Despacho económico-ambiental de centrales de generación térmica empleando el algoritmo de optimización de Newton-Raphson

dc.contributor.advisorMontoya Giraldo, Oscar Danilo
dc.contributor.authorTohapanta Quiranza, David Alejandro
dc.contributor.authorSedano Duque, Jairo Andrés
dc.contributor.orcidMontoya Giraldo; Oscar Danilo [0000-0001-6051-4925]
dc.date.accessioned2025-03-28T18:51:36Z
dc.date.available2025-03-28T18:51:36Z
dc.date.created2024-11-21
dc.descriptionEste artículo presenta una investigación centrada en la minimización de los costos de generación y la reducción de emisiones de gases de efecto invernadero en sistemas eléctricos predominantemente térmicos, utilizando un algoritmo de optimización basado en Newton-Raphson. La metodología aplicada involucra la resolución del problema de despacho económico-ambiental, considerando el efecto de punto de válvula y diversas restricciones operativas de los sistemas eléctricos de potencia. Se compara el rendimiento del algoritmo de Newton-Raphson con otros algoritmos empleados en casos de estudio similares. Los resultados obtenidos a partir de estudios con sistemas de generación térmica de 3 y 10 unidades muestran que el algoritmo propuesto ofrece soluciones óptimas y superiores en comparación con otros métodos. La estrategia demuestra su efectividad al equilibrar costos de combustibles y emisiones, resolviendo eficazmente el problema de despacho económico-ambiental.
dc.description.abstractThis article presents research focused on minimizing generation costs and reducing greenhouse gas emissions in predominantly thermal power systems, using a Newton-Raphson-based optimization algorithm. The applied methodology involves the resolution of the economic-environmental dispatch problem, considering the valve point effect and various operational restrictions of electrical power systems. The performance of the Newton-Raphson algorithm is compared with other algorithms used in similar case studies. The results obtained from studies with thermal generation systems of 3 and 10 units show that the proposed algorithm offers optimal and superior solutions compared to other methods. The strategy demonstrates its effectiveness by balancing fuel costs and emissions, effectively solving the economic-environmental dispatch problem.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/94325
dc.relation.referencesS. Rajasomashekar and P. Aravindhababu, “Biogeography based optimization technique for best compromise solution of economic emission dispatch,” Swarm Evol. Comput., vol. 7, pp. 47–57, 2012, doi: https://doi.org/10.1016/j.swevo.2012.06.001.
dc.relation.referencesS. Duman, U. Güvenç, and N. Yörükeren, “Gravitational search algorithm for economic dispatch with valve-point effects,” Int. Rev. Electr. Eng., vol. 5, no. 6, pp. 2890–2895, 2010.
dc.relation.referencesX. Xia and A. M. Elaiw, “Optimal dynamic economic dispatch of generation: A review,” Electr. Power Syst. Res., vol. 80, no. 8, pp. 975–986, 2010, doi: https://doi.org/10.1016/j.epsr.2009.12.012.
dc.relation.referencesT. N. Malik, A. Ul Asar, M. F. Wyne, and S. Akhtar, “A new hybrid approach for the solution of nonconvex economic dispatch problem with valve-point effects,” Electr. Power Syst. Res., vol. 80, no. 9, pp. 1128–1136, 2010, doi: https://doi.org/10.1016/j.epsr.2010.03.004.
dc.relation.referencesF. Ruiz-Tipán and A. Valenzuela, “Literary review of economic environmental dispatch considering bibliometric analysis,” Iteckne, vol. 19, no. 1, pp. 26–38, 2021, doi: https://doi.org/10.15332/iteckne.v19i1.2631.
dc.relation.referencesW. Luo, X. Yu, and Y. Wei, “Solving combined economic and emission dispatch problems using reinforcement learning-based adaptive differential evolution algorithm,” Eng. Appl. Artif. Intell., vol. 126, no. PC, p. 107002, 2023, doi: https://doi.org/10.1016/j.engappai.2023.107002.
dc.relation.referencesY. Yang, S. Xia, P. Huang, and J. Qian, “Energy transition: Connotations, mechanisms and effects,” Energy Strateg. Rev., vol. 52, no. January, p. 101320, 2024, doi: https://doi.org/10.1016/j.esr.2024.101320.
dc.relation.referencesS. Habib, M. Ahmadi Kamarposhti, H. Shokouhandeh, I. Colak, and E. M. Barhoumi, “Economic dispatch optimization considering operation cost and environmental constraints using the HBMO method,” Energy Reports, vol. 10, pp. 1718–1725, 2023, doi: https://doi.org/10.1016/j.egyr.2023.08.032.
dc.relation.referencesK. de J. Berrio Castro, “Método de solución para el despacho económico en línea considerando restricciones y reglas de un mercado eléctrico,” p. 95, 2016, [Online]. Available: http://www.bdigital.unal.edu.co/54139/.
dc.relation.referencesY. Sharifian and H. Abdi, “Multi-area economic dispatch problem: Methods, uncertainties, and future directions,” Renew. Sustain. Energy Rev., vol. 191, p. 114093, 2024, doi: https://doi.org/10.1016/j.rser.2023.114093.
dc.relation.referencesC. Ortiz Rodríguez, “Algoritmos heurísticos y metaheurísticos para el problema de localización de regeneradores.,” pp. 11–26, 2010, [Online]. Available: http://eciencia.urjc.es/handle/10115/4129.
dc.relation.referencesJ. S. Dhillon and D. P. Kothari, “Power System Optimization (2nd edition),” pp. 18–21, 2010.
dc.relation.referencesB. Jeddi and V. Vahidinasab, “A modified harmony search method for environmental/economic load dispatch of real-world power systems,” Energy Convers. Manag., vol. 78, pp. 661–675, 2014, doi: https://doi.org/10.1016/j.enconman.2013.11.027.
dc.relation.referencesB. Shaw, V. Mukherjee, and S. P. Ghoshal, “A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems,” Int. J. Electr. Power Energy Syst., vol. 35, no. 1, pp. 21–33, 2012, doi: https://doi.org/10.1016/j.ijepes.2011.08.012.
dc.relation.referencesK. Bhattacharjee, A. Bhattacharya, and S. Halder Nee Dey, “Solution of Economic Emission Load Dispatch problems of power systems by Real Coded Chemical Reaction algorithm,” Int. J. Electr. Power Energy Syst., vol. 59, pp. 176–187, 2014, doi: https://doi.org/10.1016/j.ijepes.2014.02.006.
dc.relation.referencesN. I. Nwulu and X. Xia, “Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs,” Energy, vol. 91, pp. 404–419, 2015, doi: https://doi.org/10.1016/j.energy.2015.08.042.
dc.relation.referencesH. Wu, H. Zhuang, W. Zhang, and M. Ding, “Electrical Power and Energy Systems Optimal allocation of microgrid considering economic dispatch based on hybrid weighted bilevel planning method and algorithm improvement,” Int. J. Electr. POWER ENERGY Syst., vol. 75, pp. 28–37, 2016, doi: https://doi.org/10.1016/j.ijepes.2015.08.011.
dc.relation.referencesA. Ghasemi, M. Gheydi, M. J. Golkar, and M. Eslami, “Modeling of Wind/Environment/Economic Dispatch in power system and solving via an online learning meta-heuristic method,” Appl. Soft Comput. J., vol. 43, pp. 454–468, 2016, doi: https://doi.org/10.1016/j.asoc.2016.02.046.
dc.relation.referencesL. Jebaraj, C. Venkatesan, I. Soubache, and C. C. A. Rajan, “Application of differential evolution algorithm in static and dynamic economic or emission dispatch problem: A review,” Renew. Sustain. Energy Rev., vol. 77, no. March, pp. 1206–1220, 2017, doi: https://doi.org/10.1016/j.rser.2017.03.097.
dc.relation.referencesM. Kheshti and L. Ding, “Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems,” Renew. Energy, 2018, doi: https://doi.org/10.1016/j.renene.2018.03.024.
dc.relation.referencesN. Karthik, A. K. Parvathy, and R. Arul, “Multi-objective economic emission dispatch using interior search algorithm,” Int. Trans. Electr. Energy Syst., vol. 29, no. 1, pp. 1–18, 2019, doi: https://doi.org/10.1002/etep.2683.
dc.relation.referencesG. Yuan and W. Yang, “Study on optimization of economic dispatching of electric power system based on Hybrid Intelligent Algorithms (PSO and AFSA),” Energy, vol. 183, pp. 926–935, 2019, doi: https://doi.org/10.1016/j.energy.2019.07.008.
dc.relation.referencesA. Srivastava and D. K. Das, “A new Kho-Kho optimization Algorithm: An application to solve combined emission economic dispatch and combined heat and power economic dispatch problem,” Eng. Appl. Artif. Intell., vol. 94, no. January, p. 103763, 2020, doi: https://doi.org/10.1016/j.engappai.2020.103763.
dc.relation.referencesM. Basu, “Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II,” Int. J. Electr. Power Energy Syst., vol. 30, no. 2, pp. 140–149, 2008, doi: https://doi.org/10.1016/j.ijepes.2007.06.009.
dc.relation.referencesA. Sundaram, “Multiobjective multi-verse optimization algorithm to solve combined economic, heat and power emission dispatch problems,” Appl. Soft Comput. J., vol. 91, p. 106195, 2020, doi: https://doi.org/10.1016/j.asoc.2020.106195.
dc.relation.referencesM. T. Hagh, S. M. S. Kalajahi, and N. Ghorbani, “Solution to economic emission dispatch problem including wind farms using Exchange Market Algorithm Method,” Appl. Soft Comput. J., vol. 88, p. 106044, 2020, doi: https://doi.org/10.1016/j.asoc.2019.106044.
dc.relation.referencesE. H. Talbi, L. Abaali, R. Skouri, and M. El Moudden, “Solution of Economic and Environmental Power Dispatch Problem of an Electrical Power System using BFGS-AL Algorithm,” Procedia Comput. Sci., vol. 170, no. 2019, pp. 857–862, 2020, doi: https://doi.org/10.1016/j.procs.2020.03.144.
dc.relation.referencesV. P. Sakthivel, M. Suman, and P. D. Sathya, “Combined economic and emission power dispatch problems through multi-objective squirrel search algorithm,” Appl. Soft Comput., vol. 100, p. 106950, 2021, doi: https://doi.org/10.1016/j.asoc.2020.106950.
dc.relation.referencesL. L. Li, Z. F. Liu, M. L. Tseng, S. J. Zheng, and M. K. Lim, “Improved tunicate swarm algorithm: Solving the dynamic economic emission dispatch problems,” Appl. Soft Comput., vol. 108, p. 107504, 2021, doi: https://doi.org/10.1016/j.asoc.2021.107504.
dc.relation.referencesM. H. Hassan, E. H. Houssein, M. A. Mahdy, and S. Kamel, “An improved Manta ray foraging optimizer for cost-effective emission dispatch problems,” Eng. Appl. Artif. Intell., vol. 100, no. January, p. 104155, 2021, doi: https://doi.org/10.1016/j.engappai.2021.104155.
dc.relation.referencesM. H. Hassan, S. Kamel, L. Abualigah, and A. Eid, “Development and application of slime mould algorithm for optimal economic emission dispatch,” Expert Syst. Appl., vol. 182, no. May, p. 115205, 2021, doi: https://doi.org/10.1016/j.eswa.2021.115205.
dc.relation.referencesZ. Liu, Y. Liu, H. Xu, S. Liao, K. Zhu, and X. Jiang, “Dynamic economic dispatch of power system based on DDPG algorithm,” Energy Reports, vol. 8, pp. 1122–1129, 2022, doi: https://doi.org/10.1016/j.egyr.2022.02.231.
dc.relation.referencesM. Dashtdar et al., “Solving the environmental/economic dispatch problem using the hybrid FA-GA multi-objective algorithm,” Energy Reports, vol. 8, pp. 13766–13779, 2022, doi: https://doi.org/10.1016/j.egyr.2022.10.054.
dc.relation.referencesX. Yu, Y. Duan, and W. Luo, “A knee-guided algorithm to solve multi-objective economic emission dispatch problem,” Energy, vol. 259, p. 124876, 2022, doi: https://doi.org/10.1016/j.energy.2022.124876.
dc.relation.referencesM. H. Hassan, S. Kamel, F. Jurado, M. Ebeed, and M. F. Elnaggar, “Economic load dispatch solution of large-scale power systems using an enhanced beluga whale optimizer,” Alexandria Eng. J., vol. 72, pp. 573–591, 2023, doi: https://doi.org/10.1016/j.aej.2023.04.002.
dc.relation.referencesR. Sowmya, M. Premkumar, and P. Jangir, “Newton-Raphson-based optimizer: A new population-based metaheuristic algorithm for continuous optimization problems,” Eng. Appl. Artif. Intell., vol. 128, no. December 2023, p. 107532, 2024, doi: https://doi.org/10.1016/j.engappai.2023.107532.
dc.relation.referencesL. Wang and L. P. Li, “An effective differential harmony search algorithm for the solving non-convex economic load dispatch problems,” Int. J. Electr. Power Energy Syst., vol. 44, no. 1, pp. 832–843, 2013, doi: https://doi.org/10.1016/j.ijepes.2012.08.021.
dc.relation.referencesA. Y. Abdelaziz, E. S. Ali, and S. M. Abd Elazim, “Flower pollination algorithm to solve combined economic and emission dispatch problems,” Eng. Sci. Technol. an Int. J., vol. 19, no. 2, pp. 980–990, 2016, doi: https://doi.org/10.1016/j.jestch.2015.11.005.
dc.relation.referencesI. Ahmadianfar, O. Bozorg-Haddad, and X. Chu, “Gradient-based optimizer: A new metaheuristic optimization algorithm,” Inf. Sci. (Ny)., vol. 540, pp. 131–159, 2020, doi: https://doi.org/10.1016/j.ins.2020.06.037.
dc.relation.referencesK. Senthil, “Combined Economic Emission Dispatch using Evolutionary Programming Technique,” Ecot, pp. 62–66, 2010, doi: https://doi.org/10.5120/1539-142.
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectUnidad de generación térmica
dc.subjectDespacho económico-ambiental
dc.subjectAlgoritmo de optimización de Newton-Raphson
dc.subjectEfecto punto de válvula
dc.subjectBalance de potencia
dc.subject.keywordThermal generation unit
dc.subject.keywordEconomic-environmental dispatch
dc.subject.keywordNewton-Raphson optimization algorithm
dc.subject.keywordValve point effect
dc.subject.keywordPower balance
dc.subject.lembIngeniería Eléctrica -- Tesis y disertaciones académicas
dc.subject.lembDistribución de energía eléctrica
dc.subject.lembProducción de energía eléctrica
dc.subject.lembGases de invernadero
dc.subject.lembOptimización matemática
dc.titleDespacho económico-ambiental de centrales de generación térmica empleando el algoritmo de optimización de Newton-Raphson
dc.title.titleenglishEconomic-environmental dispatch of thermal generation plants using the Newton-Raphson optimization algorithm
dc.typebachelorThesis
dc.type.degreeProducción Académica

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
SedanoDuqueJairoAndres2024.pdf
Tamaño:
721.25 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y autorización
Tamaño:
624.01 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: