Estado del arte sobre la caracterización microestructural de agregados reactivos mediante microscopía electrónica de barrido (sem) en el análisis de la reactividad álcali-sílice

dc.contributor.advisorEsquivel Ramirez, Rodrigo Elias
dc.contributor.authorDuarte Quesada, Jean Carlos
dc.date.accessioned2025-08-27T14:48:00Z
dc.date.available2025-08-27T14:48:00Z
dc.date.created2025-07-31
dc.descriptionLa presente monografía realiza una revisión sistemática del estado del arte sobre la caracterización microestructural de agregados reactivos mediante microscopía electrónica de barrido (SEM) en el análisis de la reacción álcali-sílice (RAS). Esta reacción es una de las patologías más perjudiciales del concreto, generando expansiones internas y fisuración por la formación de un gel higroscópico. El estudio aborda la importancia del SEM como herramienta avanzada para detectar productos de reacción, microfisuras y deterioros incipientes no visibles por métodos tradicionales. Se analizan más de 30 fuentes científicas nacionales e internacionales, con énfasis en la aplicabilidad de esta técnica en contextos como EE. UU., Canadá, Brasil, China y Colombia. Además, se identifican vacíos normativos y técnicos en el país, y se propone la integración del SEM en los protocolos de control de calidad de materiales. El trabajo contribuye al fortalecimiento académico y profesional en la evaluación de la durabilidad del concreto y la prevención de fallas estructurales.
dc.description.abstractThis monograph presents a systematic review of the state of the art regarding the microstructural characterization of reactive aggregates using Scanning Electron Microscopy (SEM) in the analysis of Alkali-Silica Reaction (ASR). ASR is one of the most damaging pathologies in concrete, causing internal expansion and cracking due to the formation of a hygroscopic gel. The study highlights the relevance of SEM as an advanced technique for identifying reaction products, microcracks, and early-stage deterioration not detectable through conventional methods. Over 30 national and international scientific sources are analyzed, focusing on the applicability of SEM in countries such as the U.S., Canada, Brazil, China, and Colombia. The research also identifies regulatory and technical gaps in Colombia and advocates for the incorporation of SEM in quality control protocols for construction materials. This work contributes to both academic knowledge and professional practice by enhancing the evaluation of concrete durability and supporting the prevention of structural failures.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/98644
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAIKEN, T. A., KWASNY, J., RUSSELL, M., MCPOLIN, D., & BAGNALL, L. (2022). Effect of partial MgO replacement on the properties of magnesium oxychloride cement. Cement and Concrete Composites, 134, 104791. https://doi.org/10.1016/j.cemconcomp.2022.104791
dc.relation.referencesALZATE RIVERA, Juan David. Reactividad álcali-sílice en concretos autocompactantes: análisis microestructural y comportamiento a largo plazo. Medellín: Universidad EIA, 2020. Trabajo de grado.
dc.relation.referencesASTM INTERNATIONAL. ASTM C1260 – Standard Test Method for Potential Reactivity of Aggregates (Mortar-Bar Method). West Conshohocken: ASTM International, 2013.
dc.relation.referencesASTM INTERNATIONAL. ASTM C1293 – Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction. West Conshohocken: ASTM International, 2013.
dc.relation.referencesASTM INTERNATIONAL. ASTM C295 – Standard Guide for Petrographic Examination of Aggregates for Concrete. West Conshohocken: ASTM International, 2014.
dc.relation.referencesAKHNOUKH, A., & Y COLABORADORES. (2023). Impact of supplementary cementitious materials on alkali‑silica reactivity of concrete. ResearchGate. https://doi.org/10.29007/s427
dc.relation.referencesBALACHANDRAN, C., MUÑOZ, J. F., PEETHAMPARAN, S., & ARNOLD, T. S. (2024). A multi‑analytical approach to understand the relationship between ASR mitigation mechanisms of class F fly ash in highly reactive systems. Cement and Concrete Composites, https://doi.org/10.1016/j.cemconcomp.2024.107895
dc.relation.referencesBOS, F. P., KRUGER, J., LUCAS, S. S., & VAN ZIJL, G. (2021). Juxtaposing fresh material characterisation methods for buildability assessment of 3D printable cementitious mortars. Cement & Concrete Composites, 120, 104024. https://doi.org/10.1016/j.cemconcomp.2021.104024
dc.relation.referencesBRUSCHI, G. J., PEREIRA DOS SANTOS, C., TONINI DE ARAÚJO, M., TONATTO FERRAZZO, S., VELOSO MARQUES, S. F., & CONSOLI, N. C. (2021). Green stabilization of bauxite tailings: A mechanical study on alkali-activated materials. Journal of Materials in Civil Engineering, 33(11), 06021007. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003949
dc.relation.referencesCASTILLO GÓMEZ, Daniel. Evaluación microestructural de agregados reciclados frente a la RAS en concreto. Bogotá: Universidad Nacional de Colombia, 2021. Tesis de Maestría.
dc.relation.referencesDOĞRUYOL, M. (2024). Determination of ASR in Concrete Using Characterisation Methods. Preprints.org, https://doi.org/10.20944/preprints202401.0494.v1
dc.relation.referencesDUNANT, Cyrille y SCRIVENER, Karen. A chemo-mechanical model for alkali–silica reaction. Cement and Concrete Research, vol. 42, no. 5, 2012, pp. 707–716.
dc.relation.referencesEUROPEAN CONCRETE PLATFORM. Durability of concrete structures: Challenges and strategies. Bruselas, 2020. Disponible en: https://www.europeanconcrete.eu/durability-asr [Consulta: 3 de junio de 2025].
dc.relation.referencesFAN, Z., LIN, J., XU, J., HONG, B., LIU, P., WANG, D., & OESER, M. (2022). Molecular insights into the adsorption configuration of bitumen colloidal on aggregate surface. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004180
dc.relation.referencesFERNÁNDEZ, Luis. Caracterización microestructural de agregados reactivos mediante SEM en el análisis de la reactividad álcali-sílice. Bogotá: Universidad Nacional de Colombia, 2020. Tesis de pregrado.
dc.relation.referencesFEDERAL HIGHWAY ADMINISTRATION (FHWA). Mitigation strategies for ASR in concrete pavements. Washington D.C., U.S. Department of Transportation, 2011.
dc.relation.referencesFOLLIARD, K. J., FOURNIER, B., THOMAS, M. D. A., SABIR, B. B., & PAN, Y. (2017). The effect of meta‑halloysite on alkali–aggregate reaction in concrete. Materials and Structures, 50, 236. https://doi.org/10.1617/s11527-017-1084 9
dc.relation.referencesFRANCKLIN, I. J., RIBEIRO, R. P., & CORRÊA, F. A. (2021). Quartzite mining waste: Diagnosis of ASR alkali–silica reaction in mortars and Portland cement concrete. Materials, 14(24), 7642. https://doi.org/10.3390/ma14247642
dc.relation.referencesGASPAROTTO, G., BARGOSSI, G. M., PEDDIS, F., & SAMMASSIMO, V. (2011). A case study of alkali‑silica reactions: petrographic investigation of paving deterioration. Periodico di Mineralogia, 80(2), 309–316. https://doi.org/10.2451/2011PM0022
dc.relation.referencesGÓMEZ, Roberto. Análisis microestructural de agregados reactivos mediante SEM: un enfoque para el diagnóstico de la reactividad álcali-sílice. Revista de Ingeniería Civil, vol. 30, no. 4, 2021, pp. 88–102.
dc.relation.referencesHASAN MAHMOOD, A., AFROZ, S., KASHANI, A., KIM, T., & FOSTER, S. J. (2017). Reduced alkali‑silica reaction damage in recycled glass mortar samples with supplementary cementitious materials. Journal of Cleaner Production, 157, 1–12. https://doi.org/10.1016/j.jclepro.2017.11.119
dc.relation.referencesHAY, R., & OSTERTAG, C. (2021). New insights into the role of fly ash in mitigating alkali‑silica reaction (ASR) in concrete. Cement and Concrete Research, 144, 106440. https://doi.org/10.1016/j.cemconres.2021.106440
dc.relation.referencesHERNÁNDEZ, Pablo. Materiales de construcción: Caracterización y aplicaciones. Medellín: Editorial Universitaria, 2015.
dc.relation.referencesINSTITUTO BRASILEÑO DO CONCRETO (IBRACON). Guía para identificación de agregados reactivos en ambientes tropicales. São Paulo, 2019. Disponible en: https://www.ibracon.org.br/guias/asr [Consulta: 3 de junio de 2025].
dc.relation.referencesINSTITUTO MEXICANO DEL TRANSPORTE. LÓPEZ MIGUEL, A.; PÉREZ QUIROZ, J. T.; TERÁN GUILLÉN, J.; ARROYO OLVERA, M. Metodología para la determinación de la reacción álcali-sílice (RAS). Publicación Técnica No. 727. México, 2023. Disponible en: https://www.imt.mx/archivos/Publicaciones/PublicacionTecnica/pt727.pdf [Consulta: 3 de junio de 2025].
dc.relation.referencesINTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO). ISO 11478 – Determination of Alkali-Silica Reactivity of Aggregates. Ginebra: ISO, 2016.
dc.relation.referencesICONTEC. NTC 1299 – Agregados. Clasificación y características. Bogotá: Instituto Colombiano de Normas Técnicas y Certificación, 2012.
dc.relation.referencesICONTEC. NTC 220 – Diseño y construcción de estructuras de concreto. Bogotá: ICONTEC, 2009.
dc.relation.referencesJOURNAL OF CONSTRUCTION MATERIALS. Reactividad álcali-sílice: Un análisis de la investigación reciente. 2020. Disponible https://www.journalsconstructionmaterials.com/alcali-silica-reactivity [Consulta: 3 de junio de 2025].
dc.relation.referencesJÓŹWIAK‑NIEDŹWIEDZKA, D., JASKULSKI, R., DZIEDZIC, K., & ANTOLIK, A. (2023). Effect of Low-Quality Calcined Clay on the Suppression of the Alkali-Silica Reaction. Materials Proceedings, 13(1), 15. https://doi.org/10.3390/materproc2023013015
dc.relation.referencesLI, M., HU, L., HUANG, W., YANG, X., & GUO, F. (2022). Effects of T1/T2 precipitates on deformation behavior and microstructure evolution of AA2099 Al–Li alloy: experimental investigation and crystal plasticity finite element modeling. Journal of Materials Research and Technology, 17, 342–352. https://doi.org/10.1016/j.jmrt.2022.01.009
dc.relation.referencesLÓPEZ, Carolina. Estudio de la reactividad álcali-sílice en agregados utilizados en la construcción de pavimentos. Medellín: Universidad de Antioquia, 2018. Tesis de pregrado.
dc.relation.referencesLÓPEZ, A., PÉREZ, J. T., CABELLO, J. A., & MORENO, A. (2023). Introducción a la metodología para la caracterización de la reacción álcali-sílice (RAS). Revista Instituto Mexicano del Transporte, 204, 1–8. https://imt.mx/resumen boletines.html?IdArticulo=587&IdBoletin=205
dc.relation.referencesMARTÍNEZ, Laura. Estudio de la reactividad álcali-sílice en materiales de construcción: una revisión. Revista Internacional de Ciencia y Tecnología de Materiales, vol. 22, no. 3, 2019, pp. 45–58.
dc.relation.referencesMEDEIROS, S., FERNANDES, I., FOURNIER, B., NUNES, J. C., SANTOS‑SILVA, A., RAMOS, V., & SOARES, D. (2022). Alkali–silica reaction in volcanic rocks: a worldwide comparative approach. Materiales de Construcción, 72(346), e278. https://doi.org/10.3989/mc.2022.16221
dc.relation.referencesNEVES, J., SALWOCKI, S., & RAJABIPOUR, F. (2020). Early assessment of ASR in alkali‑activated fly ash concrete subjected to the concrete prism test (ASTM C1293). 15th International Conference on Alkali-Aggregate Reaction (ICAAR). The Pennsylvania State University. https://icaarconcrete.org/wp content/uploads/2020/11/15ICAAR-NevesJ-1.pdf
dc.relation.referencesOLAJIDE, O., NOKKEN, M., & SANCHEZ, L. F. M. (2025). Moisture dynamics and influence on alkali–silica reaction induced expansion: A comprehensive laboratory study. Cement, 20, 100146. https://doi.org/10.1016/j.cement.2025.100146
dc.relation.referencesPÉREZ, Andrés. Reactividad álcali-sílice en la construcción: Evaluación mediante técnicas de microscopía electrónica. Journal of Materials Science, vol. 34, no. 6, 2018, pp. 1205–1215.
dc.relation.referencesPÉREZ PÉREZ, K. L. (2022). Evaluación del efecto de la ceniza de cascarilla de arroz en la resistencia y durabilidad del concreto [Trabajo de grado, Universidad de Córdoba]. Repositorio Institucional Universidad de Córdoba. https://repositorio.unicordoba.edu.co/entities/publication/f7497295-aa48 4b32-826e-d4d1f7014992
dc.relation.referencesPICO CORTÉS, C. M. (2012). Reactividad árido-álcali en áridos empleados para hormigón [Tesis de maestría, Universidad de Cartagena]. ResearchGate. https://www.researchgate.net/publication/250311652
dc.relation.referencesSÁNCHEZ, Fabiola y CASTAÑO, John. Evaluación del potencial de reactividad álcali-sílice de agregados colombianos con el método acelerado ASTM C1260 y correlación microestructural. Revista de Ingeniería Civil y Ambiental, vol. 11, no. 1, 2021, pp. 58–69.
dc.relation.referencesSMARZEWSKI, P. (2023). Mechanical and microstructural studies of high performance concrete with condensed silica fume. Applied Sciences, 13(4), 2510. https://doi.org/10.3390/app13042510
dc.relation.referencesSERRANO, Javier. Microscopía electrónica y su aplicación en la ingeniería de materiales. Bogotá: Editorial Técnica Colombiana, 2017.
dc.relation.referencesSEMTECH. Uso de microscopía electrónica en el análisis de la reactividad álcali sílice. 2022. Disponible en: https://www.semtech.com/reactividad [Consulta:3 de junio de 2025].
dc.relation.referencesSERVICIO GEOLÓGICO COLOMBIANO. Evaluación de la calidad de agregados pétreos para concreto en regiones geológicas de Colombia. Bogotá: SGC, s.f.
dc.relation.referencesSERVICIO GEOLÓGICO COLOMBIANO (SGC). Caracterización de agregados pétreos para la construcción en el territorio nacional. Bogotá: SGC, 2018.
dc.relation.referencesUEDA, M., THOMAS, M. D. A., FOURNIER, B., & ZHANG, C. (2018). Alkali–silica reaction and microstructure of concrete subjected to combined chemical and physical exposure conditions. MATEC Web of Conferences, 232, 05009. https://www.researchgate.net/publication/325785937_Alkali silica_reaction_and_microstructure_of_concrete_subjected_to_combined_c hemical_and_physical_exposure_conditions
dc.relation.referencesVASCONCELOS, Guilherme et al. Mitigating alkali–silica reaction in concrete: Effectiveness of supplementary cementitious materials. Construction and Building Materials, vol. 23, no. 12, 2009, pp. 3204–3210.
dc.relation.referencesVENKATANARAYANAN, H., & RANGARAJU, P. R. (2014). Effectiveness of lithium nitrate in mitigating alkali‑silica reaction in the presence of fly ashes of varying chemical compositions. Journal of Materials in Civil Engineering, 26(7). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000908
dc.relation.referencesWANG, J.; LIU, T.; ZHANG, H. Microstructural analysis of alkali–silica reaction in concrete using SEM-EDS. Construction and Building Materials, vol. 260, 2020, pp. 119–186.
dc.relation.referencesWANG, T., SAN NICOLAS, R., NGUYEN, T. N., KASHANI, A., & NGO, T. (2023). Experimental and numerical study of long‑term alkali‑silica reaction (ASR) expansion in mortar with recycled glass. Cement and Concrete Composites, 139, 105043. https://doi.org/10.1016/j.cemconcomp.2023.105043
dc.relation.referencesWARNER, S., MALEK, F. A., & FOURNIER, B. (2020). Mitigation of alkali-silica reaction by hydrated alumina. Transportation Research Record, 2629(4), 15 23. https://doi.org/10.3141/2629-04
dc.relation.referencesWOLTERBEEK, T. K. T., CORNELISSEN, E. K., HANGX, S. J. T., & SPIERS, C. J. (2021). Impact of downhole pressure and fluid-access on the effectiveness of wellbore cement expansion additives. Cement and Concrete Research, 147, 106514. https://doi.org/10.1016/j.cemconres.2021.106514
dc.relation.referencesYANG, L., MA, X., LIU, J., HU, X., WU, Z., & SHI, C. (2022). Improving the effectiveness of internal curing through engineering the pore structure of lightweight aggregates. Cement and Concrete Composites, 134, 104773. https://doi.org/10.1016/j.cemconcomp.2022.104773
dc.relation.referencesYE, X., CHEN, T., & CHEN, J. (2023). Carbonation of cement paste under different pressures. Construction and Building Materials, 370, 130511. https://doi.org/10.1016/j.conbuildmat.2023.130511
dc.relation.referencesZHANG, G., XIA, H., ZHANG, W., NIU, Y., SONG, L., CHEN, H., & CAO, D. (2021). Mechanical properties, drying shrinkage, microstructure of modified cement mortar based on poly(acrylamide‑co‑methacrylic acid) microgel. Construction and Building Materials, 284, 122824. https://doi.org/10.1016/j.conbuildmat.2021.122824
dc.relation.referencesZHANG, Y., MULLER, J., FLEURY, C., & DUFRÊCHE, J.-F. (2023). Alkali–silica reaction in concrete – Revealing the expansion mechanism by surface force measurements. Cement and Concrete Research, 169, 107540. https://doi.org/10.1016/j.cemconres.2023.107392
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectReacción álcali-sílice
dc.subjectAgregados reactivos
dc.subjectMicroscopía electrónica de barrido
dc.subjectDurabilidad del concreto
dc.subjectCaracterización microestructural
dc.subjectPatología del concreto
dc.subjectTécnicas avanzadas de análisis
dc.subjectSEM
dc.subject.keywordAlkali-silica reaction
dc.subject.keywordReactive aggregates
dc.subject.keywordScanning electron microscopy
dc.subject.keywordConcrete durability
dc.subject.keywordMicrostructural characterization
dc.subject.keywordConcrete pathology
dc.subject.keywordAdvanced analysis techniques
dc.subject.keywordSEM
dc.subject.lembIngeniería Civil -- Tesis y disertaciones académicas
dc.titleEstado del arte sobre la caracterización microestructural de agregados reactivos mediante microscopía electrónica de barrido (sem) en el análisis de la reactividad álcali-sílice
dc.title.titleenglishstate of the art on the microstructural characterization of reactive aggregates by scanning electron microscopy (sem) in the analysis of alkali-silica reactivity
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeMonografía
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
DuarteQuesadaJeanCarlo2025.pdf
Tamaño:
2.65 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicacion.pdf
Tamaño:
232.96 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: