real-Time Scheduling towards a Synchromodal Transport System. Retrieved from https://www.mdpi.com/2071- 1050/16/2/742/pdf?version=1705312100
dc.relation.referencesCerchecci, M., Luti, F., Mecocci, A., Parrino, S., Peruzzi, G., & Pozzebon, A. (2018). A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context. Retrieved from https://www.mdpi.com/1424-8220/18/4/1282/pdf?version=1525349450
dc.relation.referencesChandan, A., juan, M., & Potdar, V. (2024). Achieving UN SDGs in Food Supply Chain Using Blockchain Technology. Retrieved from https://www.mdpi.com/2071- 1050/15/3/2109/pdf?version=1675414979
dc.relation.referencesChang Li, K., & Hua Shi, C. (2023). A Flexible and Efficient Privacy-Preserving Range Query Scheme for Blockchain-Enhanced IoT. Retrieved from https://ieeexplore.ieee.org/document/9872077
dc.relation.referencesChathuranga De Alwis, A. A., Barros, A., Fidge, C., & Polyvyany, A. (2021). Microservice Remodularisation of Monolithic Enterprise Systems for Embedding in Industrial IoT Networks. Retrieved from https://link.springer.com/chapter/10.1007/978-3-030-79382- 1_26
dc.relation.referencesChen, C., Chaudhary, A., & Mathys, A. (2020). Nutritional and environmental losses linked to global food waste. Retrieved from https://pdf.sciencedirectassets.com/271808/1-s2.0- S0921344920X00061/1-s2.0-S0921344920302305/main.pdf?X-Amz-SecurityToken=IQoJb3JpZ2luX2VjEHIaCXVzLWVhc3QtMSJIMEYCIQDmHUZdY9u1Di%2F 4N4a3Z4Xr%2F%2FLl9N9tx8RuhwH6j4mDLQIhAPTIK1Fy55oiMFeDmm9msNkD7N fhbrBMTWTVF8
dc.relation.referencesChen, S., Dai, W., Dai, Y., Fu, H., Gao, Y., Guo, J., . . . Liu, Y. (2019). Thinkey: una arquitectura blockchain escalable. Retrieved from https://arxiv.org/pdf/1904.04560
dc.relation.referencesCocco, L., Mannaro, K., Tonelli, R., Mariani, L., Lodi, M. B., Melis, A., Simone, M., & Fanti, A. (2021). A Blockchain-Based Traceability System in Agri-Food SME: Case Study of a Traditional Bakery. IEEE Access, 9, 62899–62915. https://doi.org/10.1109/ACCESS.2021.3074874
dc.relation.referencesČolaković, A., & Hadžialić, M. (2018). Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Computer Networks, 144, 17–39. https://doi.org/10.1016/J.COMNET.2018.07.017
dc.relation.referencesCorporación Colombiana de Investigación Agropecuaria – AGROSAVIA. (s. f.). Actualización tecnológica y buenas prácticas agrícolas (BPA) en el cultivo de aguacate [Manual]. Biblioteca Digital Agropecuaria de Colombia. http://hdl.handle.net/20.500.12324/36505
dc.relation.referencesCorporación de Productores y Exportadores de Aguacate Hass de Colombia (Corpohass). (2024, diciembre). Informe sectorial 2023 [Informe PDF]. https://www.corpohass.com/content/uploads/2024/12/informe-sectorial-2023- corpohass.pdf
dc.relation.referencesCricelli, L., Mauriello, R., & Strazzullo, S. (2022). Technological innovation in agri-food supply chains. Retrieved from https://www.emerald.com/insight/content/doi/10.1108/bfj-06- 2022-0490/full/html
dc.relation.referencesEndesha, B., Zerihun, D., & Babu, R. (2017). Cloud Management Architecture for Private Clouds. Retrieved from https://core.ac.uk/download/pdf/229655889.pdf
dc.relation.referencesEngineering Institute, S. (n.d.). WHAT IS YOUR DEFINITION OF SOFTWARE ARCHITECTURE?
dc.relation.referencesEspinosa Jaramillo, M. T., Chenet Zuta, M. E., Koneti, C., Olivares Zegarra, S., & Carvajal Ordoñez, V. F. (2024). Digital Twins in Supply Chain Operations Bridging the Physical and Digital Worlds using AI. Retrieved from https://journal.esrgroups.org/jes/article/view/5434/3912
dc.relation.referencesFang, C., Chi, M., Fan, S., & Choi, T. M. (2024). Who should invest in blockchain technology under different pricing models in supply chains? European Journal of Operational Research, 319(3), 777–792. https://doi.org/10.1016/J.EJOR.2024.07.006
dc.relation.referencesFarooq, M. S., Riaz, S., Abid, A., Abid, K., & Naeem, M. A. (2019). A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. In IEEE Access (Vol. 7, pp. 156237–156271). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2019.2949703
dc.relation.referencesFerrández-Pastor, F. J., Mora-Pascual, J., & Díaz-Lajara, D. (2022). Agricultural traceability model based on IoT and Blockchain: Application in industrial hemp production. Journal of Industrial Information Integration, 29, 100381. https://doi.org/10.1016/J.JII.2022.100381
dc.relation.referencesFiandrino, C., Kliazovich, D., Bouvry, P., & Zomaya, A. (2017). Performance and Energy Efficiency Metrics for Communication Systems of Cloud Computing Data Centers. Retrieved from https://ieeexplore.ieee.org/document/7090996
dc.relation.referencesGhabak, V., & Chaugule, R. (2024). Digital Twin Framework in Supply Chain Governance. Retrieved from https://ieeexplore.ieee.org/document/10486732
dc.relation.referencesGómez, G., Espina, E., Armas Aguirre, J., & Madrid Molina, J. M. (2021). Cybersecurity architecture functional model for cyber risk reduction in IoT based wearable devices. Retrieved from https://ieeexplore.ieee.org/document/9619624
dc.relation.referencesGustavsson, J., Cederberg, C., & Sonesson, U. (2011). Global Food Losses and Food Waste
dc.relation.referencesHindarto, D. (2024). Journal of Computer Networks, Architecture and High Performance Computing. Retrieved from https://jurnal.itscience.org/index.php/CNAPC/article/view/4415/3352
dc.relation.referencesHuang, J., L, S., Chen, Y., & Chen, J. (2018). Performance modelling and analysis for IoT services. Retrieved from https://www.inderscience.com/offers.php?id=90742
dc.relation.referencesIjeacs Uk. (2017). Arquitectura ciberdefensiva para sistemas de control industrial en red. Retrieved from https://www.academia.edu/31028936/Cyber_Defensive_Architecture_for_Networked_In dustrial_Control_Systems
dc.relation.referencesInternational Organization for Standardization. (2018). ISO/IEC 30141:2018 Internet of Things (IoT) – References architecture. ISO. https://www.iso.org/standard/65695.html
dc.relation.referencesInstitute of Electrical and Electronics Engineers. (2020). IEEE Standard for an Architectural Framework for the Internet of Things (IoT) (IEEE Standard P2413-2020). IEEE https://standards.ieee.org/standard/2413-2020.html
dc.relation.referencesIqbal, M. W., & Kang, Y. (2024). Circular economy of food: A secondary supply chain model on food waste management incorporating IoT based technology. Journal of Cleaner Production, 435, 140566. https://doi.org/10.1016/J.JCLEPRO.2024.140566
dc.relation.referencesItohan Oriekhoe, O., Ibrahim Ashiwaju, B., Chidiebere Ihemereze, K., Ikwue, U., & Ann Udeh, C. (2023). Review of technological advancement in food supply chain management: Comparison. Retrieved from https://wjarr.com/sites/default/files/WJARR-2023-2660.pdf
dc.relation.referencesJia, M., Chen, J., Él, K., Du, R., Zheng, L., & Lai, M. (n.d.). Redactable Blockchain From Decentralized Chameleon Hash Functions. Retrieved from https://ieeexplore.ieee.org/document/9833529
dc.relation.referencesKhan, S., Kong Lee, W., & Oun Hwang, S. (2021). Scalable and Efficient Hardware Architectures for Authenticated Encryption in IoT Applications. Retrieved from https://ieeexplore.ieee.org/document/9326396
dc.relation.referencesKrejci, C. (2014). Complex Adaptive Food Supply Systems. Retrieved from https://digital.lib.washington.edu/researchworks/bitstreams/1d4a8daf-55ba-475e-944ed38e4ca53a6c/download
dc.relation.referencesKumar, A., Kumar Mangla, S., Kumar, P., & Karamperidis, S. (2020). Challenges in perishable food supply chains for sustainability management: A developing economy perspective. Retrieved from https://onlinelibrary.wiley.com/doi/10.1002/bse.2470
dc.relation.referencesKumar, A., Sharma, S., Goyal, N., Singh, A., Cheng, X., & Singh, P. (2021). Secure and energyefficient smart building architecture with emerging technology IoT. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0140366421002279?via%3Dihub
dc.relation.referencesLatif, S., Idrees, Z., Ahmad, J., Zheng, L., & Zou, Z. (2021). A blockchain-based architecture for secure and trustworthy operations in the industrial Internet of Things. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S2452414X20300650?via%3Dihub
dc.relation.referencesLins, M., Puppin Zandonadi, R., Raposo, A., & Cortez Ginani, V. (2021). Food Waste on Foodservice: An Overview through the Perspective. Retrieved from https://www.mdpi.com/2304-8158/10/6/1175/pdf?version=1621992039
dc.relation.referencesLiu, J., Yeoh, W., Qu, Y., & Gao, L. (2022). Blockchain-based Digital Twin for Supply Chain Management: State-of-the-Art Review and Future Research Directions. Retrieved from https://arxiv.org/pdf/2202.03966
dc.relation.referencesMaftei, A., Lavric, A., Petrariu, A., & Popa, V. (2023). Mass Data Storage Solution for IoT Devices Using Blockchain Technologies. Retrieved from https://www.mdpi.com/1424- 8220/23/3/1570/pdf?version=1675231216
dc.relation.referencesMaitra, S., & Yelamarthi, K. (2019). Rapid Deployment IoT Architecture with Data Security: Implementation and Experimental Evaluation. Retrieved from https://www.mdpi.com/1424-8220/19/11/2484/pdf?version=1559265173
dc.relation.referencesMehannaoui, R., Kinza Nadia, M., & Aksa, K. (2023). IoT-Based Food Traceability System: Architecture, Technologies, Applications, and Future Trends. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0956713522006028
dc.relation.referencesMehannaoui, R., Mouss, K. N., & Aksa, K. (2022). IoT-based food traceability system: Architecture, technologies, applications, and future trends. Food Control, 145, 109409. https://doi.org/10.1016/j.foodcont.2022.109409
dc.relation.referencesMelesse, T., Franciosi, C., Di Pasquale, V., & Riemma, S. (2023). Analysis of Digital Twin Implementation in the Agri-Food Supply Chain. Retrieved from https://www.mdpi.com/2305-6290/7/2/33/pdf?version=1686549639
dc.relation.referencesMelis, R., Carthy, U., García, L., Hierro, J., & Villalba, J. (2018). New Trends in Cold Chain Monitoring Applications: A Review. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0956713517305558?via%3Dihub
dc.relation.referencesMeneghello, F., Calore, M., Zucchetto, D., Polese, M., & Zanella, A. (2019). IoT: Internet of Threats? A Study on Practical Security Vulnerabilities in Real IoT Devices. Retrieved from https://ieeexplore.ieee.org/document/8796409
dc.relation.referencesMetallidou, C., Psannis, K., & Alexandropoulou Egyptiadou, E. (2020). Energy Efficiency in Smart Buildings: IoT Approaches. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9050775
dc.relation.referencesMorchid, A., Alami, R. E., Raezah, A. A., & Sabbar, Y. (2024). Applications of internet of things (IoT) and sensors technology to increase food security and agricultural Sustainability: Benefits and challenges. Ain Shams Engineering Journal, 15(3), 102509. https://doi.org/10.1016/j.asej.2023.102509
dc.relation.referencesNosratabadi, S., Mosavi, A., & Lakner, Z. (2020). Innovation in the Food Supply Chain and Business Models. Retrieved from https://www.mdpi.com/2304- 8158/9/2/132/pdf?version=1582950594
dc.relation.referencesPillai, N., Jesús Jayarín, P., Beulah David, D., Jeeva, K., & Kumari, V. (2024). Algorithm-Based Optimization of Cloud Computing Architectures for Enhanced Data Security and Efficiency. Retrieved from https://ieeexplore.ieee.org/document/10545176
dc.relation.referencesQian, J., Ruiz-Garcia, L., Fan, B., Robla Villalba, J. I., McCarthy, U., Zhang, B., Yu, Q., & Wu, W. (2020). Food traceability system from governmental, corporate, and consumer perspectives in the European Union and China: A comparative review. Trends in Food Science & Technology, 99, 402–412. https://doi.org/10.1016/J.TIFS.2020.03.025
dc.relation.referencesRehman Khan, S. A., Razzaq, A., Yu, Z., Shah, A., Sharif, A., & Janjua, L. (2022). Disruptions in the Food Supply Chain and Malnutrition Challenges: An Empirical Study in the Context of Asian Countries. Retrieved from https://www.sciencedirect.com/science/article/pii/S0038012121000252?via%3Dihu
dc.relation.referencesRincón Gómez, M. E. (2021, mayo). Proceso de producción del aguacate Hass en Colombia y sus impactos en la distribución física internacional [Trabajo final de Especialización, Universidad Militar Nueva Granada]. Repositorio de la Universidad Militar Nueva Granada. https://repository.umng.edu.co/server/api/core/bitstreams/10c26e9b-93e8-4a04- 9481-80077c19c674/content
dc.relation.referencesRizzardi, A., Sicari, S., Cevallos M., J. F., & Coen-Porisini, A. (2024). IoT-driven blockchain to manage the healthcare supply chain and protect medical records. Future Generation Computer Systems, 161, 415–431. https://doi.org/10.1016/J.FUTURE.2024.07.039
dc.relation.referencesRos Giralt, J., Szilagyi, P., & Lethin, R. (2012). Scalable Cybersecurity for Terabit Cloud Computing. Retrieved from https://ieeexplore.ieee.org/document/6496124
dc.relation.referencesRoumeliotis, C., Dasygenis, M., Lazaridis, V., & Dossis, M. (2024). Blockchain and Digital Twins in Industry 4.0: The Supply Chain Use Case - A Review of Integration Techniques and Applications. Retrieved from https://www.mdpi.com/2411- 9660/8/6/105/pdf?version=1729674261
dc.relation.referencesSaberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2018). Blockchain Technology and Its Relationship with Sustainable Supply Chain Management. Retrieved from https://www.tandfonline.com/doi/full/10.1080/00207543.2018.1533261
dc.relation.referencesScherhaufer, S., Moates, G., Hartikainen, H., Waldron, K., & Obersteiner, G. (2018). Environmental Impacts of Food Waste in Europe. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0956053X18302617?via%3Dihub
dc.relation.referencesShukla, S., & Singh, P. (2024). Revolutionizing Supply Chain Management: Real-Time Data Processing and Concurrency. Retrieved from https://www.ijisrt.com/assets/upload/files/IJISRT24MAY207.pdf
dc.relation.referencesSithiyopasakul, J., Archevapanich, T., Sithiyopasakul, S., Lasakul, A., Purahong, B., & Benjangkaprasert, C. (2024). Implementation of Cloud Computing and the Internet of Things (IoT) Through Performance Evaluation. Retrieved from https://ieeexplore.ieee.org/document/10537945
dc.relation.referencesSlorach, P., Jeswani, H., Cuéllar Franca, R., & Azapagic, A. (2019). Environmental and Economic Implications of Resource Recovery from Food Waste in a Circular Economy. Retrieved from https://pdf.sciencedirectassets.com/271800/1-s2.0- S0048969719X00352/1-s2.0-S0048969719334357/main.pdf?X-Amz-SecurityToken=IQoJb3JpZ2luX2VjEHIaCXVzLWVhc3QtMSJIMEYCIQCLZsA7FSxo65fSnein yX%2FYS9TFXn9HtfCbQiHCukGdKwIhAPJfVNqG6Og07B21MyQDATl40I%2BmSk %2BTis1FyF
dc.relation.referencesStormotion. (2024, abril 4). How much does it cost to develop IoT software?. Stormotion Blog. https://stormotion.io/blog/how-much-does-it-cost-to-develop-iot-software/
dc.relation.referencesSouza, M., Medeiros Pereira, G., Lopes de Sousa Jabbour, A. B., Chiappetta Jabbour, C. J., Reni Trento, L., Borchardt, M., & Zvirtes, L. (2021). A Digitally Enabled Circular Economy to Mitigate Food Waste: Understanding Innovative Marketing Strategies in the Context of an Emerging Economy. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0040162521004947?via%3Dihub
dc.relation.referencesTariq, U., Ahmed, I., Bashir, A. K., & Shaukat, K. (2023). A Critical Analysis of Cybersecurity and Future Research Directions for the Internet of Things: A Comprehensive Review. Retrieved from https://www.mdpi.com/1424-8220/23/8/4117/pdf?version=1681987201
dc.relation.referencesThe State of Food Security and Nutrition in the World 2024. (2024). In The State of Food Security and Nutrition in the World 2024. FAO; IFAD; UNICEF; WFP; WHO; https://doi.org/10.4060/cd1254en
dc.relation.referencesThibaud, M., Chi, H., Zhou, W., & Piramuthu, S. (2018). Internet of Things (IoT) in high-risk Environment, Health and Safety (EHS) industries: A comprehensive review. Decision Support Systems, 108, 79–95. https://doi.org/10.1016/j.dss.2018.02.005
dc.relation.referencesTonini, D., Federica Albizzati, P., & Fruergaard Astrup, T. (2018). Environmental Impacts of Food Waste: Lessons and Challenges from a Case Study in the United Kingdom. Retrieved from https://pdf.sciencedirectassets.com/271837/1-s2.0- S0956053X18X00063/1-s2.0-S0956053X18301740/main.pdf?X-Amz-SecurityToken=IQoJb3JpZ2luX2VjEHIaCXVzLWVhc3QtMSJIMEYCIQCLZsA7FSxo65fSnein yX%2FYS9TFXn9HtfCbQiHCukGdKwIhAPJfVNqG6Og07B21MyQDATl40I%2BmSk %2BTis1FyF
dc.relation.referencesTrienekens, J., El Primer Ministro Wognum, Beulens, A., & Van der Vorst, J. (2012). Transparency in Dynamic and Complex Food Supply Chains. Retrieved from https://www.sciencedirect.com/science/article/pii/S1474034611000553?via%3Dihub
dc.relation.referencesTsoulias, K., Palaiokrassas, G., Fragkos, G., Litke, A., & Varvarigou, T. (2020). Implementation of a Graph-Based Blockchain Model to Enhance Performance and Security in Decentralized Ledger Systems. Retrieved from https://ieeexplore.ieee.org/document/9130718
dc.relation.referencesVilas-Boas, J. L., Rodrigues, J. J., & Alberti, A. M. (2023). Convergence of Distributed Ledger Technologies with Digital Twins, IoT, and AI for fresh food logistics: Challenges and opportunities. Journal Of Industrial Information Integration, 31, 100393. https://doi.org/10.1016/j.jii.2022.100393
dc.relation.referencesVirginia Vilariño, M., Franco, C., & Quarrington, C. (2017). Reducing Food Loss and Waste as an Integral Part of a Circular Economy. Retrieved from https://www.frontiersin.org/journals/environmentalscience/articles/10.3389/fenvs.2017.00021/pdf
dc.relation.referencesVittersø, G., Torjusen, H., Laitala, K., Tocco, B., Biasini, B., Csillag, P., . . . Wavresky, P. (2019). Short Food Supply Chains and Their Contribution to Sustainability: Insights and Perceptions from Participants in 12 European Cases. Retrieved from https://www.mdpi.com/2071-1050/11/17/4800
dc.relation.referencesWang, L., Ranjan, R., & Chen, J. (2017). Cloud Computing: Methodology, Systems, and Applications. Retrieved from https://books.google.es/books?hl=es&lr=&id=KglEDwAAQBAJ&oi=fnd&pg=PP1&dq= Conceive+of+Cloud+Computing+Architecture+for+Distributed+Operational+Experimen t&ots=uE83QNUHrj&sig=J8hUzWDfkFFyygL8Hq4AKd3bgHM#v=onepage&q=Concei ve%20of%20Cloud%20Computing%20Archite
dc.relation.referencesWang, L., Xue, L., Li, Y., Liu, X., Cheng, S., & Liu, G. (2018). Food Waste in Hospitality Establishments and Its Ecological Footprint in Lhasa, Tibet, China. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0921344918301320?via%3Dihub
dc.relation.referencesXue, L., Liu, G., Parfitt, J., Xiaojie, L., Van Herpen, E., Stenmarck, A., . . . Shengkui, C. (2021). Food and Data Shortages? A Critical Review of Global Food Loss and Waste Data. Retrieved from https://pubs.acs.org/doi/10.1021/acs.est.7b00401
dc.relation.referencesYao, P., Yan, B., Yang, T., Wang, Y., Yang, Q., & Wenhai, R. (2024). Enhanced Security Operational Architecture for Decentralized Industrial Internet of Things: A BlockchainBased Approach. Retrieved from https://ieeexplore.ieee.org/document/10303284
dc.relation.referencesYounge, A., Laszewski, G., Wang, L., López Alarcón, S., & Carithers, W. (2010). Efficient Resource Management for Cloud Computing Environments. Retrieved from https://ieeexplore.ieee.org/document/5598294
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectIoT
dc.subjectAlmacenamiento
dc.subjectAguacate Hass
dc.subjectDesperdicio de alimentos
dc.subjectSostenibilidad
dc.subjectTrazabilidad
dc.subject.keywordIoT
dc.subject.keywordStorage
dc.subject.keywordHass avocado
dc.subject.keywordFood Waste
dc.subject.keywordSustainability
dc.subject.keywordTraceability
dc.subject.lembIngeniería Industrial -- Tesis y disertaciones académicas
dc.titleDiseño de una arquitectura iot sostenible para reducir desperdicios en el almacenamiento de aguacate hass en economías emergentes​
dc.title.titleenglishDesigning a sustainable IoT architecture to reduce waste in hass avocado storage in emerging economies
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeMonografía
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
GuatameVeraStefanny2025.pdf
Tamaño:
1.08 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicacion editable.pdf
Tamaño:
592.29 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: