Comparación de estrategias de control óptimo y rechazo activo de disturbio en un sistema de péndulo rotacional invertido
| dc.contributor.advisor | Jutinico Alarcón, Andrés Leonardo | |
| dc.contributor.author | Garzón D"Alemán, Cristian Andrés | |
| dc.contributor.orcid | Jutinico Alarcón, Andrés Leonardo [0000-0001-9146-9637] | |
| dc.date.accessioned | 2025-11-26T20:23:28Z | |
| dc.date.available | 2025-11-26T20:23:28Z | |
| dc.date.created | 2025-10-01 | |
| dc.description | Este trabajo de grado, desarrollado en el grupo de investigación LASER de la Universidad Distrital Francisco José de Caldas, tiene como objetivo comparar el desempeño de estrategias de control de tipo optimo aplicadas a un sistema de péndulo rotacional invertido o pendulo de Furuta. Para ello, se utiliza el equipo Qube Servo 3 de la empresa QUANSER. El proyecto inicia con el estudio teórico y modelado del péndulo de Furuta, seguido por el análisis del sistema físico del sistema real proporcionado por QUANSER. Luego, se diseñan y simulan los controles optimos y de rechazo activo al disturbio para mantener el péndulo en posición vertical: un control óptimo con acción integral basado en LQR y filtro de Kalman, y una estrategia de rechazo activo de disturbio mediante un estimador de disturbios. Las simulaciones se realizan en Matlab, posteriormente se implementan en el sistema real usando Matlab/Simulink. Finalmente, se recopilan datos en tiempo real para comparar los resultados simulados con los obtenidos experimentalmente, evaluando el rendimiento de cada estrategia de control. | |
| dc.description.abstract | This undergraduate thesis, developed within the LASER research group at Universidad Distrital Francisco José de Caldas, aims to compare the performance of optimal control strategies applied to a rotational inverted pendulum system, also known as the Furuta pendulum. For this purpose, the Qube Servo 3 equipment from the company QUANSER is used. The project begins with the theoretical study and modeling of the Furuta pendulum, followed by the analysis of the physical system provided by QUANSER. Then, optimal and active disturbance rejection control strategies are designed and simulated to maintain the pendulum in a vertical position: an optimal control with integral action based on a Linear Quadratic Regulator (LQR) and a Kalman filter, as well as an active disturbance rejection strategy using a disturbance estimator. Simulations are carried out in Matlab, and later the controllers are implemented on the real system using Matlab/Simulink. Finally, real-time data is collected to compare the simulated results with those obtained experimentally, allowing for an evaluation of each control strategy’s performance. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/99974 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Faraz Ahmad, Pushpendra Kumar, Anamika Bhandari, and Pravin P. Patil. Simulation of the quadcopter dynamics with lqr based control. Materials Today: Proceedings, 24:326–332, 2020. International Conference on Advances in Materials and Manufacturing Applications, IConAMMA 2018, 16th -18th August, 2018, India. | |
| dc.relation.references | Abdulbasit Alhinqari. State estimation of an inverted pendulum on cart system by kalman filtering and optimal control (lqg). In 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), pages 144–148, 2022 | |
| dc.relation.references | Jacob Apkarian and Michel Lévis. Instructor Workbook: QUBE-Servo Experiment for MATLAB/Simulink Users. Quanser Inc., Markham, Ontario, Canadá, 2014. Standardized for ABET Evaluation Criteria. | |
| dc.relation.references | Farzin Asadi. State-Space Control Systems: The MATLAB®/Simulink® Approach. Synthesis Lectures on Control and Mechatronics. Morgan & Claypool Publishers, 2020. | |
| dc.relation.references | Alejandro Bellati, Nicolás Pérez Blengio, Fabián Cancela, Pablo Monzón, and Nicolás Pérez. Modeling and control of a furuta pendulum. In 2021 IEEE URUCON, pages 334–338, 2021 | |
| dc.relation.references | Youwu Du, Weihua Cao, Jinhua She, and Mingxing Fang. A comparison study of three active disturbance rejection methods. In 2020 39th Chinese Control Conference (CCC), pages 135– 139, 2020. | |
| dc.relation.references | Elhoussin Elbouchikhi, Allal Bouzid El Moubarek, Abdelmajid Abouloifa, Abdelali El Aroudi, and Mohamed Benbouzid. Active disturbance rejection control for four-wire inverters in standalone renewable resources-based microgrid — islanded microgrids adrc-based control. ISA Transactions, 156:290–306, 2025 | |
| dc.relation.references | Ismael Elías Erazo-Velasco, José Vicencio Bautista-Sánchez, Roberto Iván Rodríguez-Jijón, and Luis Adrián González-Quiñonez. Optimal design of an lqg controller for an inverted pendulum mechanical system. Sapienza: International Journal of Interdisciplinary Studies, 3(7):215–227, October 2022. | |
| dc.relation.references | Xiangyang Fan, Jie Wang, Hui Wang, Lijuan Yang, and Chunxia Xia. Lqr trajectory tracking control of unmanned wheeled tractor based on improved quantum genetic algorithm. Machines, 11(1):62, 2023. | |
| dc.relation.references | Javier Gonzalo González Fontanet, Ania Lussón Cervantes, and Irina Bausa Ortiz. Alternativas de control para un péndulo de furuta. Revista Iberoamericana de Automática e Informática Industrial RIAI, 13(4):410–420, 2016. | |
| dc.relation.references | Gene F. Franklin, J. David Powell, and Michael L. Workman. Digital Control of Dynamic Systems. Addison-Wesley, Menlo Park, California, 3rd edition, 1998 | |
| dc.relation.references | V. Gonzalez, A. Joel, and Christophe Sueur. Comparison of disturbance rejection with derivative state feedback and active disturbance rejection control: Case study. In 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), pages 720–725, 2019. | |
| dc.relation.references | Victor David Castillo González, José Francisco Molina Santiago, Francisco Ronay López Estrada, and Samuel Gómez-Peñate. Modeling. parameterization, and state feedback control of a furuta pendulum. In 2023 XXV Robotics Mexican Congress (COMRob), pages 87–92, 2023. | |
| dc.relation.references | Sofiane Hammouche, Rachid Mansouri, Ahmed Maidi, and Maamar Bettayeb. New fractionalorder ladrc scheme based on a novel filtered-bode’s ideal transfer function for integer-order systems. Mechatronics, 93:103004, 2023. | |
| dc.relation.references | Jingqing Han. From pid to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3):900–906, 2009. | |
| dc.relation.references | Hamza Hadj Henni, Nour El Houda Asnoune, Fayssal Arichi, and Mohamed Rida Mokhtari. Rotary inverted pendulum stabilization using observer-based a sliding mode controller. In 2023 IEEE International Workshop on Mechatronic Systems Supervision (IWMSS), pages1 − −6,2023. | |
| dc.relation.references | Riya Kumari, Ramesh Kumar, and Gagan Deep Meena. Pid, lqr, state feedback, and feedforward controllers on a two-link robotic manipulator: A simulation-based comparison. In 2023 International Conference on Recent Advances in Electrical, Electronics Digital Healthcare Technologies (REEDCON), pages 50–55, 2023. | |
| dc.relation.references | Fernando Mesa, Rogelio Ospina-Ospina, and German Correa-Velez. Estimación de variables de estado (la y lc) en sistemas de control. Revista UIS Ingenierías, 20(1):115–120, nov. 2020. | |
| dc.relation.references | A. Ortega–Vidal, F. Salazar–Vasquez, and A. Rojas–Moreno. A comparison between optimal lqr control and lqr predictive control of a planar robot of 2dof. In 2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), pages 1–4, 2020 | |
| dc.relation.references | A. Ortega–Vidal, F. Salazar–Vasquez, and A. Rojas–Moreno. A comparison between optimal lqr control and lqr predictive control of a planar robot of 2dof. In 2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), pages 1–4, 2020 | |
| dc.relation.references | Quanser. USER MANUAL QB-Servo Experiment: Set Up and Configuration. Quanser Inc., Markham, Ontario, Canadá, 2014. Guía de configuración del experimento QB-Servo | |
| dc.relation.references | Harvey David Rojas, John Cortés-Romero, and Herbert Enrique Rojas. Active disturbance rejection control based on a cascade estimator composed of reduced-order and full-order extended state observers. ISA Transactions, 151:296–311, 2024. | |
| dc.relation.references | Jován Oseas Mérida Rubio, Paul Alejandro Chávez Vázquez, Luis Nestor Coria de los Ríos, and Carlos Alberto Chávez Guzmán. Diseño de control óptimo para el péndulo de furuta. Revista de Ciencias Tecnológicas, 1(2):49–53, 2018. | |
| dc.relation.references | Basant Tomar, Narendra Kumar, and Mini Sreejeth. Optimal control of rotary inverted pendulum using continuous linear quadratic gaussian (lqg) controller. In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), pages 1–6, 2023. | |
| dc.relation.references | Jack Lut Aguirre Valverde, Marco Antonio Becerra Pérez, Cristian Rafael Columna Zavaleta, Sthefanny Beatriz Reyna Rodríguez, Josmell Henry Alva Alcántara, and Edgar André Manzano Ramos. Control óptimo lqr para orientar la plataforma móvil de un robot paralelo de 2gdl experimental. Revista de Investigaciones, 10(4):360–369, December 2021. | |
| dc.relation.references | Daniel Zabala-Benavides and Jose Salazar-Cáceres. Diseño e implementación de controlador lqg en sistema ball beam. Visión electrónica, 15:190–199, 11 2021 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Péndulo | |
| dc.subject | Furuta | |
| dc.subject | Control | |
| dc.subject | Control óptimo | |
| dc.subject | Control integral | |
| dc.subject | LQR | |
| dc.subject | LQG | |
| dc.subject | ADRC | |
| dc.subject.keyword | Pendulum | |
| dc.subject.keyword | Furuta | |
| dc.subject.keyword | Optimal control | |
| dc.subject.keyword | Comprehensive control | |
| dc.subject.keyword | Control | |
| dc.subject.keyword | LQR (Linear Quadratic Regulator) | |
| dc.subject.keyword | LQG (Linear Quadratic Gaussian) | |
| dc.subject.keyword | ADRC (Active Disturbance Rejection Control) | |
| dc.subject.lemb | Ingeniería electrónica -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Control óptimo -- Bogotá (Colombia) | spa |
| dc.subject.lemb | Rechazo activo de disturbios -- Bogotá (Colombia) | spa |
| dc.subject.lemb | Péndulo rotacional invertido -- Bogotá (Colombia) | spa |
| dc.title | Comparación de estrategias de control óptimo y rechazo activo de disturbio en un sistema de péndulo rotacional invertido | |
| dc.title.titleenglish | Comparison of optimal control strategies and active disturbance rejection in a rotational inverted pendulum system | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Investigación-Innovación | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
