Algoritmo para clasificación de familias de corales y su blanqueamiento
| dc.contributor.advisor | Wilson Ricardo, Lopez Sanchez | |
| dc.contributor.author | Hernández Tarazona, Carlos Stiven | |
| dc.contributor.author | Sarmiento Ibagón, Brandon Camilo | |
| dc.contributor.orcid | Wilson Ricardo, Lopez Sanchez [0000-0002-1377-0667] | |
| dc.date.accessioned | 2025-11-19T19:10:52Z | |
| dc.date.available | 2025-11-19T19:10:52Z | |
| dc.date.created | 2025-11-05 | |
| dc.description | El presente trabajo propone un sistema automatizado de análisis de corales mediante técnicas de visión por computador y aprendizaje profundo. Su objetivo principal es clasificar familias de corales y evaluar el grado de blanqueamiento a partir de imágenes subacuáticas, integrando en un mismo flujo de procesamiento las etapas de recuperación de color, segmentación, clasificación jerárquica y diagnóstico de salud. El sistema implementa un módulo de recuperación cromática basado en el espacio de color YCrCb y la técnica CLAHE (Contrast Limited Adaptive Histogram Equalization), que mejora la luminancia y corrige las dominantes azul-verdosas típicas del entorno submarino. Posteriormente, se aplica un proceso de segmentación híbrido que combina los modelos GroundingDINO y SAM (Segment Anything Model), garantizando una delimitación precisa de los corales frente al fondo marino. La clasificación taxonómica jerárquica se desarrolla sobre una arquitectura ResNet-50 multicabeza, entrenada para predecir de forma simultánea los niveles de familia, género y especie, optimizada con el algoritmo AdamW. Finalmente, el sistema incluye un módulo de detección de blanqueamiento, que analiza el canal de luminancia en el espacio Lab para generar mapas de severidad y cuantificar las áreas afectadas. Los resultados experimentales muestran una mejora significativa en la calidad visual (UIQM +27.3 %, UIConM +36.4 %) y una precisión del 85.69 % a nivel de especie tras integrar los módulos de recuperación y segmentación. El sistema demostró robustez ante variaciones de preprocesamiento y condiciones de iluminación, validándose sobre imágenes reales capturadas en diferentes ambientes marinos. En conclusión, se logró un pipeline integral capaz de convertir información visual submarina en indicadores cuantificables de biodiversidad y estado coralino, contribuyendo al monitoreo automatizado de arrecifes y al fortalecimiento de herramientas tecnológicas para la conservación marina. | |
| dc.description.abstract | This research presents an automated coral analysis system based on computer vision and deep learning techniques. The main objective is to classify coral families and evaluate bleaching severity from underwater images, integrating color restoration, segmentation, hierarchical classification, and health assessment into a single processing pipeline. The system includes a color recovery module using the YCrCb color space and CLAHE (Contrast Limited Adaptive Histogram Equalization) to enhance luminance and correct the bluish-green cast common in underwater environments. A hybrid segmentation approach combining GroundingDINO and SAM (Segment Anything Model) ensures accurate coral isolation from complex marine backgrounds. The hierarchical taxonomic classifier is built upon a multi-head ResNet-50 architecture, trained to simultaneously predict family, genus, and species levels, and optimized with the AdamW optimizer for improved convergence and generalization. A bleaching detection module analyzes luminance in the Lab space to produce severity maps and quantify bleached and at-risk regions. Experimental results indicate a notable improvement in image quality (UIQM +27.3%, UIConM +36.4%) and an accuracy of 85.69% at the species level after integrating color recovery and segmentation. The system proved robust against preprocessing and illumination variations, validated with real-world underwater datasets collected under diverse environmental conditions. In conclusion, the proposed end-to-end framework successfully transforms raw underwater imagery into quantitative biological information, supporting automated reef monitoring and contributing to the technological advancement of marine conservation tools. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/99862 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | M. Sweet and F. Nunes. Millepora alcicornis. the iucn red list of threatened species 2024. https://www. iucnredlist.org/, 2024. Categoría EN, evaluación 10 Feb 2024. | |
| dc.relation.references | Laura Gutiérrez et al. Half of atlantic reef-building corals at elevated risk of extinction: Updated iucn red list assessments. PLOS ONE, 19(12):e0309354, 2024. doi: 10.1371/journal.pone.0309354. | |
| dc.relation.references | Peter W. Glynn. El niño and peruvian coastal coral reefs: Coral mortality and disturbances to reef communities. American Zoologist, 32(6):pp. 707–718, 1992. Síntesis de mortalidades del 70–95 % en Pacífico oriental. | |
| dc.relation.references | L. F. O. Lima et al. The ecophysiology of Porites astreoides as a key coral for caribbean reefs under climate change. Frontiers in Marine Science, 9:908734, 2022. doi: 10.3389/fmars.2022.908734. | |
| dc.relation.references | Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, volume 25, pages 1097–1105, 2012. | |
| dc.relation.references | Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016. doi: 10.1109/CVPR.2016.90. | |
| dc.relation.references | Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. URL http: //www.deeplearningbook.org. | |
| dc.relation.references | Kenneth RN Anthony, Kate J Helmstedt, Line K Bay, Pedro Fidelman, Karen E Hussey, Petra Lundgren, David Mead, Ian M McLeod, Peter J Mumby, Maxine Newlands, et al. Interventions to help coral reefs under global change—a complex decision challenge. Plos one, 15(8):e0236399, 2020. | |
| dc.relation.references | Heidi L Burdett, Rebecca Albright, Gavin L Foster, Tali Mass, Tessa M Page, Buki Rinkevich, Verena Schoepf, Jacob Silverman, and Nicholas A Kamenos. Including environmental and climatic considerations for sustainable coral reef restoration. PLoS biology, 22(3):e3002542, 2024. | |
| dc.relation.references | JA Burt, EF Camp, IC Enochs, JL Johansen, KM Morgan, B Riegl, and AS Hoey. Insights from extreme coral reefs in a changing world. Coral Reefs, 39:495–507, 2020. | |
| dc.relation.references | Tiffany H Morrison, Terry P Hughes, W Neil Adger, Katrina Brown, Jon Barnett, and Maria Carmen Lemos. Save reefs to rescue all ecosystems. Nature, 573(7774):333–336, 2019. | |
| dc.relation.references | MinAmbiente. Arrecifes coralinos, 2020**. URL https://www.minambiente.gov.co/ asuntos-marinos-costeros-y-recursos-acuaticos/arrecifes-coralinos/. | |
| dc.relation.references | MinAmbiente. Reserva de biosfera seaflower: 20 años de relación entre el hombre y la biodiversidad marina, 11 2020. URL https://www.minambiente.gov.co/ reserva-de-biosfera-seaflower-20-anos-de-relacion-entre-el-hombre-y-la-biodiversidad-marina/.| | |
| dc.relation.references | Agencia de Noticias Univalle. Cuarto evento global sobre blanqueamiento de corales - universidad del valle / cali, colombia, 5 2024. URL https://www.univalle.edu.co/medio-ambiente/ cuarto-evento-global-sobre-blanqueamiento-de-corales. | |
| dc.relation.references | MinAmbiente. Entre el 70 % y el 80 % de los arrecifes coralinos del país han presentado blanqueamiento, alerta minambiente, 11 2023. URL https://www.igac.gov.co/es/noticias/ el-igac-expide-la-resolucion-unica-para-fortalecer-la-gestion-catastral-con-enfoque | |
| dc.relation.references | ParquesNacionalesNaturalesdeColombia. Avanza programa un millón de corales por colombia para restaurar arrecifes, 3 2022. URL https://www.parquesnacionales.gov.co/sala-prensa/noticias/ avanza-programa-un-millon-de-corales-por-colombia-para-restaurar-arrecifes/. | |
| dc.relation.references | Minambiente. El ministro de ambiente le hizo seguimiento a la siembra de corales en san andrés | ministerio de ambiente y desarrollo sostenible, 2021. URL https://archivo.minambiente.gov.co/index.php/noticias/ 5317-el-ministro-de-ambiente-le-hizo-seguimiento-a-la-siembra-de-corales-en-san-andres. | |
| dc.relation.references | NoticiasONU. Un millón de corales por colombia, la mayor restauración de arrecifes oceánicos de américa | noticias onu, 6 2022. URL https://news.un.org/es/story/2022/06/1510982. | |
| dc.relation.references | Ouassine Younes, Zahir Jihad, Conruyt Noël, Kayal Mohsen, A. Martin Philippe, Chenin Eric, Bigot Lionel, and Vignes Lebbe Regine. Automatic coral detection with yolo: A deep learning approach for efficient and accurate coral reef monitoring. Communications in Computer and Information Science, 1948 CCIS: 170–177, 4 2024. doi: 10.1007/978-3-031-50485-3_16. URL http://arxiv.org/abs/2405.14879http: //dx.doi.org/10.1007/978-3-031-50485-3_16. | |
| dc.relation.references | Luhui Hu. Visión artificial: recapitulaciones de 2023 y tendencias de 2024: rumbo a la ia, 2023. URL https://towardsai.net/p/machine-learning/computer-vision-2023-recaps-and-2024-trends | |
| dc.relation.references | Christopher Burns, Barbara Bollard, and Ajit Narayanan. Machine-learning for mapping and monitoring shallow coral reef habitats. Remote Sensing 2022, Vol. 14, Page 2666, 14:2666, 6 2022. ISSN 2072-4292. doi: 10.3390/RS14112666. URL https://www.mdpi.com/2072-4292/14/11/2666/htmhttps: //www.mdpi.com/2072-4292/14/11/2666. | |
| dc.relation.references | Coral Reef Alliance. ¿qué es el blanqueamiento del coral y por qué debería preocuparte? - coral reef alliance, 11 2023. URL https://coral.org/es/blog/ que-es-el-blanqueamiento-del-coral-y-por-que-deberia-preocuparte/. | |
| dc.relation.references | World Wildlife Fund. Todo lo que debes saber y cómo podemos acabar con el blanqueamiento de los corales | historias | descubre wwf, 4 2019. URL https://www.worldwildlife.org/descubre-wwf/historias/ todo-lo-que-debes-saber-y-como-podemos-acabar-con-el-blanqueamiento-de-los-corales. | |
| dc.relation.references | FloraFaunaMarina. Importancia vital de los corales en la biodiversidad marina: Descúbrela ahora, 3 2024. URL https://florayfaunamarina.com/fauna/invertebrados/ importancia-vital-de-los-corales-en-la-biodiversidad-marina-descubrela-ahora/. | |
| dc.relation.references | EPA. La importancia de los arrecifes de coral | us epa, 5 2024. URL https://espanol.epa.gov/espanol/ la-importancia-de-los-arrecifes-de-coral. | |
| dc.relation.references | Fundación AQUAE. La importancia de los arrecifes de coral - fundación aquae, 8 2023. URL https: //www.fundacionaquae.org/la-importancia-de-los-arrecifes-de-coral. | |
| dc.relation.references | Melissa Hobson. Cambio climático: esto es lo que ocurre con los arrecifes de coral en un mundo con temperaturas cada vez más altas | national geographic, 7 2024. URL https://www.nationalgeographicla.com/medio-ambiente/2024/07/ cambio-climatico-esto-es-lo-que-ocurre-con-los-arrecifes-de-coral-en-un-mundo-con-temperaturas-ca | |
| dc.relation.references | Carrie Manfrino. Can we save coral reefs? | united nations, 5 2017. URL https://www.un.org/en/ chronicle/article/can-we-save-coral-reefs. | |
| dc.relation.references | Luis Felipe Silva Vásquez. Estudio de modelos para la recuperación de color en fotografías subacuáticas, 2022. Recuperado de: http://hdl.handle.net/11349/29610. | |
| dc.relation.references | Carol Zuleimy Fernández Rodríguez. Análisis del blanqueamiento coralino en fotografías subacuáticas con redes neuronales artificiales, 2024. | |
| dc.relation.references | R. S. K. Barnes and K. H. Mann. Fundamentals of Aquatic Ecology. Blackwell Scientific Publications, Oxford, 1991. | |
| dc.relation.references | Marjorie L. Reaka-Kudla. The global biodiversity of coral reefs: A comparison with rainforests. In M. L. Reaka-Kudla, D. E. Wilson, and E. O. Wilson, editors, Biodiversity II, pages 83–108. Joseph Henry Press, Washington, DC, 1997. | |
| dc.relation.references | National Oceanic and Atmospheric Administration (NOAA). What is a coral reef made of? NOAA Ocean Service website, 2024. URL https://oceanservice.noaa.gov/facts/coralmadeof.html. Published June 16, 2024; accessed Aug 10, 2025. | |
| dc.relation.references | Timothy P. Henkel. Coral reefs. Nature Education Knowledge, 3(10):12, 2010 | |
| dc.relation.references | Jaime Garzón-Ferreira. Arrecifes coralinos: ¿un tesoro camino a la extinción? Colombia: Ciencia y Tecnología, 15(1):11–19, 1997. | |
| dc.relation.references | Charles Darwin. The Structure and Distribution of Coral Reefs. Smith Elder & Co., London, 1842 | |
| dc.relation.references | U.S. Environmental Protection Agency. Basic information about coral reefs, febrero 2025. URL https: //www.epa.gov/coral-reefs/basic-information-about-coral-reefs. Web page. | |
| dc.relation.references | World Wildlife Fund. Todo lo que debes saber y cómo podemos acabar con el blanqueamiento de los corales, 2019. URL https://www.worldwildlife.org/. Blog post. | |
| dc.relation.references | U.S. National Oceanic and Atmospheric Administration. How do coral reefs benefit the economy?, junio 2024. URL https://oceanservice.noaa.gov/facts/coral_economy.html. Web article. | |
| dc.relation.references | National Oceanic and Atmospheric Administration. Noaa confirms 4th global coral bleaching event, abril 2024. URL https://www.noaa.gov/news-release/ noaa-confirms-4th-global-coral-bleaching-event. Press release. | |
| dc.relation.references | Coastal Wiki. Coral reefs, 2013. URL https://www.coastalwiki.org/wiki/Coral_reefs. Web article. | |
| dc.relation.references | U.S. Environmental Protection Agency. Amenazas para los arrecifes de coral, mayo 2025. URL https: //espanol.epa.gov/espanol/amenazas-para-los-arrecifes-de-coral. Web page. | |
| dc.relation.references | International Union for Conservation of Nature (IUCN). The iucn red list of threatened species. IUCN, 2024. URL https://www.iucnredlist.org. Accessed: 2025-08-10. | |
| dc.relation.references | CITES. Corals. Convention on International Trade in Endangered Species of Wild Fauna and Flora, 2024. URL https://cites.org/eng/prog/corals. Accessed: 2025-08-10. | |
| dc.relation.references | National Oceanic and Atmospheric Administration. What is coral bleaching?, junio 2024. URL https: //oceanservice.noaa.gov/facts/coral_bleach.html. Web article. | |
| dc.relation.references | Intergovernmental Panel on Climate Change. Sixth assessment report – impacts, adaptation and vulnerability (chapter 3: Ocean and coastal ecosystems), 2022. URL https://www.ipcc.ch/report/ar6/wg2/. Technical report. | |
| dc.relation.references | Agustín J. Paz Cardona. Hotter seas lead to coral bleaching along colombia’s coast, 2023 expeditions find. Mongabay, enero 2024. URL https://news.mongabay.com. News article. | |
| dc.relation.references | INVEMAR. Informe del estado de los ambientes y recursos marinos y costeros en colombia: 2013. https: //www.invemar.org.co/redcostera1/invemar/docs/ier2014.pdf, 2014. Estimación de ~2,860 km2 de áreas coralinas. | |
| dc.relation.references | INVEMAR. Informe del estado de los ambientes y recursos marinos y costeros en colombia: 2005. https://www.invemar.org.co/redcostera1/invemar/docs/3801IER_2005_completo.pdf, 2005. Sección Arrecifes: Colombia posee cerca de 2,900 km2 de áreas coralinas. | |
| dc.relation.references | N. Lopera et al. Seaflower biosphere reserve: coral reefs and conservation challenges. In Coral Reefs of the World (regional syntheses). Springer, 2020. Cita ampliamente usada para el 77 % de áreas coralinas someras en Seaflower. | |
| dc.relation.references | INVEMAR. Informe final iabin-eco: Ecosistemas marinos y costeros de colombia. https: //www.oas.org/dsd/iabin/component2/Colombia/INVEMAR%20Ecosistemas/Informe%20final% 20%20IABIN-ECO%20231109.pdf, 2009. Aproximadamente 15 km2 de arrecifes en el Pacífico colombiano; ~2,900 km2 totales (citando Díaz et al., 2000). | |
| dc.relation.references | C. Mark Eakin, Jessica A. Morgan, Scott F. Heron, Tyler B. Smith, Gang Liu, and others. Caribbean corals in crisis: Record thermal stress, bleaching, and mortality in 2005. PLOS ONE, 5(11):e13969, 2010. doi: 10.1371/journal.pone.0013969. | |
| dc.relation.references | Melissa Gaskill. Coral bleaching goes from bad to worse. Nature News, 2010. URL https://www.nature. com/articles/news.2010.621. Resumen periodístico del evento 2005: >80 % de colonias blanqueadas en el Caribe. | |
| dc.relation.references | NOAA Coral Reef Watch. Noaa confirms fourth global coral bleaching event. https://coralreefwatch. noaa.gov/, 2024. Comunicado de abril de 2024. | |
| dc.relation.references | Matthew L. Doherty, Jack V. Johnson, and Gretchen Goodbody-Gringley. Widespread coral bleaching and mass mortality during the 2023–2024 marine heatwave in little cayman. PLOS ONE, 20(5):e0322636, 2025. doi: 10.1371/journal.pone.0322636. | |
| dc.relation.references | Juan M. Díaz and Jaime Garzón-Ferreira. The caribbean coral reefs of colombia. In Jorge Cortés, editor, Latin American Coral Reefs, pages 275–301. Elsevier, Amsterdam, 2003. | |
| dc.relation.references | Fernando A. Zapata et al. Dinámica de corales y macroalgas en la isla gorgona (pacífico colombiano). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 34(132):pp. 227–244, 2010. | |
| dc.relation.references | Juan José Alvarado, Octavio Aburto-Oropeza, Rubén Abad, Enrique Barraza, Margarita Brandt, Jaime Cantera, Priscila Estrada, Carlos F Gaymer, Ana Gloria Guzmán-Mora, James J Herlan, et al. Coral reef conservation in the eastern tropical pacific. Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment, pages 565–591, 2016. | |
| dc.relation.references | NOAA Fisheries. Elkhorn coral (acropora palmata), 2025. URL https://www.fisheries.noaa.gov/ species/elkhorn-coral. | |
| dc.relation.references | Fernando A. Zapata and Bernardo Vargas-Ángel. Corals and coral reefs of the pacific coast of colombia. In Latin American Coral Reefs, pages 419–447. Elsevier, 2003. doi: 10.1016/B978-044451388-5/50019-9. | |
| dc.relation.references | SeaLifeBase. Agaricia agaricites – purple lettuce coral, 2025. URL https://www.sealifebase.se/ summary/Agaricia-agaricites.html. Species page. | |
| dc.relation.references | NOAA Fisheries. Mountainous star coral (orbicella faveolata), 2025. URL https://www.fisheries. noaa.gov/species/mountainous-star-coral. | |
| dc.relation.references | NatureServe. Orbicella faveolata – endangered, 2021. URL https://explorer.natureserve.org/. | |
| dc.relation.references | SeaLifeBase. Millepora alcicornis – fire coral, 2025. URL https://www.sealifebase.se/summary/ Millepora-alcicornis.html. Species page. | |
| dc.relation.references | Wikipedia contributors. Mussidae, 2025. URL https://en.wikipedia.org/wiki/Mussidae | |
| dc.relation.references | Peter W. Glynn, Henry von Prahl, and Felipe Guhl. Coral reefs of gorgona island, colombia, with special reference to corallivores. Boletín de Investigaciones Marinas y Costeras, 41:49–80, 2016. | |
| dc.relation.references | SeaLifeBase. Porites astreoides – mustard hill coral, 2025. URL https://www.sealifebase.se/summary/ Porites-astreoides.html. Species page. | |
| dc.relation.references | ICRI. Global coral reef monitoring network: Status of coral reefs. https://icriforum.org, 2024. Accedido en 2025. | |
| dc.relation.references | T. y otros Hughes. Mass coral bleaching 2023: ecological consequences and mortality patterns. PubMed Central, 2023. Accedido en 2025. | |
| dc.relation.references | SeaLifeBase. Orbicella faveolata and caribbean corals database. https://www.sealifebase.se, 2024. Accedido en 2025. | |
| dc.relation.references | Mongabay Latam. La enfermedad sctld y la amenaza a corales caribeños. https://es.mongabay.com, 2023. Accedido en 2025. | |
| dc.relation.references | Wikipedia. Millepora alcicornis. https://en.wikipedia.org/wiki/Millepora_alcicornis, 2024. Accedido en 2025. | |
| dc.relation.references | Raimondo Schettini and Silvia Corchs. Underwater image processing: State of the art of restoration and image enhancement methods. EURASIP Journal on Advances in Signal Processing, 2010, 2010. doi: 10.1155/2010/746052. | |
| dc.relation.references | R. Webb. Underwater light attenuation and ocean zones. Technical report, Oceanic Institute, 2021. Data on light penetration in the ocean. | |
| dc.relation.references | Jules S. Jaffe. Computer modeling and the design of optimal underwater imaging systems. IEEE Journal of Oceanic Engineering, 15(2):101–111, 1990. doi: 10.1109/48.50695. | |
| dc.relation.references | Derya Akkaynak and Tali Treibitz. Sea-thru: A method for removing water from underwater images. In Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), pages 1682–1691, 2019. doi: 10.1109/CVPR.2019.00177. | |
| dc.relation.references | J. Anthoni. Absorption of light by water. Seafriends Marine Conservation and Education Centre, 2005. Online article. | |
| dc.relation.references | Curtis D. Mobley. Light and Water: Radiative Transfer in Natural Waters. Academic Press, 1994. | |
| dc.relation.references | Miao Yang, Jintong Hu, Chongyi Li, Gustavo Rohde, Yixiang Du, and Ke Hu. An in-depth survey of underwater image enhancement and restoration. IEEE Access, 7:123638–123657, 2019. doi: 10.1109/ ACCESS.2019.2932611. | |
| dc.relation.references | S. Fayaz et al. Underwater image enhancement: A review of modern techniques and trends, 2021. Research report. | |
| dc.relation.references | Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Pearson, 4th edition, 2018 | |
| dc.relation.references | Yong Lin Lai, Tan Fong Ang, Uzair A. Bhatti, Chin Soon Ku, Qi Han, and Lip Yee Por. Color correction methods for underwater image enhancement: A systematic literature review. PLOS ONE, 20(3):e0317306, 2025. doi: 10.1371/journal.pone.0317306. | |
| dc.relation.references | Muhammad Suzuri Hitam, Wan Nural Jawahir Hj. Wan Yussof, Ezmahamrul Afreen Awalludin, and Zainuddin Bachok. Mixture contrast limited adaptive histogram equalization for underwater image enhancement. In 2013 International Conference on Computer Applications Technology (ICCAT), pages 1–5, 2013. doi: 10.1109/ICCAT.2013.6522017. | |
| dc.relation.references | Nils Gunnar Jerlov. Marine Optics. Elsevier, 1976. | |
| dc.relation.references | NOAA Coral Reef Conservation Program. Improving underwater reef imagery: Best practices. Technical report, National Oceanic and Atmospheric Administration (NOAA), 2024 | |
| dc.relation.references | Gershon Buchsbaum. A spatial processor model for object colour perception. Journal of the Franklin Institute, 310(1):1–26, 1980. doi: 10.1016/0016-0032(80)90058-7. | |
| dc.relation.references | Karel J. Zuiderveld. Contrast limited adaptive histogram equalization. In Paul S. Heckbert, editor, Graphics Gems IV, pages 474–485. Academic Press, San Diego, CA, 1994. doi: 10.1016/B978-0-12-336156-1. 50061-6. | |
| dc.relation.references | K. Iqbal, M. Odetayo, A. James, R. A. Salam, and A. Z. Talib. Enhancing low quality underwater images using unsupervised color correction method. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 1703–1708, 2010. | |
| dc.relation.references | Daniel J. Jobson, Zia-ur Rahman, and Glenn A. Woodell. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing, 6(7): 965–976, 1997. doi: 10.1109/83.597272. | |
| dc.relation.references | Saeed Anwar, Chongyi Li, et al. Underwater image enhancement: A comprehensive review. Signal Processing: Image Communication, 81:115224, 2020. doi: 10.1016/j.image.2019.115224. | |
| dc.relation.references | Karen Panetta, Chen Gao, and Sos S. Agaian. Human-visual-system-inspired underwater image quality measures. IEEE Journal of Oceanic Engineering, 41(3):541–551, 2016. doi: 10.1109/JOE.2015.2478156. | |
| dc.relation.references | Miao Yang and Arcot Sowmya. An underwater color image quality evaluation metric. IEEE Transactions on Image Processing, 24(12):6062–6071, 2015. doi: 10.1109/TIP.2015.2491020. | |
| dc.relation.references | Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y | |
| dc.relation.references | Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. Proc. ICML, 2010. | |
| dc.relation.references | Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proc. ICML, 2015. | |
| dc.relation.references | Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. | |
| dc.relation.references | Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In Proc. ICLR, 2015. arXiv:1409.1556. | |
| dc.relation.references | Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proc. IEEE CVPR, pages 1–9, 2015. doi: 10.1109/CVPR.2015.7298594. | |
| dc.relation.references | Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely connected convolutional networks. In Proc. IEEE CVPR, pages 4700–4708, 2017. | |
| dc.relation.references | Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proc. ICML, pages 6105–6114, 2019. | |
| dc.relation.references | Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In Proc. ICLR, 2021. arXiv:2010.11929. | |
| dc.relation.references | Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2017. doi: 10.23915/distill.00007. | |
| dc.relation.references | Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems 27 (NIPS 2014), pages 3320–3328, 2014. | |
| dc.relation.references | Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56): 1929–1958, 2014. | |
| dc.relation.references | Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098, 2017. | |
| dc.relation.references | Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Jagadeesh, Dennis DeCoste, Wei Di, and Yizhou Yu. Hd-cnn: Hierarchical deep convolutional neural networks for large scale visual recognition. In Proceedings of IEEE ICCV, pages 2740–2748, 2015. | |
| dc.relation.references | David M. W. Powers. Evaluation: From precision, recall and f-measure to roc, informedness, markedness and correlation. Journal of Machine Learning Technologies, 2(1):37–63, 2011. | |
| dc.relation.references | Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4):427–437, 2009. | |
| dc.relation.references | Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4):427–437, 2009. doi: 10.1016/j.ipm.2009.03.002 | |
| dc.relation.references | C. J. van Rijsbergen. Information Retrieval. Butterworth-Heinemann, London, 2 edition, 1979. URL http: //www.dcs.gla.ac.uk/Keith/Preface.html. | |
| dc.relation.references | David M. W. Powers. Evaluation: From precision, recall and f-measure to roc, informedness, markedness & correlation. Journal of Machine Learning Technologies, 2(1):37–63, 2011. | |
| dc.relation.references | Tom Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):861–874, 2006. | |
| dc.relation.references | Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In ICML, pages 233–240, 2006. | |
| dc.relation.references | Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasets. PLOS ONE, 10(3):e0118432, 2015. doi: 10.1371/ journal.pone.0118432. | |
| dc.relation.references | David J. Hand and Robert J. Till. A simple generalisation of the area under the roc curve for multiple class classification problems. Machine Learning, 45(2):171–186, 2001. doi: 10.1023/A:1010920819831. | |
| dc.relation.references | J. Opitz and S. Burst. Macro f1 and macro f1. In Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, pages 1–11, Minneapolis, Minnesota, 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-5401. URL https://aclanthology.org/W19-5401. Discusses the pitfalls of macro and weighted F1 in imbalanced classification tasks. | |
| dc.relation.references | Kay H. Brodersen, Cheng Soon Ong, Klaas E. Stephan, and Joachim M. Buhmann. The balanced accuracy and its posterior distribution. Proceedings of the 20th International Conference on Pattern Recognition (ICPR), pages 3121–3124, 2010. doi: 10.1109/ICPR.2010.764. | |
| dc.relation.references | Jacob Cohen. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20 (1):37–46, 1960. | |
| dc.relation.references | Mary L. McHugh. Interrater reliability: the kappa statistic. Biochemia Medica, 22(3):276–282, 2012. | |
| dc.relation.references | Brian W. Matthews. Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure, 405(2):442–451, 1975. | |
| dc.relation.references | Davide Chicco and Giuseppe Jurman. The advantages of the matthews correlation coefficient (mcc) over f1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1):6, 2020. | |
| dc.relation.references | Davide Chicco and Matthijs Jurman. The matthews correlation coefficient (mcc) is more reliable than balanced accuracy, f1 score and roc auc in binary classification evaluation. BioData Mining, 14(13), 2021. doi: 10.1186/s13040-021-00244-0. | |
| dc.relation.references | Davide Chicco and Giuseppe Jurman. Reliable evaluation of machine learning models in binary classification problems: beyond accuracy and f1 score. PeerJ Computer Science, 6:e279, 2020. doi: 10.7717/peerj-cs.279. | |
| dc.relation.references | Davide Chicco and Giuseppe Jurman. Comparing the pearson correlation coefficient and the matthews correlation coefficient in evaluating binary classification performance. PeerJ Computer Science, 7:e623, 2021. doi: 10.7717/peerj-cs.623. | |
| dc.relation.references | Aris Kosmopoulos, Ioannis Partalas, Eric Gaussier, Ion Androutsopoulos, and Georgios Paliouras. Evaluation measures for hierarchical classification: a unified view and novel approaches. In Data Mining and Knowledge Discovery, 2015. preprint/extended version commonly cited. | |
| dc.relation.references | Aixin Sun and Ee-Peng Lim. Hierarchical text classification and evaluation. In ICADL, pages 133–144, 2001. | |
| dc.relation.references | Anne E. Magurran. Measuring Biological Diversity. Blackwell, 2004. | |
| dc.relation.references | Carlo Ricotta and Marco Moretti. Measuring the functional redundancy of biological communities: a quantitative guide. Preslia, 79(4):455–471, 2007. URL https://www.preslia.cz/P074Ricotta.pdf. Citado para diversidad taxonómica detectada. | |
| dc.relation.references | Carlos Camilo Ibagon. Resultados ecológicos derivados del modelo de clasificación jerárquica de corales. Monografía de grado, Universidad Nacional de Colombia, 2025. Sección de análisis ecológico basada en salidas del modelo. | |
| dc.relation.references | Ming Li, Hanqi Zhang, Armin Gruen, and Deren Li. A survey on underwater coral image segmentation based on deep learning. Geo-Spatial Information Science, 28(2):472–496, 2025. | |
| dc.relation.references | Muwei Jian, Xiangyu Liu, Hanjiang Luo, Xiangwei Lu, Hui Yu, and Junyu Dong. Underwater image processing and analysis: A review. Signal Processing: Image Communication, 91:116088, 2021. | |
| dc.relation.references | Yang Hong, Xiaowei Zhou, Ruzhuang Hua, Qingxuan Lv, and Junyu Dong. WaterSAM: Adapting SAM for underwater object segmentation. Journal of Marine Science and Engineering, 12(9):1616, 2024. | |
| dc.relation.references | Paulo L. J. Drews-Jr, Isadora de Souza, Igor P. Maurell, Eglen V. Protas, and Silvia S. C. Botelho. Underwater image segmentation in the wild using deep learning. Journal of the Brazilian Computer Society, 27(1): 1–14, 2021. Article 12. | |
| dc.relation.references | Md Jahidul Islam, Chelsey Edge, Yuyang Xiao, Peigen Luo, Mostafa Mehtaz, Christopher Morse, Syed S. Enan, and Junaed Sattar. Semantic segmentation of underwater imagery: Dataset and benchmark. In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pages 1769–1776, 2020. | |
| dc.relation.references | Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proc. IEEE Int. Conf. Computer Vision (ICCV), pages 2980–2988, 2017. | |
| dc.relation.references | Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment anything. In Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV), pages 11673–11682, 2023. | |
| dc.relation.references | Tianrun Chen, Lanyun Zhu, Chaotao Ding, Runlong Cao, Yan Wang, Zejian Li, Lingyun Sun, Papa Mao, and Ying Zang. SAM fails to segment anything? – SAM-ATM: Adapting the segment anything model for adversarial test-time modifications. arXiv preprint arXiv:2307.12356, 2023. | |
| dc.relation.references | Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, and Lei Zhang. Grounding dino: Marrying dino with grounded pre-training for open-set object detection. In Proc. Eur. Conf. Computer Vision (ECCV), pages 1–17, 2024. arXiv:2303.05499. | |
| dc.relation.references | Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoderdecoder with atrous separable convolution for semantic image segmentation. In Proc. Eur. Conf. Computer Vision (ECCV), pages 833–851, 2018. | |
| dc.relation.references | Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing network. In Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pages 6230–6239, 2017. | |
| dc.relation.references | Rudra P. K. Poudel, Ujwal Bonde, Stefan Liwicki, and Christopher Zach. Fast-scnn: Fast semantic segmentation network. arXiv preprint arXiv:1902.04502, 2019. | |
| dc.relation.references | Shijie Lian, Hua Li, Runmin Cong, Suqi Li, Wei Zhang, and Sam Kwong. Watermask: Instance segmentation for underwater imagery. In Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV), pages 1305–1315, 2023. | |
| dc.relation.references | Hua Li, Shijie Lian, Zhiyuan Li, Runmin Cong, and Sam Kwong. UWSAM: Segment anything model guided underwater instance segmentation and a large-scale benchmark dataset. arXiv preprint arXiv:2505.15581, 2024. | |
| dc.relation.references | Fawad, Iftikhar Ahmad, Arif Ullah, and Wooyeol Choi. Machine learning framework for precise localization of bleached corals using bag-of-hybrid visual feature classification. Scientific Reports, 13, 12 2023. ISSN 20452322. doi: 10.1038/s41598-023-46971-7. | |
| dc.relation.references | Mohamed Elawady. Sparse coral classification using deep convolutional neural networks. arXiv preprint arXiv:1511.09067, 2015. | |
| dc.relation.references | Heru Pramono Hadi, Eko Hari Rachmawanto, and Rabei Raad Ali. Comparison of densenet-121 and mobilenet for coral reef classification. MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 23:333–342, 3 2024. ISSN 1858-4144. doi: 10.30812/matrik.v23i2.3683. | |
| dc.relation.references | Anabel Gómez-Ríos, Siham Tabik, Julián Luengo, ASM Shihavuddin, Bartosz Krawczyk, and Francisco Herrera. Towards highly accurate coral texture images classification using deep convolutional neural networks and data augmentation. Expert Systems with Applications, 118:315–328, 2019. | |
| dc.relation.references | A Gómez-Rıos, S ; Tabik, J ; Luengo, F ; Herrera, Asm ; Shihavuddin, and B ; Krawczyk. Redes neuronales convolucionales para una clasificacion precisa de imagenes de corales, 2019. | |
| dc.relation.references | Sonain Jamil, Muhibur Rahman, and Amir Haider. Bag of features (bof) based deep learning framework for bleached corals detection. Big Data and Cognitive Computing, 5, 12 2021. ISSN 25042289. doi: 10.3390/ bdcc5040053. | |
| dc.relation.references | Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for open-set object detection. arXiv preprint arXiv:2303.05499, 2023. | |
| dc.relation.references | Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment anything. arXiv:2304.02643, 2023. | |
| dc.relation.references | MinAmbiente. Arrecifes de coral, un patrimonio que colombia restaura y conserva, 12 2021. URL https://www.minambiente.gov.co/ arrecifes-de-coral-un-patrimonio-que-colombia-restaura-y-conserva/. | |
| dc.relation.references | Coral Reef Alliance. ¿qué es el blanqueamiento de corales?, 2023. URL https://coralreefalliance. org/. Blog post. | |
| dc.relation.references | Fundación Aquae. La importancia de los arrecifes de coral, 2022. URL https://fundacionaquae.org/. | |
| dc.relation.references | Naciones Unidas. Un millón de corales por colombia, la mayor restauración de arrecifes oceánicos de américa, febrero 2022. URL https://news.un.org/. Reportaje de prensa. | |
| dc.relation.references | Ana Gómez-Ríos, Pablo Vargas, Edwin Romero, and Carlos Arias. Towards highly accurate coral texture images classification using deep cnns and data augmentation. Expert Systems with Applications, 118:315– 328, 2019. doi: 10.1016/j.eswa.2018.11.030. | |
| dc.relation.references | Ernesto Weil, Aldo Croquer, and Iria Urreiztieta. The emerging threat of stony coral tissue loss disease (sctld) in the caribbean. Frontiers in Marine Science, 8:681809, 2021. doi: 10.3389/fmars.2021.681809. | |
| dc.relation.references | Atlantic Oceanographic and Meteorological Laboratory – NOAA. Científicos de la noaa regresan a cheeca rocks y descubren que el arrecife está completamente blanqueado, agosto 2023. URL https://aoml. noaa.gov/. News article. | |
| dc.relation.references | Carlos F. D. Rocha, José Posada, and Jorge J. Karlusich. Corals of the tropical eastern pacific: status, distribution and conservation. In Proceedings of the 11th International Coral Reef Symposium, 2008. | |
| dc.relation.references | William K. Fitt, Barbara E. Brown, Mark E. Warner, and Richard P. Dunne. Adaptation of reef corals to climate change: can coral reefs be saved? Global Change Biology, 25:3986–3998, 2019. doi: 10.1111/gcb. 14746. | |
| dc.relation.references | SeaLifeBase. Pocillopora damicornis – cauliflower coral, 2025. URL https://www.sealifebase.se/ summary/Pocillopora-damicornis.html. Species page. | |
| dc.relation.references | udy A. Henry, Roy P. E. Yanong, Michael P. McGuire, and Joseph T. Patterson. A guide to common stony corals of florida, 2022. URL https://edis.ifas.ufl.edu/publication/FA199. University of Florida/IFAS Extension publication. | |
| dc.relation.references | University of Miami – Rosenstiel School. Mussa angulosa species page, 2004. URL https://nmita. rsmas.miami.edu. NMITA: Zooxanthellate Corals Database. | |
| dc.relation.references | Yossi Loya, Kazuhiko Sakai, Koji Yamazato, Yoko Nakano, Hasan Sambali, and Robert van Woesik. Coral bleaching: the winners and the losers. Ecology Letters, 4(2):122–131, 2001. doi: 10.1046/j.1461-0248.2001. 00203.x. | |
| dc.relation.references | R. G. Eagleson et al. A review of research on the mustard hill coral, Porites astreoides. Diversity, 15(3):462, 2023. doi: 10.3390/d15030462. | |
| dc.relation.references | IUCN Red List Unit. Red list version 2024-2: Table 7 (changes in red list status since last update). https: //nc.iucnredlist.org/redlist/content/attachment_files/2024-2_RL_Table_7.pdf, 2024. Incluye cambio de Pocillopora damicornis a En Peligro (2024). | |
| dc.relation.references | National Oceanic and Atmospheric Administration (NOAA). Coral facts – what is the difference between hard and soft coral? NOAA Coral Reef Conservation Program, 2021. https://coralreef.noaa.gov/ education/coralfacts.html. | |
| dc.relation.references | Filippo Ferrario, Michael W. Beck, Curt D. Storlazzi, Fiorenza Micheli, Christine C. Shepard, and Laura Airoldi. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nature Communications, 5:3794, 2014. doi: 10.1038/ncomms4794. | |
| dc.relation.references | Kenneth R. N. Anthony, David I. Kline, Guillermo Diaz-Pulido, Sophie Dove, and Ove Hoegh-Guldberg. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences, 105(45):17442–17446, 2008. doi: 10.1073/pnas.0804478105. | |
| dc.relation.references | IPCC. Sixth assessment report (ar6), working group ii: Impacts, adaptation and vulnerability – chapter 3: Ocean and coastal ecosystems. Intergovernmental Panel on Climate Change, 2022. https://www.ipcc. ch/report/ar6/wg2/. | |
| dc.relation.references | Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze removal using dark channel prior. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 1956–1963, 2009. doi: 10.1109/CVPR. 2009.5206515. | |
| dc.relation.references | Jian Li, Katherine A. Skinner, Ryan M. Eustice, and Matthew Johnson-Roberson. Watergan: Unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robotics and Automation Letters, 3(1):387–394, 2018. doi: 10.1109/LRA.2017.2730363. | |
| dc.relation.references | Ming Li, Hanqi Zhang, Armin Gruen, and Deren Li. A survey on underwater coral image segmentation based on deep learning. Geo-Spatial Information Science, 28(2):1–25, 2024. doi: 10.1080/10095020.2024. 2343323 | |
| dc.relation.references | Hamid Rezatofighi, Nima Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio Savarese. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 658–666, 2019. doi: 10.1109/CVPR.2019.00075. | |
| dc.relation.references | Jiangtao Wang, Nur Intan Ruhaiyem, and Panpan Fu. A comprehensive review of u-net and its variants: Advances and applications in medical image segmentation. arXiv preprint arXiv:2502.06895, 2025. | |
| dc.relation.references | Weihong Zhang, Xiaobo Li, Shuping Xu, Xujin Li, Yiguang Yang, Degang Xu, Tiegen Liu, and Haofeng Hu. Underwater image restoration via adaptive color correction and contrast enhancement fusion. Remote Sensing, 15(19):4699, 2023. doi: 10.3390/rs15194699. | |
| dc.relation.references | Chuhong Wang, Wenli Duan, Chengche Luan, Jinxing Liang, Lijuan Shen, and Hao Li. Usnet: Underwater image superpixel segmentation via multi-scale water-net. Frontiers in Marine Science, 11:1411717, 2024. doi: 10.3389/fmars.2024.1411717. | |
| dc.relation.references | Hanqi Zhang, Ming Li, Jiageng Zhong, and Jiangying Qin. Cnet: A novel seabed coral reef image segmentation approach based on deep learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024. | |
| dc.relation.references | Tianrun Li, Zhengyou Liang, and Shuqi Zhao. Cis: A coral instance segmentation network model with novel upsampling, downsampling, and fusion attention mechanism. Journal of Marine Science and Engineering, 12(9):1490, 2024. doi: 10.3390/jmse12091490. | |
| dc.relation.references | Jiaquan Yan, Hao Hu, Yijian Wang, Muhammad Wasim Nawaz, Naveed Ur Rehman Junejo, Ente Guo, and Huibin Feng. Underwater image enhancement via multiscale disentanglement strategy. Scientific Reports, 15:6076, 2025. doi: 10.1038/s41598-025-89109-7. | |
| dc.relation.references | Li Wang, Xing Li, Ke Li, Yang Mu, Min Zhang, and Zhaoxin Yue. Underwater image restoration based on dual information modulation network. Scientific Reports, 14:5416, 2024. doi: 10.1038/s41598-024-55990-x. | |
| dc.relation.references | Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. In Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pages 3431–3440, 2015. | |
| dc.relation.references | Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In Proc. Int. Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 234–241, 2015. | |
| dc.relation.references | János Podani. The coral of life. Evolutionary Biology, 46(2):123–144, 2019. doi: 10.1007/ s11692-019-09474-w. | |
| dc.relation.references | Marcelo V. Kitahara, Hironobu Fukami, Francesca Benzoni, and Danwei Huang. The new systematics of scleractinia: Integrating molecular and morphological evidence. In Stefano Goffredo and Zvy Dubinsky, editors, The Cnidaria, Past, Present and Future, pages 41–59. Springer, 2016. doi: 10.1007/ 978-3-319-31305-4\_4. | |
| dc.relation.references | Abdelouahid Ben Tamou, Abdesslam Benzinou, and Kamal Nasreddine. Targeted data augmentation and hierarchical classification with deep learning for fish species identification in underwater images. Journal of Imaging, 8(8):214, 2022. doi: 10.3390/jimaging8080214. | |
| dc.relation.references | Célia Blondin, Joris Guerin, Laure Berti-Equille, Guilherme O. Longo, and Kelly Inagaki. Hierarchical classification for automated image annotation of coral reef benthic structures. In Proc. of NeurIPS 2024 Workshop on Tackling Climate Change with Machine Learning, 2024. | |
| dc.relation.references | Dong Gao, Yi Xu, Conghui Guo, and Deyi Xiong. Deep hierarchical classification for category prediction in e-commerce systems. In Proceedings of the 1st Workshop on e-Commerce and NLP (ECNLP 2020), pages 79–88, 2020. URL https://aclanthology.org/2020.ecnlp-1.10. | |
| dc.relation.references | Xinyao Huang, Tao Xu, Xiaomin Zhang, Yihang Zhu, Zheyuan Wu, Xufeng Xu, Yuan Gao, Yafei Wang, and Xiuqin Rao. ALIKE-APPLE: A Lightweight Method for the Detection and Description of Minute and Similar Feature Points in Apples. Agriculture, 14:339, 2024. doi: 10.3390/agriculture14030339. | |
| dc.relation.references | Saleh Albahli. A Robust YOLOv8-Based Framework for Real-Time Melanoma Detection and Segmentation with Multi-Dataset Training. Diagnostics, 15(6):691, 2025. doi: 10.3390/diagnostics15060691. | |
| dc.relation.references | Jacob Murel and Eda Kavlakoglu. ¿qué es el aumento de datos? https://www.ibm.com/mx-es/think/ topics/data-augmentation, 2024. Consultado el 18 de septiembre de 2025. | |
| dc.relation.references | PyTorch. Resnet (pytorch vision models). https://pytorch.org/hub/pytorch_vision_resnet/, 2025. Consultado el 18 de septiembre de 2025. | |
| dc.relation.references | Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation for deep learning. Journal of Big Data, 6(60):1–48, 2019. doi: 10.1186/s40537-019-0197-0. | |
| dc.relation.references | Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. ICLR, 2015. URL https://arxiv.org/abs/1412.6980. | |
| dc.relation.references | Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In Proc. ICLR, 2017. URL https://arxiv.org/abs/1608.03983. | |
| dc.relation.references | Lutz Prechelt. Early stopping—but when? In Genevieve B. Orr and Klaus-Robert Müller, editors, Neural Networks: Tricks of the Trade, volume 1524 of Lecture Notes in Computer Science, pages 55–69. Springer, 1998. doi: 10.1007/3-540-49430-8_5. | |
| dc.relation.references | Mateusz Buda, Atsuto Maki, and Maciej A. Mazurowski. A systematic study of the class imbalance problem in convolutional neural networks. Neural Networks, 106:249–259, 2018. doi: 10.1016/j.neunet. 2018.07.011. | |
| dc.relation.references | Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on effective number of samples. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 9268–9277, 2019. doi: 10.1109/CVPR.2019.00950. | |
| dc.relation.references | Nitish Shirish Keskar, Jorge Nocedal, Ping Tang, Dheevatsa Mudigere, and Mikhail Smelyanskiy. On large-batch training for deep learning: Generalization gap and sharp minima. ICLR (Workshop Track), 2017. URL https://arxiv.org/abs/1609.04836. | |
| dc.relation.references | Kay H. Brodersen, Cheng Soon Ong, Klaas E. Stephan, and Joachim M. Buhmann. The balanced accuracy and its posterior distribution. In Proc. 20th International Conference on Pattern Recognition (ICPR), pages 3121–3124. IEEE, 2010. doi: 10.1109/ICPR.2010.764. | |
| dc.relation.references | Davide Chicco and Giuseppe Jurman. The advantages of the matthews correlation coefficient (mcc) over f1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1):6, 2020. doi: 10.1186/ s12864-019-6413-7. | |
| dc.relation.references | Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In Proc. 23rd International Conference on Machine Learning (ICML), pages 233–240. ACM, 2006. doi: 10.1145/1143844. 1143874. | |
| dc.relation.references | Marco Seeland, Michael Rzanny, Dominik Boho, Jana Wäldchen, and Patrick Mäder. Image-based classification of plant genus and family for trained and untrained plant species. In Proc. IEEE Winter Conference on Applications of Computer Vision (WACV) Workshops, pages 60–69, 2019. doi: 10.1109/WACVW.2019. 00013. | |
| dc.relation.references | Hong Song, Syed Raza Mehdi, Yangfan Zhang, Yichun Shentu, Qixin Wan, Wenxin Wang, Kazim Raza, and Hui Huang. Development of coral investigation system based on semantic segmentation of singlechannel images. Sensors, 21(5):1848, 2021. doi: 10.3390/s21051848. | |
| dc.relation.references | Ultralytics. Ultralytics YOLO documentation: Predict mode. https://docs.ultralytics.com/modes/ predict/, 2023. Consultado: septiembre de 2025. | |
| dc.relation.references | Surajit Das and Pavel Zun. Introduction to a low-cost ai-powered gui for unstained cell culture analysis. arXiv preprint arXiv:2509.11354, 2025. | |
| dc.relation.references | Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), 2015. | |
| dc.relation.references | Hyun E. Kim and et al. Transfer learning for medical image classification: a literature review. BMC Medical Imaging, 22(69), 2022. doi: 10.1186/s12880-022-00791-3. | |
| dc.relation.references | Zheng Wang and et al. A comprehensive survey on data augmentation. arXiv preprint, 2024 | |
| dc.relation.references | X. Zhao and et al. A review of convolutional neural networks in computer vision. Artificial Intelligence Review, 57:99, 2024. doi: 10.1007/s10462-023-10651-5. | |
| dc.relation.references | Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016. doi: 10.1109/CVPR.2016.90. | |
| dc.relation.references | Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Doll’ar. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2):318–327, 2020. doi: 10. 1109/TPAMI.2018.2858826. | |
| dc.relation.references | Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9:2579–2605, 2008. | |
| dc.relation.references | Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages 618–626, 2017. doi: 10. 1109/ICCV.2017.74. | |
| dc.relation.references | Smitha Raveendran, Mukesh D. Patil, and Gajanan K. Birajdar. Underwater image enhancement: A comprehensive review. Artificial Intelligence Review, 54:5413–5467, 2021. doi: 10.1007/s10462-021-09989-0. | |
| dc.relation.references | Wikipedia contributors. Scleractinia — wikipedia, la enciclopedia libre. https://es.wikipedia.org/ wiki/Scleractinia, 2025. [Online; accedido 22-Sept-2025]. | |
| dc.relation.references | Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In ICCV, pages 2980–2988, 2017. | |
| dc.relation.references | Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. In ICLR, 2018. | |
| dc.relation.references | Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In ICCV, pages 6023– 6032, 2019. | |
| dc.relation.references | Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. In ICLR, 2014 | |
| dc.relation.references | Carlos N. Silla and Alex A. Freitas. A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery, 22(1):31–72, 2011. | |
| dc.relation.references | Luca Pengo. Biological classification ranks (diagram). https://commons.wikimedia.org/wiki/File: Biological_classification_L_Pengo_vflip.svg, 2007. Wikimedia Commons. CC BY-SA 3.0. | |
| dc.relation.references | Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4):427–437, 2009. doi: 10.1016/j.ipm.2009.03.002. | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Visión por computador | |
| dc.subject | Corales | |
| dc.subject | Blanqueamiento | |
| dc.subject | ResNet-50 | |
| dc.subject | Segmentación | |
| dc.subject | CLAHE | |
| dc.subject | Clasificación jerárquica | |
| dc.subject | Deep Learning | |
| dc.subject.keyword | Computer vision | |
| dc.subject.keyword | Coral classification | |
| dc.subject.keyword | Bleaching detection | |
| dc.subject.keyword | ResNet-50 | |
| dc.subject.keyword | CLAHE | |
| dc.subject.keyword | Hierarchical | |
| dc.subject.keyword | Deep learning | |
| dc.subject.keyword | Underwater imaging | |
| dc.subject.lemb | Ingeniería Electrónica -- Tesis y disertaciones académicas | |
| dc.title | Algoritmo para clasificación de familias de corales y su blanqueamiento | |
| dc.title.titleenglish | Algorithm for Coral Family Classification and Bleaching Detection | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Monografía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
