Influencia de la adición de la cal viva en concretos elaborados con agregados reciclados de concreto

dc.contributor.advisorMena Serna, Milton
dc.contributor.authorLanderos Barrera , Juan Carlos
dc.contributor.orcidMena Serna, Milton [0000-0002-7377-2787]
dc.date.accessioned2024-10-29T01:05:46Z
dc.date.available2024-10-29T01:05:46Z
dc.date.created2024-07-24
dc.descriptionEl presente trabajo analiza el desempeño del concreto reciclado con el uso del RCA subproducto de la trituración del RCD en elementos de concreto. La investigación está fundamentada en la sustitución del 20%, 35% y 50% del agregado grueso natural por agregado grueso reciclado (RCA). Así mismo, esta investigación propone el uso de óxido de calcio o Cal viva, como material complementario para la reducción de cemento, que permite la reducción de permeabilidad o porosidad en la mezclas de concreto reciclado, logrado así un aumento de durabilidad en comparación con una mezcla control. Dicho lo anterior se realizará una sustitución del 2% y 5% de óxido de calcio (CaO) como material cementante para estudiar la influencia que tiene este material en concretos con agregados reciclados para posteriormente confrontar los resultados en estado endurecido en referencia a la resistencia a compresión, flexión y resistividad eléctrica para especímenes en cilindros y vigas de concreto a diferentes edades de evolución (7, 14, 28, 56, y 90 días). Por último, realizar un análisis cualitativo por medio del ensayo de microscopia SEM en tres (3) mezclas de concreto en particular. “Mezcla #1; 0% RCA – 0% CaO”, “Mezcla #9; 50% RCA – 0% CaO” & “Mezcla #11; 50% RCA – 5% CaO”.
dc.description.abstractThe present document analyses the performance of recycled concrete with the use of RCA by product of the crushing of RCD in concrete elements. The research is based on the replacement of 20%, 35% and 50% of the natural coarse aggregate with recycled coarse aggregate (RCA). Likewise, this research proposes the use of calcium oxide or quicklime, as a complementary material for the reduction of cement, which allows the reduction of permeability or porosity in recycled concrete mixtures, thus achieving an increase in durability compared to a control mix. Having said the above, a substitution of 2% and 5% of calcium oxide (CaO) as a cementitious material will be carried out to study the influence that this material has on concrete with recycled aggregates to later compare the results in the hardened state in reference to the resistance to compression, flexure and electrical resistivity for specimens in concrete cylinders and beams at different ages of evolution (7, 14, 28, 56, and 90 days). Finally, perform a qualitative analysis through SEM microscopy testing on three (3) particular concrete mixtures. “Mix #1; 0% RCA – 0% CaO”, “Mixture #9; 50% RCA – 0% CaO” & “Mixture #11; 50% RCA – 5% CaO”.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/42429
dc.publisherUniversidad Distrital Francisco José de Caldás
dc.relation.referencesAASHTO T 358. (2015). Surface resistivity indication of concrete’s ability to resist chloride ion penetration. AASHTO. American Association of State Highway and Transportation Officials, 1–9.
dc.relation.referencesAhmed, H., Tiznobaik, M., Huda, S. B., Shahidul Islam, M., & Shahria Alam, M. (2020). Recycled aggregate concrete from large-scale production to sustainable field application. Ingenieria Investigacion Y Tecnologia. https://doi.org/10.1016/j.conbuildmat.2020.119979
dc.relation.referencesAhmed, H., Tiznobaik, M., Huda, S. B., Shahidul Islam, M., & Shahria Alam, M. (2020). Recycled aggregate concrete from large-scale production to sustainable field application. Ingenieria Investigacion Y Tecnologia. https://doi.org/10.1016/j.conbuildmat.2020.119979
dc.relation.referencesAntiohos, S. K., Papageorgiou, A., Papadakis, V. G., & Tsimas, S. (2008). Influence of quicklime addition on the mechanical properties and hydration degree of blended cements containing different fly ashes. Construction and Building Materials, 22(6). https://doi.org/10.1016/j.conbuildmat.2007.02.001
dc.relation.referencesAtahan, A. O., & Yücel, A. Ö. (2012). Crumb rubber in concrete: Static and dynamic evaluation. Construction and Building Materials, 36, 617–622. https://doi.org/10.1016/j.conbuildmat.2012.04.068
dc.relation.referencesBhat, J. A. (2021). Effect of strength of parent concrete on the mechanical properties of recycled aggregate concrete. Ingenieria Investigacion Y Tecnologia. https://doi.org/10.1016/j.matpr.2021.01.310
dc.relation.referencesBojacá Castañeda, N. R. (2013). Propiedades Mecánicas Y De Durabilidad De Concretos Con Agregado Reciclado. Escuela Colombiana de Ingeniería Julio Garavito, T.Maestría, 119.
dc.relation.referencesCasuccio, M., Torrijos, M. C., Giaccio, G., & Zerbino, R. (2008). Failure mechanism of recycled aggregate concrete. Construction and Building Materials, 22(7). https://doi.org/10.1016/j.conbuildmat.2007.03.032
dc.relation.referencesChavarro, D. A. (2018). Libro Verde 2030. Política nacional de ciencia e innovación para el desarrollo sostenible. (Issue July).
dc.relation.referencesDuan, Z. H., & Poon, C. S. (2014). Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars. Materials and Design, 58. https://doi.org/10.1016/j.matdes.2014.01.044
dc.relation.referencesDuan, Z., Singh, A., Xiao, J., & Hou, S. (2020). Combined use of recycled powder and recycled coarse aggregate derived from construction and demolition waste in self-compacting concrete. Construction and Building Materials, 254, 119323. https://doi.org/10.1016/j.conbuildmat.2020.119323
dc.relation.referencesEvangelista, L., & de Brito, J. (2010). Durability performance of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 32(1). https://doi.org/10.1016/j.cemconcomp.2009.09.005
dc.relation.referencesFederico, L. M., & Chidiac, S. E. (2009). Waste glass as a supplementary cementitious material in concrete - Critical review of treatment methods. Cement and Concrete Composites, 31(8), 606–610. https://doi.org/10.1016/j.cemconcomp.2009.02.001
dc.relation.referencesGarcía Calvo, J. L., Pérez, G., Carballosa, P., Erkizia, E., Gaitero, J. J., & Guerrero, A. (2017). Development of ultra-high performance concretes with self-healing micro/nano-additions. Construction and Building Materials, 138, 306–315. https://doi.org/10.1016/j.conbuildmat.2017.02.015
dc.relation.referencesGesoglu, M., Güneyisi, E., Öz, H. Ö., Taha, I., & Yasemin, M. T. (2015). Failure characteristics of self-compacting concretes made with recycled aggregates. Construction and Building Materials, 98. https://doi.org/10.1016/j.conbuildmat.2015.08.036
dc.relation.referencesHimouri, K., Hamouine, A., & Guettatfi, L. (2021). Effects of portland cement and quicklime on physical and mechanical characteristics of earth concrete. Jordan Journal of Civil Engineering, 15(4), 597–610.
dc.relation.referencesIbrahim, H. A., Goh, Y., Ng, Z. A., Yap, S. P., Mo, K. H., Yuen, C. W., & Abutaha, F. (2020). Hydraulic and strength characteristics of pervious concrete containing a high volume of construction and demolition waste as aggregates. Construction and Building Materials, 253, 119251. https://doi.org/10.1016/j.conbuildmat.2020.119251
dc.relation.referencesINV E- 414 -13. (2013). Resistencia a la flexión del concreto usando una viga simplemente apoyada y cargada en los tercios de la luz libre concreto hidráulico e - 414 inv e – 414 – 13. Invias, 414.
dc.relation.referencesINV E-238. (2013). DETERMINACIÓN DE LA RESISTENCIA DEL AGREGADO GRUESO A LA DEGRADACIÓN POR ABRASIÓN, UTILIZANDO EL APARATO MICRO-DEVAL. Invias, 1–8.
dc.relation.referencesJian, S., & Wu, B. (2021). Compressive behavior of compound concrete containing demolished concrete lumps and recycled aggregate concrete. 272. https://doi.org/10.1016/j.conbuildmat.2020.121624
dc.relation.referencesKabir, M. H., Arefin, S., & Fawzia, S. (2012). Determination of creep behaviour of concrete made by brick chips in Bangladesh. Australasian Structural Engineering Conference 2012: The Past, Present and Future of Structural Engineering (p. 993). Engineers Australia., March 2015, 993. https://doi.org/10.13140/RG.2.1.3352.2723
dc.relation.referencesKisku, N., Joshi, H., Ansari, M., Panda, S. K., Nayak, S., & Dutta, C. (2016). A critical review and assessment for usage of recycled aggregate as sustainable construction material. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2016.11.029
dc.relation.referencesLatorre Quintana, L. J. (2017). Gestión integral de los residuos susceptibles de aprovechamiento, genreados en ls actividades de construccion de vías en Colombia. 22.
dc.relation.referencesLaverde Laverde, J. A. (2014). Propiedades mecánicas, eléctricas y de durabilidad de concretos con agregados reciclados. Escuela Colombiana de Ingeniería Julio Garavito, T.Maestría, 172.
dc.relation.referencesLe, H. B., & Bui, Q. B. (2020). Recycled aggregate concretes – A state-of-the-art from the microstructure to the structural performance. In Construction and Building Materials (Vol. 257). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2020.119522
dc.relation.referencesMakul, N. (2020). Cost-benefit analysis of the production of ready-mixed high-performance concrete made with recycled concrete aggregate: A case study in Thailand. Heliyon, 6(6), e04135. https://doi.org/10.1016/j.heliyon.2020.e04135
dc.relation.referencesManzi, S., Mazzotti, C., & Bignozzi, M. C. (2020). Self-compacting concrete with recycled concrete aggregate : Study of the long-term properties. Construction and Building Materials, 157(2017), 582–590. https://doi.org/10.1016/j.conbuildmat.2017.09.129
dc.relation.referencesMartínez-Molina, W., Torres-Acosta, A. A., Alonso-Guzmán, E. M., Chávez-García, H. L., Hernández-Barrios, H., Lara-Gómez, C., Martínez-Alonso, W., Pérez-Quiroz, J. T., Bedolla-Arroyo, J. A., & González-Valdéz, F. M. (2015). Concreto reciclado: una revisión. Revista ALCONPAT, 5(3). https://doi.org/10.21041/ra.v5i3.91
dc.relation.referencesMcneil, K., & Kang, T. H. (2013). Recycled Concrete Aggregates : A Review. 7(1), 61–69. https://doi.org/10.1007/s40069-013-0032-5
dc.relation.referencesMcNeil, K., & Kang, T. H. K. (2013). Recycled Concrete Aggregates: A Review. International Journal of Concrete Structures and Materials, 7(1), 61–69. https://doi.org/10.1007/s40069-013-0032-5
dc.relation.referencesMedina, C., Sánchez De Rojas, M. I., & Frías, M. (2012). Reuse of sanitary ceramic wastes as coarse aggregate in eco-efficient concretes. Cement and Concrete Composites, 34(1), 48–54. https://doi.org/10.1016/j.cemconcomp.2011.08.015
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenble. (2017). Resolución 0472 de 2017. In Resolución No. 0472 (p. 11). http://www.minambiente.gov.co/images/normativa/app/resoluciones/3a-RESOLUCION-472-DE-2017.pdf
dc.relation.referencesMolina-Prieto, L. F., & Garzón Castellanos, M. F. (2017). Propiedades de concretos y morteros modificados con nanomateriales: estado del arte. Arquetipo, 0(14), 81. https://doi.org/10.31908/22159444.3522
dc.relation.referencesMora Villota, D. H. (2016). Propiedades Mecánicas y de Permeabilidad de Concreto Fabricado con Agregado Reciclado. Universidad Nacional de Colombia, T.Maestría, 105. http://bdigital.unal.edu.co/56221/1/80255551.2017.pdf
dc.relation.referencesNTC 129. (1995). Norma Técnica Colombiana 129. Ingeniería Civil y Arquitectura. Práctica para la toma de muestras de agregados. ICONTEC - Instituto Colombiano de Normas Técnicas, 1995.
dc.relation.referencesNTC 174. (2018). CONCRETOS. ESPECIFICACIONES Especificaciones de los agragados para concretos. NORMA TECNICA COLOMBIANA NTC 174. ICONTEC - Instituto Colombiano de Normas Técnicas, 1–22.
dc.relation.referencesNTC 176. (1995). Ingenieria civil y arquitectura. Método de ensayo para determinar la densidad y absorción de agregado grueso ntc 176 norma tecnica colombiana 1995-11-29. ICONTEC - Instituto Colombiano de Normas Técnicas, 1–14.
dc.relation.referencesNTC 1776. (2019). NTC 1776, Método de ensayo para determinar el contenido total de humedad evaporable por secado de los agregados. ICONTEC - Instituto Colombiano de Normas Técnicas, 1–9.
dc.relation.referencesNTC 237. (1995). Ingeniería civil y arquitectura. método para determinar la densidad y la absorción del agregado fino. ICONTEC - Instituto Colombiano de Normas Técnicas, 1–13.
dc.relation.referencesNTC 2871. (2018). Ingeniería y arquitectura. Concretos. Método de ensayo para determinar el esfuerzo a la flexión del concreto (utilizando un viga simple con carga en los tercios medios). ICONTEC - Instituto Colombiano de Normas Técnicas, 1–10.
dc.relation.referencesNTC 396. (1992). Método de ensayo para determinar el asentamiento del concreto. ICONTEC - Instituto Colombiano de Normas Técnicas, 1–6.
dc.relation.referencesNTC 550. (2020). Concretos. Elaboración y curado de especímenes de concreto en el sitio de trabajo. ICONTEC - Instituto Colombiano de Normas Técnicas, 1–25.
dc.relation.referencesNTC 5551. (2018). CONCRETOS. DURABILIDAD DE ESTRUCTURAS DE CONCRETO. ICONTEC - Instituto Colombiano de Normas Técnicas, 571, 1–29.
dc.relation.referencesNTC 6421. (2021). Construcción e ingeniería. agregados gruesos reciclados para uso en el concreto hidráulico. ICONTEC - Instituto Colombiano de Normas Técnicas, 1–10.
dc.relation.referencesNTC 673. (2010). Concretos. ensayo de resistencia a la compresión de especimenes cilíndricos de concreto. ICONTEC - Instituto Colombiano de Normas Técnicas, 571, 1–13.
dc.relation.referencesNTC 77. (2007). Norma Técnica Colombiana NTC 77 Concretos. Métodos de ensayo para el análisis por tamizado de los agregados finos y gruesos. ICONTEC - Instituto Colombiano de Normas Técnicas, 571, 1–15.
dc.relation.referencesNTC 92. (1995). Ingenieria civil y arquitectura. Determinacion de la masa unitaria y los vacios entre particulas de agregados NTC 92. ICONTEC - Instituto Colombiano de Normas Técnicas, 1–13.
dc.relation.referencesNTC 93. (1995). Norma Técnica Colombiana 93. Ingeniería Civil y Arquitectura. Determinación de la resistencia al desgaste de los agregados gruesos mayores de 19 mm, utilizando la máquina de los ángeles. ICONTEC - Instituto Colombiano de Normas Técnicas, 1–18.
dc.relation.referencesOspina, M. Á., Moreno, L. Á., & Rodríguez, K. A. (2017). Análisis técnico-económico del uso de concreto reciclado y el concreto convencional en Colombia. Actas de Ingenieria, 3(May), 36–47. https://www.researchgate.net/publication/330661099_Analisis_tecnico-economico_del_uso_de_concreto_reciclado_y_el_concreto_convencional_en_Colombia
dc.relation.referencesOtsuki, N., Miyazato, S., & Yodsudjai, W. (2003). Influence of Recycled Aggregate on Interfacial Transition Zone, Strength, Chloride Penetration and Carbonation of Concrete. Journal of Materials in Civil Engineering, 15(5). https://doi.org/10.1061/(asce)0899-1561(2003)15:5(443)
dc.relation.referencesPaul, S. C. (2017). Data on optimum recycle aggregate content in production of new structural concrete. Data in Brief, 15. https://doi.org/10.1016/j.dib.2017.11.012
dc.relation.referencesPoon, C. S., Shui, Z. H., & Lam, L. (2004). Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction and Building Materials, 18(6), 461–468. https://doi.org/10.1016/j.conbuildmat.2004.03.005
dc.relation.referencesPROCEQ. (2017). PROCEQ Resipod - Operating Instructions Concrete Durability Testing. Journal of Wildlife Rehabilitation, 25(3), 27.
dc.relation.referencesPutri, A. (2016). Recycled Concrete Aggregate for The Use in Construction. Beijing Jiao-Tang University., September 2017.
dc.relation.referencesRosero Alvarez, D. (2019). Propuesta de guía de uso de los agregados reciclados en colombia provenientes de rcd, basado en normativa internacional y en el desarrollo de investigaciones de universidades colombianas. Universidad Nacional de Colombia, T.Maestría.
dc.relation.referencesSánchez, D. (2001). TECNOLOGIA DEL CONCRETO Y DEL MORTERO - Diego Sanchez de Guzman - Google Libros. Sánchez de Guzmán Diego, 1–334.
dc.relation.referencesShi, C. (2001). Studies on Several Factors Affecting Hydration and Properties of Lime-Pozzolan Cements. Journal of Materials in Civil Engineering, 13(6). https://doi.org/10.1061/(asce)0899-1561(2001)13:6(441)
dc.relation.referencesShi, C., Li, Y., Zhang, J., Li, W., Chong, L., & Xie, Z. (2015). Performance enhancement of recycled concrete aggregate e A review. Journal of Cleaner Production, 112, 466–472. https://doi.org/10.1016/j.jclepro.2015.08.057
dc.relation.referencesSilva-Urrego, Y., & Delvasto-Arjona, S. (2020). Uso de residuos de construcción y demolición como material cementicio suplementario y agregado grueso reciclado en concretos autocompactantes. Informador Técnico, 85(1). https://doi.org/10.23850/22565035.2502
dc.relation.referencesSilva, S., Evangelista, L., & de Brito, J. (2021). Durability and shrinkage performance of concrete made with coarse multi-recycled concrete aggregates. Construction and Building Materials, 272, 121645. https://doi.org/10.1016/j.conbuildmat.2020.121645
dc.relation.referencesSilva, R. V., De Brito, J., & Dhir, R. K. (2014). Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials, 65. https://doi.org/10.1016/j.conbuildmat.2014.04.117
dc.relation.referencesSilva, Y. F., Robayo, R. A., Mattey, P. E., & Delvasto, S. (2016). Properties of self-compacting concrete on fresh and hardened with residue of masonry and recycled concrete. Construction and Building Materials, 124, 639–644. https://doi.org/10.1016/j.conbuildmat.2016.07.057
dc.relation.referencesSong, I. H., & Ryou, J. S. (2014a). Hybrid techniques for quality improvement of recycled fine aggregate. Construction and Building Materials, 72, 56–64. https://doi.org/10.1016/j.conbuildmat.2014.08.041
dc.relation.referencesSong, I. H., & Ryou, J. S. (2014b). Hybrid techniques for quality improvement of recycled fine aggregate. Construction and Building Materials, 72, 56–64. https://doi.org/10.1016/j.conbuildmat.2014.08.041
dc.relation.referencesTam, V. W. Y., & Tam, C. M. (2007). Assessment of durability of recycled aggregate concrete produced by two-stage mixing approach. Journal of Materials Science, 42(10). https://doi.org/10.1007/s10853-006-0379-y
dc.relation.referencesTorres-Acosta, A. A., Moreno-Valdés, A., Rodríguez-Mendo, G., Lomelí-González, M. Gu., & Martínez-Madrid, M. (2019). Efecto de la temperatura de prueba y la resistividad eléctrica húmeda en cilindros de concreto. Instituto Mexicano Del Transporte, 543, 1–50.
dc.relation.referencesTrout, E. A. R. (2019). The History of Calcareous Cements. In Lea’s Chemistry of Cement and Concrete (5th ed.). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100773-0.00001-0
dc.relation.referencesVerian, K. P., Ashraf, W., & Cao, Y. (2018). Properties of recycled concrete aggregate and their influence in new concrete production. In Resources, Conservation and Recycling (Vol. 133, pp. 30–49). Elsevier B.V. https://doi.org/10.1016/j.resconrec.2018.02.005
dc.relation.referencesVerian, K. P., Jain, J., Whiting, N., & Olek, J. (2011). Mechanical Properties of Concretes Made with Different Levels of Recycled Concrete as Coarse Aggregates BT - Proceedings of the International Concrete Sustainability Conference. 1–13.
dc.relation.referencesWang, R., Yu, N., & Li, Y. (2019). Methods for improving the microstructure of recycled concrete aggregate: A review. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2020.118164
dc.relation.referencesWang, Y., Deng, Z., Xiao, J., Li, T., & Li, J. (2021). Mechanical properties of recycled aggregate concrete under compression-shear stress state. Construction and Building Materials, 271, 121894. https://doi.org/10.1016/j.conbuildmat.2020.121894
dc.relation.referencesXiao, J., Li, W., Sun, Z., Lange, D. A., & Shah, S. P. (2013). Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation. Cement and Concrete Composites, 37(1), 276–292. https://doi.org/10.1016/j.cemconcomp.2013.01.006
dc.relation.referencesXie, T., Gholampour, A., & Ozbakkaloglu, T. (2018). Toward the Development of Sustainable Concretes with Recycled Concrete Aggregates: Comprehensive Review of Studies on Mechanical Properties. Journal of Materials in Civil Engineering, 30(9). https://doi.org/10.1061/(asce)mt.1943-5533.0002304
dc.relation.referencesYap, S. P., Chen, P. Z. C., Goh, Y., Ibrahim, H. A., Mo, K. H., & Yuen, C. W. (2018). Characterization of pervious concrete with blended natural aggregate and recycled concrete aggregates. Journal of Cleaner Production, 181. https://doi.org/10.1016/j.jclepro.2018.01.205
dc.relation.referencesYeheyis, M., Hewage, K., Alam, M. S., Eskicioglu, C., & Sadiq, R. (2013). An overview of construction and demolition waste management in Canada: A lifecycle analysis approach to sustainability. In Clean Technologies and Environmental Policy (Vol. 15, Issue 1). https://doi.org/10.1007/s10098-012-0481-6
dc.relation.referencesZheng, L., Wu, H., Zhang, H., Duan, H., Wang, J., Jiang, W., Dong, B., Liu, G., Zuo, J., & Song, Q. (2017). Characterizing the generation and flows of construction and demolition waste in China. Construction and Building Materials, 136. https://doi.org/10.1016/j.conbuildmat.2017.01.055
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectRCD = Residuos de construcción y demolición
dc.subjectRCA = Agregados de concreto reciclado
dc.subjectRCA = Concreto reciclado
dc.subjectAR = agregado reciclado
dc.subjectAN = Agregado natural
dc.subjectCaO = Oxido de Cálcio o Cal viva
dc.subjectITZ = Zona te interferência intersticial
dc.subjectSEM = Microscopia de barrido
dc.subjectRN = Recursos naturales
dc.subjectRCD A/CM = Relación Agua – Material cementante
dc.subjectf´c = Resistencia a la compresión
dc.subjectMR = Resistencia a la flexión
dc.subjectAG= Agregado grueso
dc.subjectAF = Agregado fino
dc.subject.keywordRN = Natural resources
dc.subject.keywordRCD = Construction and demolition waste
dc.subject.keywordRCA = Recycled concrete aggregates
dc.subject.keywordRCA = Recycled concrete
dc.subject.keywordAR = Recycled aggregate
dc.subject.keywordAN = Natural aggregate
dc.subject.keywordCaO = Calcium oxide or quicklime
dc.subject.keywordITZ = Interstitial interference zone
dc.subject.keywordSEM = Scanning microscopy
dc.subject.keywordA/CM = Water – Cementitious material ratio
dc.subject.keywordf´c = Compressive strength
dc.subject.keywordMR = Flexural strength
dc.subject.keywordRN = Natural resources
dc.subject.keywordAG= Coarse aggregate
dc.subject.keywordAF = Fine aggregate
dc.subject.lembMaestría en ingeniería civil - Tesis y disertaciones académicas
dc.subject.lembConcreto reciclado
dc.subject.lembAgregados reciclados
dc.subject.lembCal viva
dc.subject.lembPropiedades mecánicas
dc.titleInfluencia de la adición de la cal viva en concretos elaborados con agregados reciclados de concreto
dc.title.titleenglishInfluence of the addition of quicklime in concretes made with recycled concrete aggregates
dc.typemasterThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeInvestigación-Innovación

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
LanderosBarreraJuanCarlos2024.pdf
Tamaño:
23.15 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicacion.pdf
Tamaño:
666.57 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: