Estudio del potencial inhibitorio sobre Lipasa Pancreática de los constituyentes químicos provenientes de Piper Asperiusculum (piperaceae)

dc.contributor.advisorSilva Carrero, Diego Alejandro
dc.contributor.authorArguello Quevedo, Paula Alejandra
dc.contributor.orcidSilva Carrero,Diego Alejandro [0000-0002-8577-8959]
dc.date.accessioned2025-09-01T16:57:10Z
dc.date.available2025-09-01T16:57:10Z
dc.date.created2025-08-22
dc.descriptionLa lipasa pancreática (LP) es una enzima clave en la absorción de grasas, por lo que su inhibición representa una estrategia terapéutica relevante para el tratamiento de la obesidad. Sin embargo, el único fármaco aprobado con este mecanismo es Orlistat® presenta efectos adversos. En este contexto, especies del género Piper han mostrado actividad inhibitoria frente a la LP, aunque aún se desconocen los compuestos específicos responsables de dicha acción. Así entonces, este trabajo pretende contribuir en la búsqueda de moléculas con potencial efecto inhibitorio frente a LP a partir de la caracterización química de inflorescencias de P. asperiusculum. La metodología incluyó el fraccionamiento del extracto etanólico de inflorescencias de P. asperiusculum, la purificación de compuestos mediante cromatografia flash e identificación de los compuestos aislados mediante análisis por métodos espectroscópicos. Posteriormente, se evaluó el extracto, las fracciones y algunos compuestos mediante un ensayo enzimático colorimétrico frente a la LP usando como sustrato 4-nitrofenil dodecanoato y como control positivo Orlistat®. En este sentido, del fraccionamiento del extracto de inflorescencias de P. asperiusculum se obtuvieron 4 fracciones de diferentes polaridades correspondientes DCM (73,4 g), AcOEt (31,4 g), IPA (26,5 g) y EtOH/H2O (31,7 g). El estudio químico realizado sobre la fracción de DCM condujo al aislamiento de 6 comuestos químicos, de los cuales se lograron elucidar 4 de ellos correspondiendo a un fenilpropanoide conocido como miristicina (Pa1), un ácido graso denominado ácido linoleico (Pa2), un cromeno conocido como ácido 2,2-dimetil 8-(3′,3′- dimetilalil)-2H-1-cromeno-6-carboxílico (Pa3), un dímero de dihidrochlacona identificado como piperaduncina C (Pa4) y una mezcla de esteroles compuesta por campesterol, estigmasterol y γ-sitosterol (MPa1). A excepción del fenilpropanoide y la mezcla de esteroles, los demás compuestos (Pa2 a Pa4) se reportan por primera vez para la especie. En cuanto a la evaluación de la actividad inhibitoria, el extracto presento una actividad de 67.0 ± 2.3, de las fracciones se destaca EtOH/H2O y AcOEt con la mayor actividad inhibitoria con valores de 60% y 50%, respectivamente. En cuanto a los compuestos se realizó con Pa1 y Pa3, encontrando que ambos presentaron actividad, con valores de 65% y 84% respectivamente, frente a la evaluación de su CI50 Pa1 presento valores de 39.76 ± 3.65 µM y para Pa3 se obtuvieron valores menores a 0.0012 µM. Este estudio es considerado el primer reporte que cuantifica el porcentaje de inhibición del extracto, las fracciones y algunos compuestos químicos frente a la LP, validando la actividad preliminar reportada en la literatura para el extracto, estos hallazgos subrayan el potencial de P. asperiusculum como una fuente de compuestos naturales con promisoria actividad inhibitoria de LP.
dc.description.abstractPancreatic lipase (PL) is a key enzyme in fat absorption; thus, its inhibition represents a relevant therapeutic strategy for treating obesity. However, the only approved drug with this mechanism, Orlistat®, presents adverse effects. In this context, species from the Piper genus have shown inhibitory activity against PL, although the specific compounds responsible for this action are still unknown. Therefore, this study aims to contribute to the search for molecules with potential inhibitory effects against PL by chemically characterizing the inflorescences of Piper asperiusculum. The methodology included the fractionation of the ethanolic extract from P. asperiusculum inflorescences, purification of compounds through flash chromatography, and identification of the isolated compounds using spectroscopic methods. Subsequently, the extract, fractions, and some compounds were evaluated using a colorimetric enzymatic assay against PL, with 4-nitrophenyl dodecanoate as the substrate and Orlistat® as the positive control. As a result of the extract’s fractionation, four fractions of different polarities were obtained: DCM (73.4 g), AcOEt (31.4 g), IPA (26.5 g), and EtOH/H₂O (31.7 g). The chemical study of the DCM fraction led to the isolation of six chemical compounds, of which four were identified: a phenylpropanoid known as myristicin (Pa1), a fatty acid known as linoleic acid (Pa2), a chromene identified as 2,2-dimethyl-8-(3',3'-dimethylallyl)-2H-1-benzopyran-6-carboxylic acid (Pa3), a dihydrochalcone dimer known as piperaduncin C (Pa4), and a sterol mixture composed of campesterol, stigmasterol, and γ-sitosterol (MPa1). Except for the phenylpropanoid and the sterol mixture, the other compounds (Pa2 to Pa4) are reported for the first time in this species. Regarding inhibitory activity, the extract showed 67.0 ± 2.3% activity. Among the fractions, EtOH/H₂O and AcOEt showed the highest inhibitory activity, with values of 60% and 50%, respectively. Compound-level evaluation was conducted for Pa1 and Pa3, both of which showed inhibitory activity, with values of 65% and 84%, respectively. The IC₅₀ values were 39.76 ± 3.65 µM for Pa1 and less than 0.0012 µM for Pa3. This study is considered the first report to quantify the percentage of inhibition of the extract, fractions, and some isolated compounds against PL, validating the preliminary activity previously reported in the literature for the extract. These findings highlight the potential of P. asperiusculum as a source of natural compounds with promising PL inhibitory activity.
dc.description.sponsorshipUniversidad Nacional de Colombia
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/98765
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAbdullah, N. A., Zain, W. Z. W. M., Hamid, H. A., & Ramli, N. W. (2020). Essential oil from Piperaceae as a potential for biopesticide agents: a review. Food Research, 4(S5), 1–10. https://doi.org/10.26656/fr.2017.4(S5).007
dc.relation.referencesAshokkumar, K., Murugan, M., Dhanya, M. K., Pandian, A., & Warkentin, T. D. (2021). Phytochemistry and therapeutic potential of black pepper [Piper nigrum (L.)] essential oil and piperine: a review. Clinical Phytoscience 2021 7:1, 7(1), 1–11. https://doi.org/10.1186/S40816-021-00292-2
dc.relation.referencesBirari, R. y Bhutani, K. (2007). Pancreatic lipase inhibitors from natural sources: unexplored potential. National Institute of Pharmaceutical Education and Research, 12(19- 20):879-89. https://doi.org/10.1016/j.drudis.2007.07.024
dc.relation.referencesBustanji, Y., Ihab M., Mohammad, Mohammad, H., Khaled, T., Hamada, T. y Hatim S. (2011). Pancreatic Lipase Inhibition Activity of Trilactone Terpenes of Ginkgo Biloba. Journal of Enzyme Inhibition and Medicinal Chemistry 26(4):453–59
dc.relation.referencesCardozo-Muñoz, J., Cuca-Suárez, L. E., Prieto-Rodríguez, J. A., Lopez-Vallejo, F., & Patiño-Ladino, O. J. (2022). Multitarget Action of Xanthones from Garcinia mangostana against α-Amylase, α-Glucosidase and Pancreatic Lipase. Molecules, 27(10), 3283. https://doi.org/10.3390/MOLECULES27103283/S1
dc.relation.referencesCastillo, M. y Rojas, B. (2018). Revisión Sistemática: Inhibidores De La Lipasa Pancreática Como Alternativa De Tratamiento Frente A La Obesidad. [Trabajo de grado, Universidad Colegio Mayor de Cundinamarca]. https://repositorio.unicolmayor.edu.co/bitstream/handle/unicolmayor/3768/ENTRE GA%20FINAL%20FINAL%20LIPASA..pdf?sequence=1&isAllowed=y
dc.relation.referencesCelis, Á., Mendoza, C., Pachón, M., Cardona, J., Delgado, W., y Cuca, L. E. (2008). Extractos vegetales utilizados como biocontroladores con énfasis en la familia Piperaceae. Una revisión. Agronomía Colombiana, 26(1), 97-106. http://www.redalyc.org/pdf/1803/180314729012.pdf
dc.relation.referencesChuquimarca, L. (2013) Actividad Antifúngica de Metabolitos Secundarios Aislados a Partir de La Especie Piper Asperiusculum, “Matico-Matapiojo”, al Sur de Ecuador, Universidad Técnica Particular de Loja: Loja-Ecuador. http://dspace.utpl.edu.ec/handle/123456789/7349
dc.relation.referencesCicció, J. (2006). Constituyentes del aceite esencial de las hojas de Piper terrabanum (Piperaceae). Centro de Investigaciones en Productos Naturales (CIPRONA) y Escuela 21 de Química, Universidad de Costa Rica, San José, Costa Rica. 26 P
dc.relation.referencesDamsud, T., Adisakwattana, S., & Phuwapraisirisan, P. (2013). Three new phenylpropanoyl amides from the leaves of Piper sarmentosum and their α-glucosidase inhibitory activities. Phytochemistry Letters, 6(3), 350–354. https://doi.org/10.1016/J.PHYTOL.2013.04.001
dc.relation.referencesDragano, N. R. V., Fernø, J., Diéguez, C., López, M., & Milbank, E. (2020). Recent Updates on Obesity Treatments: Available Drugs and Future Directions. Neuroscience, 437, 215–239. https://doi.org/10.1016/J.NEUROSCIENCE.2020.04.034
dc.relation.referencesDongsheng F., Chanyuan Z., Chengyu C., Xiaoqian L., Jiangxiong M., Yujie H., Guangsong L., Jinghua R., Anguo W., Ling L. y Xiaojian G. (2023) Lignans from the genus Piper L. and their pharmacological activities: An updated review, Fitoterapia, 165:105403. https://doi.org/10.1016/j.fitote.2022.105403
dc.relation.referencesda Silva, J., Lima, C., Oliveira, A., y Barbosa, W. (2020). In silico evaluation of myristicin as a modulator of P-glycoprotein in multidrug resistance. Journal of Molecular Modeling, 26(4), 97. https://doi.org/10.1007/s00894-020-4339-x
dc.relation.referencesde Sousa, D., Silva, R., y Nunes, P. (2022). Acetylcholinesterase inhibition and potential neuroprotective effects of natural phenylpropanoids. Neurochemistry International, 154, 105286. https://doi.org/10.1016/j.neuint.2021.105286
dc.relation.referencesFonseca, V., dos Santos, S., Carneiro, J., dos Santos, A., de Freitas, M., de Carvalho, N., dos Santos, F., dos Santos, A., Silva, A., Farias, N. S., dos Santos, R., Rebelo, R., Rau, M., da Silva, L., do Amaral, W., da Costa, J., Alencar, I. y Morais, M. (2025). Characterization and analysis of the bioactivity of the Piper rivinoides Kunth essential oil and its components myristicin and elemicin, against opportunistic fungal pathogens. Microbial Pathogenesis, 199, 107242. https://doi.org/10.1016/j.micpath.2024.107242
dc.relation.referencesFoudah, A., Alqarni, M., Alam, A., Salkini, M., Ross, S. y Yusufoglu, H. (2022) Phytochemical Screening, In Vitro and In Silico Studies of Volatile Compounds from Petroselinum crispum (Mill) Leaves Grown in Saudi Arabia. Molecules, 27, 934. https://doi.org/10.3390/molecules27030934
dc.relation.referencesGatto, L., de Oliveira, G., Rech, K., Moura, P., Gribner, C., Merino, F., Ávila, S., Dias, J., Miguel, O., Miguel, M. (2021). Inhibition of α-glucosidase, pancreatic lipase, and antioxidant property of Myrcia hatschbachii D. Legrand containing gallic and ellagic acids. Bol Latinoam Caribe Plant Med Aromat20 (3): 226-243. https://doi.org/10.37360/blacpma.21.20.3.18
dc.relation.referencesGBIF Secretariat Piper Asperiusculum Kunth Available online: https://www.gbif.org/es/species/7306048 (acceso 20 Mayo 2025).
dc.relation.referencesHassan, A. (2011). TLC Bioautographic Method for Detecting Lipase Inhibitors. Phytochemical Analysis, 23(4), 405-407. https://doi.org/10.1002/pca.1372
dc.relation.referencesHernandez, L. (2022). Efecto inhibitorio de sustancias provenientes de especies del género Piper sobre Quorum Sensing de Pseudomonas aeruginosa. [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Universidad Nacional de Colombia.
dc.relation.referencesJaramillo, M. A., Rodríguez-Duque, D., y Escobar-Alba, M. (2023). A new species of Piper (Piperaceae) with peltate leaves from Serranía de las Quinchas, Colombia. PhytoKeys 227: 9-24, 227, 9–24. https://doi.org/10.3897/PHYTOKEYS.227.101405
dc.relation.referencesKrishna, V., Suresh, S., Singh, G. y Kadeppagari, R. K. (2014) Biochemical and Biophysical Research Communications. Biochemical and Biophysical Research Communications 453. Pag 784–786. www.elsevier.com/locate/ybbrc
dc.relation.referencesKumar Maiti, M., Pratim Mahata, P., Jahan Ashraf, G., Das, P., Thapa, A., Mistri, S., Kumar Dua, T., Paul, P., Nandi, G., Pratim Maiti, P., Nath Bala, N., & Sahu, R. (2024). Assessment of the Antidiabetic Potential of Piper Chaba Stem Extract in Streptozotocin-Nicotinamide-Induced Diabetes in Rats. Journal of Chemical Health Risks, 14(4), 1612–1621. https://doi.org/10.52783/JCHR.V14.I4.5773
dc.relation.referencesLévuok-Mena, K. P., Patiño-Ladino, O. J., y Prieto-Rodríguez, J. A. (2023). In Vitro Inhibitory Activities against α-Glucosidase, α-Amylase, and Pancreatic Lipase of Medicinal Plants Commonly Used in Chocó (Colombia) for Type 2 Diabetes and Obesity Treatment. Scientia Pharmaceutica, 91(4), 49. https://doi.org/10.3390/SCIPHARM91040049/S1
dc.relation.referencesLi, J., Chao, Q. y Nai, C. (2024) Evaluation of antioxidant, antidiabetic and antiobesity potential of phenylpropanoids (PPs): Structure-activity relationship and insight into action mechanisms against dual digestive enzymes by comprehensive technologies, Bioorganic Chemistry, Volume 146, https://doi.org/10.1016/j.bioorg.2024.107290
dc.relation.referencesLK, N., y Njagi, E. N. (2017). Anti-diabetic Activity in Mice of Piper Capence Used Traditionally in the Management of Diabetes Mellitus in Kenya. Journal of Diabetes & Metabolism, 08(04). https://doi.org/10.4172/2155-6156.1000737
dc.relation.referencesLópez, F., Almahmeed, W., Bays, H., Cuevas, A., Di Angelantonio, E., Le Roux, C., Sattar, N., Chan Sun, M., Wittert, G., Pinto y F., Wilding, J. (2022), Obesity and cardiovascular disease: mechanistic insights and management strategies. A joint position paper by the World Heart Federation and World Obesity Federation, European Journal of Preventive Cardiology , V 29, N 17, páginas 2218- 2237, https://doi.org/10.1093/eurjpc/zwac187
dc.relation.referencesLu, X., Yu, H., Ma, Q. (2010). El ácido linoleico suprime el crecimiento de células de cáncer colorrectal al inducir estrés oxidativo y disfunción mitocondrial. Lipids Health Dis, 106. https://doi.org/10.1186/1476-511X-9-106
dc.relation.referencesMagaña-Barajas, E., Buitimea-Cantúa, G. V., Hernández-Morales, A., Torres-Pelayo, V. del R., Vázquez-Martínez, J., & Buitimea-Cantúa, N. E. (2021). In vitro α-amylase and α-glucosidase enzyme inhibition and antioxidant activity by capsaicin and piperine 23 from Capsicum chinense and Piper nigrum fruits. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 56(3), 282–291. https://doi.org/10.1080/03601234.2020.1869477;PAGE:STRING:ARTICLE/CHAP TER
dc.relation.referencesMahecha, Y. (2021). Potencial antifúngico de constituyentes aislados de especies del género Piper presentes en Cundinamarca contra hongos fitopatógenos asociados al cacao (Theobroma cacao L). [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Universidad Nacional de Colombia
dc.relation.referencesMgbeahuruike, E. E., Yrjönen, T., Vuorela, H., & Holm, Y. (2017). Bioactive compounds from medicinal plants: Focus on Piper species. South African Journal of Botany, 112, 54–69. https://doi.org/10.1016/J.SAJB.2017.05.007
dc.relation.referencesMingmuang, J., Bunwatcharaphansakun, P., Suriya, U., Pipatrattanaseree, W., Andriyas, T., Tansawat, R., Chansriniyom, C., & De-Eknamkul, W. (2024). Identification of pancreatin inhibitors from Thai medicinal Piper plants for antidiabetic and antiobesity activities using high-performance thin-layer chromatography-bioautographic assay. Journal of Chromatography A, 1736, 465358. https://doi.org/10.1016/J.CHROMA.2024.465358
dc.relation.referencesMinisterio de Salud. (2021). Obesidad, un factor de riesgo en el Covid-19. https://www.minsalud.gov.co/Paginas/Obesidad-un-factor-de-riesgo-en-el-covid19.aspx
dc.relation.referencesMuñoz, D., Sandoval, A., Delgado, W., Arboleda, G., Cuca, L. (2018). In vitro anticancer screening of Colombian plants from Piper genus (Piperaceae). Journal of Pharmacognosy and Phytotherapy, 10(9), 174–181. https://doi.org/10.5897/JPP2018.0509
dc.relation.referencesNabi, S. A., Kasetti, R. B., Sirasanagandla, S., Tilak, T. K., Kumar, M. V. J., & Rao, C. A. (2013). Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats. BMC Complementary and Alternative Medicine, 13(1), 1–9. https://doi.org/10.1186/1472-6882-13-37/TABLES/5
dc.relation.referencesNiño, A. (2022). Evaluación de la actividad tripanocida de extractos de plantas del género Piper en cultivos de Trypanosoma cruzi [Tesis maestría]. Universidad Nacional de Colombia.
dc.relation.referencesNitola, L., Muñoz, D., Patiño, Ó. y Prieto, J. (2016). Caracterización fitoquímica y evaluación de actividad inhibitoria sobre acetilcolinesterasa de hojas de Piper pesaresanum C. DC. Revista Cubana de Plantas Medicinales, 21(4), 1-10. http://scielo.sld.cu/pdf/pla/v21n4/pla05416.pdf
dc.relation.referencesParmar, V., Jain, S., Bisht, K., Jain, R., Taneja, P., Jha, A., Tyagi, O., Prasad, A., Wengel, J., Olsen, C. y Boll, P. (1997), Phytochemistry of genus Piper, Phytochemistry 46(4):597-673 DOI: http://dx.doi.org/10.1016/S0031-9422(97)00328-2
dc.relation.referencesParra, J., Cuca, L. y González, A. (2019). Antifungal and phytotoxic activity of benzoic acid derivatives from inflorescences of Piper cumanense. Natural Product Research, https://doi.org/10.1080/14786419.2019.1662010 35(16), 2763–277.
dc.relation.referencesParra, J., Delgado, W., y Cuca, L. (2011). Cumanensic acid, a new chromene isolated from Piper cf. cumanense Kunth. (Piperaceae). Phytochemistry Letters, 4(3), 280–282 https://doi.org/10.1016/J.PHYTOL.2011.04.015
dc.relation.referencesPatiño, (2018). Evaluación de la actividad antifúngica, insecticida y de inhibición enzimática de los extractos y aceites esenciales obtenidos de las especies Piper cf. asperiusculum var. glabricaule y Piper pertomentellum. [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Universidad Nacional de Colombia. https://doi.org/10.2210/pdb2OXE/pdb
dc.relation.referencesPatiño, W., Nagles, L., Bustos, J., Delgado, W., Herrera, E., Suárez, L., Prieto, J., Patiño, O. (2021) Effects of Essential Oils from 24 Plant Species on Sitophilus Zeamais Motsch (Coleoptera, Curculionidae). Insects 2021. Vol. 12, Page 532, 12(6), 532. https://doi.org/10.3390/INSECTS12060532
dc.relation.referencesPatiño, W., Prieto, J., Cuca, L., Ávila, M. y Patiño, O. (2018). Caracterización química y biológica de los extractos etanólicos de Piper asperiusculum y Piper pertomentellum. Revista Cubana de Plantas Medicinales, 23(1). http://www.revplantasmedicinales.sld.cu/index.php/pla/article/view/576
dc.relation.referencesPiper asperiusculum Kunth in GBIF Secretariat (2023). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei
dc.relation.referencesPrieto Rodríguez, J. A., Patiño Bayona, W. R., y Patiño Ladino, O. J. (2025). Chemical Composition, Insecticidal and Repellent Activities of Essential Oils from Piper asperiusculum and Piper pertomentellum against Red Flour Weevil. Records of Natural Products, 2, 169–181. https://doi.org/10.25135/rnp.501.2408.3279
dc.relation.referencesPrieto-Rodríguez, J. A., Lévuok-Mena, K. P., Cardozo-Muñoz, J. C., Parra-Amin, J. E., Lopez-Vallejo, F., Cuca-Suárez, L. E., & Patiño-Ladino, O. J. (2022). In Vitro and In Silico Study of the α-Glucosidase and Lipase Inhibitory Activities of Chemical Constituents from Piper cumanense (Piperaceae) and Synthetic Analogs. Plants, 11(17), 2188. https://doi.org/10.3390/PLANTS11172188/S1
dc.relation.referencesRen, F., Liu, L., Lv, Y., Bai, X., Kang, Q., Hu, X., Zhuang, H., Yang, L., Hu, J., y Zhou, J. (2021). Antibacterial prenylated p-hydroxybenzoic acid derivatives from Oberonia myosurus and identification of putative prenyltransferases. Journal of Natural Products, 84(2), 302–309. https://doi.org/10.1021/acs.jnatprod.0c01139
dc.relation.referencesReyes, N., (2019) Evaluación De La Actividad Antifúngica De Extractos Del Género Piper Contra Moniliophthora Perniciosa, Agente Causal De Escoba De Bruja En Cacao. [Trabajo de grado, Pontifica Universidad Javeriana]. Repositorio Universidad Javeriana.
dc.relation.referencesRipoll, D. (2025). Potencial insecticida de aceites esenciales provenientes de especies del género Piper con alto contenido de fenilpropanoides para el control de Sitophilus zeamais y Tribolium castaneum. [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Universidad Nacional de Colombia
dc.relation.referencesSamota, M., Yadav, D., Koli, P., Kaur, M., Kaur, M., Rani, H., Selvan, S., Mahala, P., Tripathi, K., y Kumar, S. (2024). Exploring natural chalcones: Innovative extraction techniques, bioactivities, and health potential. Sustainable Food Technology, 2(5), 1456–1468. https://doi.org/10.1039/D4FB00126E
dc.relation.referencesSalehi, B., Zakaria, Z. A., Gyawali, R., Ibrahim, S. A., Rajkovic, J., Shinwari, Z. K., Khan, T., Sharifi-Rad, J., Ozleyen, A., Turkdonmez, E., Valussi, M., Tumer, T. B., Fidalgo, L. M., Martorell, M., & Setzer, W. N. (2019). Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications. Molecules 2019, Vol. 24, Page 1364, 24(7), 1364. https://doi.org/10.3390/MOLECULES24071364
dc.relation.referencesSeneme, E., Dos Santos, D., de Lima, C., Zelioli, Í., Sciani, J. y Longato, G. (2022). Effects of Myristicin in Association with Chemotherapies on the Reversal of the Multidrug Resistance (MDR) Mechanism in Cancer. Pharmaceuticals (Basel). 15(10):1233. 10.3390/ph15101233
dc.relation.referencesSemenov, Rusak, et al (2007) Polyalkoxybenzenes from plant raw materials 1. Isolation of polyalkoxybenzenes from CO2 extracts of Umbelliferae plant seeds. Russian Chemical Bulletin, International Edition, Vol. 56, No. 12, pp. 2448—2455
dc.relation.referencesSierra, M., Barros, R., Gomez, D., Mejía, A., y Suaréz, D. (2018). Productos Naturales: Metabolitos Secundarios y Aceites Esenciales. Fundación Universitaria Agraria de Colombia.
dc.relation.referencesSoares, R. B., Dinis-Oliveira, R. J., & Oliveira, N. G. (2022). An Updated Review on the Psychoactive, Toxic and Anticancer Properties of Kava. Journal of Clinical Medicine, 11(14), 4039. https://doi.org/10.3390/JCM11144039
dc.relation.referencesSridhar, S. N. C., George, G., Verma, A., & Paul, A. T. (2019). Natural Products-Based Pancreatic Lipase Inhibitors for Obesity Treatment. Natural Bio-Active Compounds: Volume 1: Production and Applications, 149–191. https://doi.org/10.1007/978-981- 13-7154-7_6
dc.relation.referencesSubramaniyan, V. y Hanim, Y. Role of pancreatic lipase inhibition in obesity treatment: mechanisms and challenges towards current insights and future 26 directions. International Journal Obesity 49, 492–506 (2025). https://doi.org/10.1038/s41366-025-01729-1
dc.relation.referencesThent, Z. C., Seong Lin, T., Das, S., & Zakaria, Z. (2012). Effect of Piper sarmentosum Extract on the Cardiovascular System of Diabetic Sprague-Dawley Rats: Electron Microscopic Study. Evidence-Based Complementary and Alternative Medicine, 2012(1), 628750. https://doi.org/10.1155/2012/628750
dc.relation.referencesTrujillo, W. (2013). El género Piper (Piperaceae) en el Alto Caquetá, zona de transición andino amazónica de Colombia. Revista Colombia Amazónica, 6. https://www.researchgate.net/publication/304497481_El_genero_Piper_Piperaceae_ en_el_Alto_Caqueta_zona_de_transicion_andino_amazonica_de_Colombia
dc.relation.referencesUehira, Y., Ueno, H., Miyamoto, J., Kimura, I., Ishizawa, Y., Iijima, H., Muroga, S., Fujita, T., Sakai, S., Samukawa, Y., Tanaka, Y., Murayama, S., Sakoda, H., & Nakazato, M. (2023). Impact of the lipase inhibitor orlistat on the human gut microbiota. Obesity Research & Clinical Practice, 17(5), 411–420. https://doi.org/10.1016/J.ORCP.2023.08.005
dc.relation.referencesVangoori Y, Dakshinamoorthi A, Kavimani S. (2019). Prominent Pancreatic Lipase Inhibition and Free Radical Scavenging Activity of a Myristica fragrans Ethanolic Extract in vitro. Potential Role in Obesity Treatment. Maedica. 14(3):254-259. https://doi.org/10.26574/maedica.2019.14.3.254
dc.relation.referencesVanegas, D. L. (2020). Actividad Antimicrobiana De Extractos Etanólicos De Plantas Del Género Piper Frente a Pseudomonas aeruginosa Y Chromobacterium violaceum [Tesis de pregrado]. Universidad De La Salle.
dc.relation.referencesWeghuber, D., Barrett, T., Barrientos-Pérez, M., Gies, I., Hesse, D., Jeppesen, O. K., Kelly, A. S., Mastrandrea, L. D., Sørrig, R., & Arslanian, S. (2022). Once-Weekly Semaglutide in Adolescents with Obesity. New England Journal of Medicine, 387(24), 2245–2257. httraps://doi.org/10.1056/NEJMOA2208601
dc.relation.referencesWorld Health Organization: WHO. (2024). Obesidad y sobrepeso. https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight
dc.relation.referencesYadav, V., Krishnan, A., & Vohora, D. (2020). A systematic review on Piper longum L.: Bridging traditional knowledge and pharmacological evidence for future translational research. Journal of Ethnopharmacology, 247, 112255. https://doi.org/10.1016/J.JEP.2019.112255
dc.relation.referencesYamaguchi M, Weir JD, Hartung R. (2024) The composition of linoleic acid and conjugated linoleic acid has potent synergistic effects on the growth and death of RAW264.7 macrophages: The role in anti-inflammatory effects. International Immunopharmacol. 15;141:112952. https://doi.org/10.1016/j.intimp.2024.112952
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectObesidad
dc.subjectLipasa pancreática
dc.subjectPiper asperiusculum
dc.subjectCromenos
dc.subjectPiper
dc.subject.keywordObesity
dc.subject.keywordPancreatic lipase
dc.subject.keywordPiper asperiusculum,
dc.subject.keywordChromenos
dc.subject.keywordPiper
dc.subject.lembLicenciatura en Química -- Tesis y disertaciones académicas
dc.subject.lembPlantas -- Composición
dc.subject.lembFitoquímica
dc.subject.lembPimientas
dc.subject.lembFarmacología
dc.subject.lembCompuestos orgánicos
dc.titleEstudio del potencial inhibitorio sobre Lipasa Pancreática de los constituyentes químicos provenientes de Piper Asperiusculum (piperaceae)
dc.title.titleenglishStudy of the inhibitory potential on Pancreatic Lipase of chemical constituents from Piper Asperiusculum (piperaceae)
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreePasantía
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
ArguelloQuevedoPaulaAlejandra2025.pdf
Tamaño:
2.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
No hay miniatura disponible
Nombre:
Licencia de uso y publicación.pdf
Tamaño:
229.83 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: