Desarrollo de una aplicación para analizar indicadores de desempeño en equipos de cuarta generación con dashboards en Grafana
| dc.contributor.advisor | López Sánchez, Wilson Ricardo | |
| dc.contributor.author | Valencia Anacona, Andrés Felipe | |
| dc.contributor.orcid | López Sánchez, Wilson Ricardo [0000-0002-1377-0667] | |
| dc.date.accessioned | 2025-11-06T01:34:55Z | |
| dc.date.available | 2025-11-06T01:34:55Z | |
| dc.date.created | 2025-09-11 | |
| dc.description | La presente investigación desarrolla una aplicación para el análisis automatizado de indicadores clave de desempeño (KPI) en equipos del núcleo de red 4G LTE, con el propósito de optimizar la supervisión y diagnóstico de su comportamiento mediante dashboards interactivos en Grafana. El proyecto integra herramientas de procesamiento y visualización de datos, empleando Python, SQLite y la biblioteca STUMPY para la detección de anomalías en series temporales. La metodología aplicada, de carácter descriptivo y aplicado, se estructuró en cuatro fases iterativas: capacitación, definición de requerimientos, desarrollo e implementación final. En la primera fase se identificaron y clasificaron los KPI del elemento Session Border Controller (SBC). Posteriormente, se implementó un algoritmo de detección de anomalías basado en el perfil matricial (Matrix Profile), lo que permitió identificar desviaciones significativas en el comportamiento de las métricas de red. El sistema diseñado procesa datos provenientes de archivos CSV o ZIP y genera bases de datos en formato SQLite junto con archivos JSON compatibles con Grafana, posibilitando la visualización dinámica de los resultados. La interfaz gráfica, desarrollada en CustomTkinter, facilita la interacción del usuario con los datos y la automatización de dashboards. Los resultados demuestran que la aplicación mejora la interpretación de los datos, la precisión en la detección de anomalías y ofrece una herramienta adaptable para el monitoreo de desempeño en redes 4G, con potencial de extensión a entornos 5G. | |
| dc.description.abstract | This research develops an application for the automated analysis of key performance indicators (KPIs) in 4G LTE core network equipment, with the aim of optimizing the monitoring and diagnosis of its behavior through interactive dashboards in Grafana. The project integrates data processing and visualization tools, using Python, SQLite, and the STUMPY library for the detection of anomalies in time series. The methodology applied, which is descriptive and applied in nature, was structured in four iterative phases: training, definition of requirements, development, and final implementation. In the first phase, the KPIs of the Session Border Controller (SBC) element were identified and classified. Subsequently, an anomaly detection algorithm based on the Matrix Profile was implemented, which allowed significant deviations in the behavior of network metrics to be identified. The designed system processes data from CSV or ZIP files and generates databases in SQLite format along with Grafana-compatible JSON files, enabling dynamic visualization of the results. The graphical interface, developed in CustomTkinter, facilitates user interaction with the data and the automation of dashboards. The results show that the application improves data interpretation and anomaly detection accuracy, and provides an adaptable tool for monitoring performance in 4G networks, with potential for extension to 5G environments. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/99728 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | “What is LTE (Long-Term Evolution)?,” SearchMobileComputing. https://www.techtarget.com/searchmobilecomputing/definition/ Long-Term-Evolution-LTE | |
| dc.relation.references | “What is Evolved Packet Core (EPC)”, DialogicInc, 2022. https://www.dialogic.com/glossary/evolved-packet-core-epc (Accedido el 08 de octubre de 2024). | |
| dc.relation.references | “LTE 3GPP releases Overview - CableFree,” CableFree, 18 de enero de 2018. https://www.cablefree.net/wirelesstechnology/Agite/ overview-of-ite-3gpp-releases/ (Accedido el 08 de octubre de 2024). | |
| dc.relation.references | 3GPP, “Release 8,” 3GPP, 2024. https://www.3gpp.org/specifications-technologies/releases/ release-8 (Accedido el 08 de octubre de 2024). | |
| dc.relation.references | . Dahlman, S. Parkvall y J. Sköld, 4G: LTE/LTE-Advanced for mobile broadband. Ámster dam: Elsevier, 2014. | |
| dc.relation.references | “What is the difference between EPS and EPC in LTE | EPS vs EPC,” Rfwireless-world.com, 2024. https://www.rfwireless-world.com/Terminology/ Difference-between-EPS-and-EPC-in-LTE.html (Accedido el 08 de octubre de 2024). | |
| dc.relation.references | T. Hayashi, “Evolved Packet Core (EPC) Network Equipment for Long Term Evolution (LTE),” FUJITSU Sci. Tech. J, vol. 48, núm. 1, pp. 17–20, 2012. https://www.fujitsu.com/global/documents/about/resources/ publications/fsti/archives/vol48-1/paper10.pdf | |
| dc.relation.references | NokiaLearn, “Nokia Mobility Manager Fundamentals,” Nokia. 18 de noviembre de 2021. | |
| dc.relation.references | NokiaLearn, “Nokia Mobile Gateways Introduction,” Nokia. 01 de diciembre de 2022. | |
| dc.relation.references | “LabKit used as LTE Callbox for production lines LTE IoT testing,” YateBTS - LTE & GSM mobile network components for MNO & MVNO, 02 de abril de 2019. https://yatebts.com/solutions_and_technology/lte-epc/ (Accedido el 08 de octubre de 2024). | |
| dc.relation.references | Federal Communications Commission, “Voice Over Internet Protocol (VoIP),” Federal Communications Commission, 18 de noviembre de 2010. https://www.fcc.gov/general/voice-over-internet-protocol-voip | |
| dc.relation.references | okiaLearn, “Foundation (L1) Session Border Controller Curriculum,” Nokia. 01 de sep tiembre de 2022. | |
| dc.relation.references | NOKIA, “Nokia Customer Support Portal,” Nokia.com, 2024. https://customer.nokia.com/support/s/product2/netact/ 01141000004gAuNAAU (Accedido el 08 de octubre de 2024). | |
| dc.relation.references | A. Nielsen, Practical time series analysis : prediction with statistics and machine learning. Sebastopol, CA: O’Reilly Media, Inc, 2019. | |
| dc.relation.references | J. F. López, “Tipos de series temporales - Definición, qué es y concepto,” Economipedia, 08 de noviembre de 2018. https://economipedia.com/definiciones/tipos-de-series-temporales. html | |
| dc.relation.references | Grafana, “Introduction to time series | Grafana documentation,” Grafana Labs, 2024. https://grafana.com/docs/grafana/latest/fundamentals/timeseries/ (Accedido el 08 de octubre de 2024). | |
| dc.relation.references | Grafana, “Grafana documentation,” Grafana Labs, 2020. https://grafana.com/docs/grafana/latest/ | |
| dc.relation.references | Grafana, “Grafana® Features,” Grafana Labs. https://grafana.com/grafana/ | |
| dc.relation.references | Grafana, “Grafana dashboards overview | Grafana documentation,” Grafana Labs. https://grafana.com/docs/grafana/latest/fundamentals/ dashboards-overview/ | |
| dc.relation.references | Y. Zhu, E. Keogh, M. Lonardi, y L. N. Patel, “Matrix Profile I: All Pairs Similarity Join for Time Series: A Unifying View that Includes Motifs, Discords and Shapelets,” IEEE Trans. Knowledge and Data Engineering, vol. 30, no. 9, pp. 1718–1735, 2018. | |
| dc.relation.references | X. Fu, Q. Han, H. Zhang, y K. Wang, “Real-Time Anomaly Detection in Time Series Using Matrix Profile,” en Proc. of the 2019 IEEE International Conference on Big Data, Los Ange les, CA, USA, pp. 1141–1148, Dec. 2019 | |
| dc.relation.references | J. A. Smith, L. B. Romero, y T. K. Jones, “Aplicación de Técnicas de Análisis de Series Temporales para el Monitoreo del Desempeño en Redes de Telecomunicaciones,” IEEE Trans. on Communications, vol. 67, no. 4, pp. 2345–2354, Apr. 2019. | |
| dc.relation.references | J. Siebert, J. Groß and C. Schroth, “A systematic review of Python packages for time series analysis,” arXiv preprint arXiv:2104.07406, 2021. [Online]. Available: https://arxiv. org/abs/2104.07406 | |
| dc.relation.references | B. D. Fulcher, M. A. Little and N. S. Jones, “Highly comparative time-series analysis: The empirical structure of time series and their methods,” arXiv preprint arXiv:1304.1209, 2013. [Online]. Available: https://arxiv.org/abs/1304.1209 | |
| dc.relation.references | X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann and E. Keogh, “Experimental Comparison of Representation Methods and Distance Measures for Time Series Data,” arXiv preprint arXiv:1012.2789, 2010. [Online]. Available: https://arxiv.org/abs/ 1012.2789 | |
| dc.relation.references | C. Batini et al., Data and Information Quality: Dimensions, Principles and Techniques. Springer, 2016. | |
| dc.relation.references | S. Chaudhuri, “What Next?: A Half-Dozen Data Management Research Goals for Big Data and the Cloud”, Proc. PODS, 2017. | |
| dc.relation.references | B. Saha et al., “Apache Atlas: A Unified Metadata Management System”, Proc. VLDB, 2018. | |
| dc.relation.references | H. Karimi et al., “Deep Learning for Missing Value Imputation in Tables with Non-Numerical Data”, CIKM, 2020. | |
| dc.relation.references | M. Stonebraker, “The LandScape of Data Integration”, IEEE Data Eng. Bull., 2019. | |
| dc.relation.references | D. Abadi et al., “Consistency Tradeoffs in Modern Distributed Database System Design”, IEEE Computer, 2019. | |
| dc.relation.references | R. Hyndman, Forecasting: Principles and Practice, 3rd ed. OTexts, 2021. | |
| dc.relation.references | Y. Wang et al., “MSTL: A Multivariate Seasonal-Trend Decomposition Algorithm”, IEEE ICDM, 2022. | |
| dc.relation.references | T. Li et al., “Context-Aware Normalization for Time Series Forecasting”, NeurIPS, 2021. | |
| dc.relation.references | Y. Zhu et al., “Matrix Profile XXIV: Scaling Time Series Anomaly Detection to Trillions of Datapoints”, IEEE ICDM, 2021. | |
| dc.relation.references | Y. Su et al., “Robust Anomaly Detection for Multivariate Time Series through Temporal Gated VAE”, KDD, 2022. | |
| dc.relation.references | X. Liu et al., “Ensemble Learning for Anomaly Detection: A Comparative Study”, ACM TKDD, 2023 | |
| dc.relation.references | M. Zaharia et al., “Accelerating the Machine Learning Lifecycle with MLflow”, IEEE Data Eng. Bull., 2020. | |
| dc.relation.references | E. Stevens et al., “Darts: A Python Library for Easy Manipulation and Forecasting of Time Series”, JOSS, 2021. | |
| dc.relation.references | Grafana Labs, “Grafana 10.0: Unified Observability with Advanced Analytics”, 2023. [En línea]. Disponible: https://grafana.co | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | KPI | |
| dc.subject | Series temporales | |
| dc.subject | Detección de anomalías | |
| dc.subject | Grafana | |
| dc.subject | STUMPY | |
| dc.subject | Telecomunicaciones 4G | |
| dc.subject.keyword | KPI | |
| dc.subject.keyword | Time series | |
| dc.subject.keyword | Anomaly detection | |
| dc.subject.keyword | Grafana | |
| dc.subject.keyword | STUMPY | |
| dc.subject.keyword | 4G telecommunications | |
| dc.subject.lemb | Ingeniería Electrónica -- Tesis y disertaciones académicas | |
| dc.subject.lemb | LTE (Telecomunicaciones) | |
| dc.subject.lemb | Indicadores de eficiencia | |
| dc.subject.lemb | Análisis de información | |
| dc.title | Desarrollo de una aplicación para analizar indicadores de desempeño en equipos de cuarta generación con dashboards en Grafana | |
| dc.title.titleenglish | Development of an application to analyze performance indicators in fourth-generation equipment with dashboards in Grafana | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Monografía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
