Modelo predictivo de producción agrícola colombiana utilizando redes neuronales y sistemas neuro difusos
dc.contributor.advisor | Bejarano Garzón, Lilian Astrid | |
dc.contributor.author | Gómez Camelo, Andrea Carolina | |
dc.contributor.orcid | Bejarano Garzón, Lilian Astrid [0000-0002-1381-6522] | |
dc.date.accessioned | 2025-07-30T17:31:35Z | |
dc.date.available | 2025-07-30T17:31:35Z | |
dc.date.created | 2025-07-09 | |
dc.description | El presente trabajo tiene como objetivo obtener modelos de producción agrícola colombiana utilizando redes neuronales y sistemas neuro-difusos. Se utilizaron datos históricos de la producción de seis artículos agrícolas. Se realizó interpolación de datos y normalización de los mismos para el preprocesamiento de los mismos, con los que se entrenaron los modelos que aplican técnicas de aprendizaje automático y lógica difusa. Se plantearon diferentes configuraciones de entrada-salida para los modelos, con el fin de determinar el mejor a partir del valor obtenido del cálculo del error cuadrático medio (MSE) con los datos de validación. En el caso de las redes neuronales, el mejor modelo es aquel que considera el valor anterior de salida (producción), y para sistemas neuro-difusos, el mejor modelo tanto en sistemas neuro-difusos con salida lineal como constante, es aquel que tiene una entrada asociada al año en el cual se realiza la medición de la producción. Esta investigación provee una base para la planificación agrícola, de la mano del uso de la inteligencia artificial como herramienta tecnológica vigente y relevante. | |
dc.description.abstract | This work aims to get predictiv models of colombian agriculutral prediction use artificial neural networks and neuro fuzzy systems. Historical data were used for the production of six agricultural commodities. Data imputation and normalization were performed for their preprocessing, with which the models that use learning techniques and fuzzy logic were trained. Different input-output configurations were proposed for the models, in order to determine the best one from the value obtained from the calculation of the mean square error (MSE) for validation data. For neural networks, the best model is the one that considers the previous output value (production), and for neuro-fuzzy systems, the best model, both linear and constant, is the one that has an input associated with the year in which the production measurement is made. This research provides a basis for agricultural planning, hand in hand with the use of artificial intelligence as a current and relevant technological tool. | |
dc.format.mimetype | ||
dc.identifier.uri | http://hdl.handle.net/11349/98332 | |
dc.relation.references | I. Uddin y M. Azam Khan. Global Evidence on the Impact of Globalization, Governance, and Financial Development on Economic Growth . En: Journal of the Knowledge Economy 15 (2024). doi: https://doi.org/10.1007/s13132-023-01656-4. | |
dc.relation.references | N. Vlahinic Lenz y B. Fajdetic. Does Economic Globalisation Harm Climate? New Evidence from European Union . En: Energies 15.6699 (2022). doi: https://doi.org/10.3390/en1 5186699. | |
dc.relation.references | F. Matenda et al. The infuence of economic growth, fossil and renewable energy, technological innovation, and globalisation on carbon dioxide emissions in South Africa . En: Carbon Research 3.69 (2024). doi: https://doi.org/10.1007/s44246-024-00155-8. | |
dc.relation.references | A. Abrego-Perez, N. Pacheco-Carvajal y M. Diaz-Jimenez. Forecasting Agricultural Financial Weather Risk Using PCA and SSA in an Index Insurance Model in Low-Income Economies . En: Applied Sciences Indicators 13(4).2425 (2023). doi: https://doi.org/10 .3390/app13042425. | |
dc.relation.references | Z. Ahmed, B. Zhang y M. Cary. Linking economic globalization, economic growth, financial development, and ecological footprint: Evidence from symmetric and asymmetric ARDL . En: Ecological Indicators 121.107060 (2021). doi: https://doi.org/10.1016/j.ecolind .2020.107060. | |
dc.relation.references | A. Awosusi et al. Environmental sustainability in Vietnam: evaluating the criticality of economic globalisation, renewable energy, and natural resources . En: Environmental Science and Pollution Research 30.75581-75594 (2023). doi: https://doi.org/10.1007/s11356-0 23-27683-x. | |
dc.relation.references | R. Jameel et al. Crop Management for Sustainable Wheat Production. Cham: Springer In ternational Publishing, 2023, págs. 107-123. isbn: 978-3-031-37428-9. doi: 10.1007/978-3 031-37428-9_6. url: https://doi.org/10.1007/978-3-031-37428-9_6. | |
dc.relation.references | S.S. Kamble, A. Gunasekaran y S.A. Gawankar. Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications . En: Interna tional Journal of Production Economics 219 (2020), p´ags. 179-194. issn: 0925-5273. doi: https://doi.org/10.1016/j.ijpe.2019.05.022. url: https://www.sciencedirect.co m/science/article/pii/S0925527319302038 | |
dc.relation.references | Y. Pham, K. Reardon-Smith y S. Mushtaq. The impact of climate change and variability on coffee production: a systematic review. En: Climatic Change 156 (2019), p´ags. 609-630. doi: https://doi.org/10.1007/s10584-019-02538-y. | |
dc.relation.references | T. Hussain J. nad Khaliq y A. Ahmad. Wheat Responses to Climate Change and Its Adaptations: A Focus on Arid and Semi-arid Environment. En: International Journal of Envi ronmental Research 12 (2018), p´ags. 117-126. doi: https://doi.org/10.1007/s41742-01 8-0074-2. | |
dc.relation.references | J. Hussain et al. Climate Change and Rice Production: Impacts and Adaptations. Modern Techniques of Rice Crop Production. Springer, Singapore., 2022. doi: https://doi.org/10 .1007/978-981-16-4955-4_29. | |
dc.relation.references | F. Lahive, P. Hadley y A.J. Daymond. The physiological responses of cacao to the environment and the implications for climate change resilience. A review. En: Agronomy for Sustainable Development 39 (2019). doi: https://doi.org/10.1007/s13593-018-0552-0. | |
dc.relation.references | A. Simon et al. The Impact of Climatic Factors on the Development Stages of Maize Crop in the Transylvanian Plain. En: Agronomy 13.1612 (2023). doi: https://doi.org/10.339 0/agronomy13061612. | |
dc.relation.references | Grüter R. et al. Expected global suitability of coffee, cashew and avocado due to climate change . En: PLOS ONE 17 (2022). doi: https://doi.org/10.1371/journal.pone.0261976. | |
dc.relation.references | R. Anderson, P. Bayer y D. Edwards. Climate change and the need for agricultural adaptation. En: Current Opinion in Plant Biology 56 (2020). Biotic interactions AGRI 2019, págs. 197-202. issn: 1369-5266. doi: https://doi.org/10.1016/j.pbi.2019.12.006. | |
dc.relation.references | S. N. Azam-Ali, P. J. Gregory y E. Jahanshiri. Diversifying the UK Agrifood System: A Role for Neglected and Underutilised Crops . En: Agronomy 14.4 (2024). issn: 2073-4395. doi: 10.3390/agronomy14040853. url: https://www.mdpi.com/2073-4395/14/4/853. | |
dc.relation.references | J. Vargas-Reina et al. UN CLIMA PELIGROSO: Deforestación, cambio climático y violencia contra los defensores ambientales en la Amazonía colombiana. Inf. téc. WWF Colombia, WWFAlemania, Tropenbos, FCDS- Fundación Conservación y Desarrollo Sostenible, FZS- Frankfurt Zoological Society, GAIA Amazonas, ACT (Amazon Conservation Team) Colombia, 2021. url: https://multimedia.ideaspaz.org/media/website/WWF_ColombiaAmazonas_2021_ES_WEB.pdf. | |
dc.relation.references | Meteorología y Estudios Ambientales- Ideam. Instituto de Hidrología. Informe del estado del ambiente y los recursos naturales renovables, 2022. Inf. téc. IDEAM, 2024. | |
dc.relation.references | Organización de las Naciones Unidas para la Agricultura y la Alimentación. Una introducción a los conceptos básicos de la seguridad alimentaria. Inf. téc. Programa CE-FAO, 2011. url: https://openknowledge.fao.org/server/api/core/bitstreams/49e470a7-a063-4f42 99b4-1849656ef9d1/content. | |
dc.relation.references | O. Iwegbu y L.B.d. Mattos. Financial development, trade globalisation and agricultural output performance among BRICS and WAMZ member countries. En: SN Business & Economics 89.8 (2022). doi: https://doi.org/10.1007/s43546-022-00271-w. | |
dc.relation.references | C. Mbow et al. Food Security. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Inf. t´ ec. About the IPCC The Intergo vernmental Panel on Climate Change, 2019. url: https://www.ipcc.ch/site/assets/uploads/2019/11/08_Chapter-5.pdf. | |
dc.relation.references | O. J. Paredes-Vilca et al. Contaminación y pérdida de biodiversidad por actividades mineras y agropecuarias: estado del arte . En: Revista de Investigaciones Altoandinas- Journal of High Andean Research 26.1 (2024). doi: 10.18271/ria.2024.594. url: https://huajsapata.unap.edu.pe/index.php/ria/article/view/594. | |
dc.relation.references | Centro Nacional de Memoria Histórica. ¡Basta Ya! Colombia: Memoria de Guerra y Digni dad. Resumen. Inf. téc. Centro Nacional de Memoria Histórica, 2013. url: https://www.centrodememoriahistorica.gov.co/descargas/informes2013/bastaYa/resumen-ejecutivo-basta-ya.pdf. | |
dc.relation.references | Observatorio Unidad para las Víctimas. Boletín trimestral 2025 Observatorio Unidad para las víctimas, Datos para la Paz. Inf. tésc. Unidad para las víctimas, 2025. url: https://datospaz.unidadvictimas.gov.co/archivos/datosPaz/boletines/Bolet%C3%ADn%20trimestre%202025.pdf. | |
dc.relation.references | P. Cortés Ferrández. ’DE LA AYUDA EXTERNA AL EMPODERAMIENTO’ El abordaje del desplazamiento urbano en los asentamientos informales de Colombia. Inf. téc. Observa torio de desplazamiento interno IDMC, 2020. url: https://api.internal-displacement .org/sites/default/files/inline-files/Urban%20displacement%20columbia_ES_2611_4.pdf. | |
dc.relation.references | Mesa de Conversaciones. Acuerdo final para la terminación del conflicto y la reconstrucción de una paz estable y duradera. Inf. téc. Mesa de Conversaciones, 2016. url: https://www.jep.gov.co/Documents/Acuerdo%20Final/Acuerdo%20Final.pdf. | |
dc.relation.references | O. Sotomayor, E. Ramírez y H. Martínez. Digitalización y cambio tecnológico en las mipymes agrícolas y agroindustriales en América Latina. Inf. téc. CEPAL/FAO, 2021. url: https://repositorio.cepal.org/server/api/core/bitstreams/787ce64b-7f95-4a27-aad9 0a3dc9a3bb70/content. | |
dc.relation.references | C. M. S. Rodriguez-Azuero. Construyendo un escenario habilitador para la tecnología en la agricultura (AgroTech): Una oportunidad para Colombia. Inf. téc. Google Colombia, 2023. url: https://ccce.org.co/wp-content/uploads/2017/06/Una-oportunidad-para-Colombia-Policy-Paper-CMS.pdf. | |
dc.relation.references | J. Martín-López et al. Modeling the Spatial Distribution of Soil Organic Carbon and Carbon Stocks in the Casanare Flooded Savannas of the Colombian Llanos. En: Wetlands 43.63 (2023). doi: https://doi.org/10.1007/s13157-023-01705-3. | |
dc.relation.references | S. Parra-Londono, J.A. Tigreros y C.A. Montoya-Correa. Colombian Crop Resilience: Evaluating National Yield Stability for Fruit and Vegetable Systems. En: Agriculture 14.1546 (2024). doi: https://doi.org/10.3390/agriculture14091546. | |
dc.relation.references | Y.E. Anacona-Mopan et al. Spatial Analysis of the Suitability of Hass Avocado Cultivation in the Cauca Department, Colombia, Using Multi-Criteria Decision Analysis and Geographic Information Systems. En: ISPRS Int. J. Geo-Inf. 12.136 (2023). doi: https://doi.org/10.3390/ijgi12040136. | |
dc.relation.references | C. Cortés-Cataño et al. The effect of environmental variations on the production of the principal agricultural products in Colombia. En: PLOS ONE 19.7 (jul. de 2024), págs. 1-14. doi: 10.1371/journal.pone.0304035. url: https://doi.org/10.1371/journal.pone.0304035. | |
dc.relation.references | Departamento Administrativo Nacional de Estadística. Encuesta Nacional Agropecuaria. Inf. téc. DANE, 2019. url: https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-ena. | |
dc.relation.references | Observatory of Economic Complexity. Coffee in Colombia. Inf. téc. OEC, 2022. url: https://oec.world/en/profile/bilateral-product/coffee/reporter/col#about. | |
dc.relation.references | Naciones Unidas. Acuerdo de París . En: Conferencia de las Naciones Unidas sobre el Cambio Climático (2015). | |
dc.relation.references | G. Hill, R. Friedman y P. Dargusch. Food Systems Development: The Necessary Paradigm Shift for a Healthy and Sustainable Agrarian Transition, a Case Study from Bougainville, Papua NewGuinea. En: International Journal of Environmental Research and Public Health 19.8 (2022). issn: 1660-4601. doi: 10.3390/ijerph19084651. url: https://www.mdpi.com/1660-4601/19/8/4651. | |
dc.relation.references | A. Castro-Nunez et al. The risk of unintended deforestation from scaling sustainable lives tock production systems. En: Conservation Science and Practice. 3.9 (2021). doi: https://doi.org/10.1111/csp2.495. | |
dc.relation.references | N. Clerici et al. Deforestation in Colombian protected areas increased during post-conflict periods. En: Scientific Reports 10.4971 (2020). doi: https://doi.org/10.1038/s41598020-61861-y. | |
dc.relation.references | A. Castro-Nunez et al. The risk of unintended deforestation from scaling sustainable livestock production systems. En: Scientific Reports 14.13644 (2024). doi: https://doi.org/10.1038/s41598-024-63697-2. | |
dc.relation.references | D. M. Médez-Rojas et al. How diverse are sun-grown coffee plantations? Local and lands cape heterogeneity drives Andean rove beetle diversity. En: Agriculture, Ecosystems & En vironment 339 (2022), pág. 108122. issn: 0167-8809. doi: https://doi.org/10.1016/j.ag ee.2022.108122. url: https://www.sciencedirect.com/science/article/pii/S0167880922002717. | |
dc.relation.references | E. Jahanshiri et al. A Shortlisting Framework for Crop Diversification in the United King dom. En: Agriculture 13.4 (2023). issn: 2077-0472. doi: 10.3390/agriculture13040787. url: https://www.mdpi.com/2077-0472/13/4/787. | |
dc.relation.references | W. Xie et al. Crop switching can enhance environmental sustainability and farmer incomes in China . En: Nature 616 (2023), págs. 300-305. doi: https://doi.org/10.1038/s41586-023-05799-x. | |
dc.relation.references | R. Vargas-Carpintero et al. Crop switching can enhance environmental sustainability and farmer incomes in China . En: Discover Sustainability 4 (2023), pág. 33. doi: https://doi.org/10.1007/s43621-023-00150-w. | |
dc.relation.references | M. M. Osorio AriasLogo et al. Soberanía y seguridad alimentaria en familias campesinas colombianas. En: Revista de Ciencias Sociales 30.9 (2024). issn: 1315-9518. url: https://dialnet.unirioja.es/servlet/articulo?codigo=9645082. | |
dc.relation.references | L. P. Vega et al. CO2 Capture Capacity Measurement Using Multitemporal Analysis and Biophysical Variables in a Tropical Humid Forest in the Colombian Andes. En: Sustainability 16.11 (2024). issn: 2071-1050. doi: 10.3390/su16114809. url: https://www.mdpi.com/2071-1050/16/11/4809. | |
dc.relation.references | R. Ortega-Álvarez y A. Casas. The Feeding Landscape: Bird and Human Use of Food Resources across a Biocultural Landscape of the Colombian Andes. En: Sustainability 14.8 (2022). issn: 2071-1050. doi: 10.3390/su14084789. url: https://www.mdpi.com/2071-1050/14/8/4789. | |
dc.relation.references | J. C. Ríos-Orjuela et al. Conserving biodiversity in coffee agroecosystems: Insights from a herpetofauna study in the Colombian Andes with sustainable management proposal. En: Perspectives in Ecology and Conservation 22.2 (2024), págs. 196-204. issn: 2530-0644. doi: https://doi.org/10.1016/j.pecon.2024.04.001. url: https://www.sciencedirect.com/science/article/pii/S253006442400021X. | |
dc.relation.references | M. Ghufran et al. Food security assessment in the light of sustainable development goals: a post-Paris Agreement era. En: Environment, Development and Sustainability (2024). doi: https://doi.org/10.1007/s10668-023-04089-w. | |
dc.relation.references | C. A. Ruiz-Agudelo y F. de Paula Gutiérrez-Bonilla. The remnant natural capital of the Magdalena-Cauca basin: immense losses for the 80% of Colombian inhabitants. En: Journal of Environmental Studies and Sciences 14 (2024). doi: https://doi.org/10.1007/s13412-023-00873-2. | |
dc.relation.references | L. Gómez Racines y J.M Buitrago Vera. Export of Organic Cape Gooseberry (Physalis peruviana) as An Alternative Illicit Crop Substitution: Survey of Consumers in Namur, Belgium. En: Sustainability 15.16604 (2023). doi: https://doi.org/10.3390/su152416604. | |
dc.relation.references | A. Conde-Pulgarín et al. Assessment of the sustainability of agricultural and livestock pro duction systems. En: Agrociencia. (2023). doi: https://doi.org/10.47163/agrociencia.v57i7.2892. | |
dc.relation.references | E. E. Escobar Quiñonez, Y. L. Narv´aez Sánchez y A. L. Cifuentes-Gonzalez. Panorama de la competitividad y políticas públicas en el sector agropecuario frente a la crisis del COVID-19 en Colombia. En: Ingeniería y competitividad 25.3 (2023). doi: https://doi.org/10.25100/iyc.v25i3.12902. | |
dc.relation.references | R. I. Parra-Peña, R. Puyana y F. Yepes Chica. Análisis de la productividad del sector agropecuario en Colombia y su impacto en temas como: encadenamientos productivos, sostenibilidad e internacionalización, en el marco del programa Colombia más competitiva. Inf. téc. Fedesarrollo, 2021. url: https://www.repository.fedesarrollo.org.co/bitstream/handle/11445/4092/Repor_Marzo_2021_Parra-Pe%c3%b1a_Puyana_y_Yepes.pdf?sequence=9&isAllowed=y. | |
dc.relation.references | J. J. Echavarría et al. Impacto del crédito sobre el agro en Colombia: Evidencia del nuevo Censo Nacional Agropecuario. Inf. téc. Banco Interamericano de Desarrollo, 2017. url: htt ps://d1b4gd4m8561gs.cloudfront.net/sites/default/files/publicaciones/archivos/borradores_de_economia_1020.pdf. | |
dc.relation.references | R. Zhang, W. Ma y J. Liu. Impact of government subsidy on agricultural production and pollution: A game-theoretic approach. En: Journal of Cleaner Production 285 (2021), pág. 124806. issn: 0959-6526. doi: https://doi.org/10.1016/j.jclepro.2020.124806. url: https://www.sciencedirect.com/science/article/pii/S0959652620348502. | |
dc.relation.references | A. Olvera-Avendaño et al. Instrumentos de política, subsidios y valor de la producción agrícola: México, Brasil y Chile . En: Revista Mexicana de Ciencias Agrícolas 15.4 (2024). doi: https://doi.org/10.29312/remexca.v15i4.3318. | |
dc.relation.references | C.R. Clement et al. Disentangling Domestication from Food Production Systems in the Neotropics . En: Quaternary 4.1 (2021). issn: 2571-550X. doi: https://doi.org/10.3390/quat4010004. url: https://www.mdpi.com/2571-550X/4/1/4. | |
dc.relation.references | S. Goel, D. Thapliyal y R.K. Arya. Renewable Energy Production Using Crop Waste. En: From Waste to Wealth. Singapore: Springer Nature Singapore, 2024, págs. 281-311. isbn: 978-981-99-7552-5. doi: 10.1007/978-981-99-7552-5_13. url: https://doi.org/10.100 7/978-981-99-7552-5_13. | |
dc.relation.references | D. Kalfas et al. Integration of Technology in Agricultural Practices towards Agricultural Sustainability: A Case Study of Greece. En: Sustainability 16.7 (2024). issn: 2071-1050. doi: 10.3390/su16072664. url: https://www.mdpi.com/2071-1050/16/7/2664. | |
dc.relation.references | F. Fuentes-Peñaailillo et al. Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management. En: Journal of Sensor and Actuator Networks 13.4 (2024). issn: 2224-2708. doi: 10.3390/jsan13040039. url: https://www.mdpi.com/2224-2708/13/4/39. | |
dc.relation.references | M. Ogryzek. The Sustainable Development Paradigm. En: Geomatics and Environmental Engineering 17.1 (2023). doi: https://doi.org/10.7494/geom.2023.17.1.5. | |
dc.relation.references | S.S. Mondal, S. Mondal y S.K. Adhikari. Applications of Big Data in Various Fields: A Survey. En: Recent Trends in Intelligence Enabled Research. (2023). doi: https://doi.org/10.1007/978-981-99-1472-2_19. | |
dc.relation.references | M.S. Raisinghani, E.C. Idemudia y F. Wang. From Big Data to Big Insights: A Synthesis of Real-World Applications of Big Data Analytics. Development Methodologies for Big Data Analytics Systems. Transactions on Computational Science and Computational Intelligence. Springer, Cham, 2024. doi: https://doi.org/10.1007/978-3-031-40956-1_11. | |
dc.relation.references | A. Badshah et al. Big data applications: overview, challenges and future. En: Recent Trends in Intelligence Enabled Research. 57.290 (2024). doi: https://doi.org/10.1007/s10462 024-10938-5. | |
dc.relation.references | S. Parra-Londono, J. A. Tigreros y C. A. Montoya-Correa. Colombian Crop Resilience: valuating National Yield Stability for Fruit and Vegetable Systems. En: Agriculture 14.9 (2024). issn: 2077-0472. doi: 10.3390/agriculture14091546. url: https://www.mdpi.com/2077-0472/14/9/1546. | |
dc.relation.references | D. Kim et al. Prediction of Live Bulb Weight for Field Vegetables Using Functional Regression Models and Machine Learning Methods. En: Agriculture 14.5 (2024). issn: 2077-0472. doi: 10.3390/agriculture14050754. url: https://www.mdpi.com/2077-0472/14/5/754. | |
dc.relation.references | Y. Bai, S. Wang y X. Zhang. Foreign Trade Survey Data: Do They Help in Forecasting Exports and Imports? En: Journal of Systems Science and Complexity 35 (2022). doi: https://doi.org/10.1007/s11424-022-1015-x. | |
dc.relation.references | S. Athey y G. W. Imbens. Machine Learning Methods That Economists Should Know About . En: Annual Review of Economics 11.Volume 11, 2019 (2019), págs. 685-725. issn: 1941-1391. doi: https://doi.org/10.1146/annurev-economics-080217-053433. url: https://www.annualreviews.org/content/journals/10.1146/annurev-economics-080217-053433. | |
dc.relation.references | E. Ç. Akay, N. T. Y. Soydan y B. K. Gacar. Bibliometric analysis of the published literature on machine learning in economics and econometrics. En: Social Network Analysis and Mining 12.109 (2022). doi: https://doi.org/10.1007/s13278-022-00916-6. | |
dc.relation.references | A.V. Joshi. Machine Learning and Artificial Intelligence. Springer Nature Switzerland AG, 2023. doi: https://doi.org/10.1007/978-3-031-12282-8. | |
dc.relation.references | H. Zhu. Oil Demand Forecasting in Importing and Exporting Countries: AI-Based Analysis of Endogenous and Exogenous Factors. En: Sustainability 15.18 (2023). issn: 2071-1050. doi: https://doi.org/10.3390/su151813592. url: https://www.mdpi.com/2071-1050/15/18/13592. | |
dc.relation.references | L. Frison et al. Evaluating different artificial neural network forecasting approaches for optimizing district heating network operation. En: Energy 307 (2024), p´ag. 132745. issn: 0360-5442. doi: https://doi.org/10.1016/j.energy.2024.132745. url: https://www.sciencedirect.com/science/article/pii/S0360544224025192. | |
dc.relation.references | P.K. Das y P.K. Das. Forecasting and Analyzing Predictors of Inflation Rate: Using Machine Learning Approach. En: Journal of Quantitative Economics 22 (2024), pÁgs. 439-517. doi: https://doi.org/10.1007/s40953-024-00384-z. | |
dc.relation.references | M.A. Petcu et al. Integrating Artificial Intelligence in the Sustainable Development of Agri culture: Applications and Challenges in the Resource-Based Theory Approach. En: Electro nics 13.23 (2024). issn: 2079-9292. doi: 10.3390/electronics13234580. url: https://www.mdpi.com/2079-9292/13/23/4580. | |
dc.relation.references | C. E. González-Orozco et al. Preparing Colombian coffee production for climate change: In tegrated spatial modelling to identify potential robusta coffee (Coffea canephora P.) growing areas. En: Climatic Change 177.67 (2024). doi: https://doi.org/10.1007/s10584-024 03717-2. | |
dc.relation.references | M. Abdul Baseer et al. Electrical Power Generation Forecasting from Renewable Energy Systems Using Artificial Intelligence Techniques. En: Energies 16.18 (2023). issn: 1996-1073. doi: 10.3390/en16186414. url: https://www.mdpi.com/1996-1073/16/18/6414. | |
dc.relation.references | Y. A. Atalan y A. Atalan. Testing the Wind Energy Data Based on Environmental Factors Predicted by Machine Learning with Analysis of Variance. En: Applied Sciences 15.1 (2025). issn: 2076-3417. doi: 10.3390/app15010241. url: https://www.mdpi.com/2076-3417/15/1/241. | |
dc.relation.references | S. Sarwar, G. Aziz y D. Balsalobre-Lorente. Forecasting Accuracy of Traditional Regression, Machine Learning, and Deep Learning: A Study of Environmental Emissions in Saudi Arabia. En: Sustainability 15.20 (2023). issn: 2071-1050. doi: 10.3390/su152014957. url: https://www.mdpi.com/2071-1050/15/20/14957. | |
dc.relation.references | A. Kumar, S. K. Singh y P. Kumari. A Machine Learning Approach to Forecast the Food Prices for Food Security Issues. En: 11th International Conference on Intelligent Systems and Embedded Design (ISED) (2023), págs. 1-6. doi: 10.1109/ISED59382.2023.10444575. | |
dc.relation.references | J. Liu et al. Comprehensive Assessment of Drought Susceptibility Using Predictive Modeling, Climate Change Projections, and Land Use Dynamics for Sustainable Management. En: Land 14.2 (2025). issn: 2073-445X. doi: 10.3390/land14020337. url: https://www.mdpi.com/2073-445X/14/2/337. | |
dc.relation.references | M. Y. Chin et al. Assessing carbon budgets and reduction pathways in different income levels with neural network forecasting . En: Energy 305 (2024), pág. 132331. issn: 0360 5442. doi: https://doi.org/10.1016/j.energy.2024.132331. url: https://www.sciencedirect.com/science/article/pii/S0360544224021054. | |
dc.relation.references | D.Wangetal. A Novel Flexible Geographically Weighted Neural Network for High-Precision PM2.5 Mapping across the Contiguous United States. En: ISPRS International Journal of Geo-Information 13.7 (2024). issn: 2220-9964. doi: 10.3390/ijgi13070217. url: https: //www.mdpi.com/2220-9964/13/7/217. | |
dc.relation.references | A. J. Alhussaini et al. Radiomics Machine Learning Analysis of Clear Cell Renal Cell Carcinoma for Tumour Grade Prediction Based on Intra-Tumoural Sub-Region Heterogeneity. En: Cancers 16.8 (2024). issn: 2072-6694. doi: 10.3390/cancers16081454. url: https://www.mdpi.com/2072-6694/16/8/1454. | |
dc.relation.references | F. Barbieri et al. A Neuronal Network-Based Score Predicting Survival in Patients Undergoing Aortic Valve Intervention: The ABC-AS Score. En: Journal of Clinical Medicine 13.13 (2024). issn: 2077-0383. doi: 10.3390/jcm13133691. url: https://www.mdpi.com/2077-0383/13/13/3691. | |
dc.relation.references | L. Alzubaidi et al. A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. En: Journal of Big Data 10.1 (2023), pág. 46. issn: 2196-1115. doi: 10.1186/s40537-023-00727-2. url: https://doi.org/10.1186/s40537-023-00727-2. | |
dc.relation.references | Felix J., Alexandre M. y Lima G.T. Applying Machine Learning Algorithms to Predict the Size of the Informal Economy. En: Computational Economics (2024). doi: https://doi.org/10.1007/s10614-024-10593-6. | |
dc.relation.references | M. El Sakka et al. A Review of CNN Applications in Smart Agriculture Using Multimodal Data. En: Sensors 25.2 (2025). issn: 1424-8220. doi: https://doi.org/10.3390/s25020472. url: https://www.mdpi.com/1424-8220/25/2/472. | |
dc.relation.references | M. K. Çodur. Ensemble Machine Learning Approaches for Prediction of Türkiye’s Energy Demand. En: Energies 17.1 (2024). issn: 1996-1073. doi: 10.3390/en17010074. url: https://www.mdpi.com/1996-1073/17/1/74. | |
dc.relation.references | F. Panahi et al. Predicting freshwater production in seawater greenhouses using hybrid artificial neural network models. En: Journal of Cleaner Production 329 (2021), pág. 129721. issn: 0959-6526. doi: https://doi.org/10.1016/j.jclepro.2021.129721. url: https: //www.sciencedirect.com/science/article/pii/S0959652621038981. | |
dc.relation.references | P. Das et al. Crop Yield Prediction Using Hybrid Machine Learning Approach: A Case Study of Lentil (Lens culinaris Medik.) En: Agriculture 13.3 (2023). issn: 2077-0472. doi: 10.3390/agriculture13030596. url: https://www.mdpi.com/2077-0472/13/3/596. | |
dc.relation.references | S.M. Alshdaifat et al. The Role of Digital Technologies in Corporate Sustainability: A Bibliometric Review and Future Research Agenda. En: Journal of Risk and Financial Management 17.11 (2024). issn: 1911-8074. doi: 10.3390/jrfm17110509. url: https://www .mdpi.com/1911-8074/17/11/509. | |
dc.relation.references | W. Huang y X. Wang. The Impact of Technological Innovations on Agricultural Productivity and Environmental Sustainability in China . En: Sustainability 16.19 (2024). issn: 2071-1050. doi: 10.3390/su16198480. url: https://www.mdpi.com/2071-1050/16/19/8480. | |
dc.relation.references | R. Xiong et al. Machine learning-enhanced evaluation of food security across 169 economies. En: Environment, Development and Sustainability 26.26971-27000 (2024). doi: http s://doi.org/10.1007/s10668-024-05212-1. | |
dc.relation.references | M. Fl´orez et al. Deep Learning Application for Biodiversity Conservation and Educational Tourism in Natural Reserves. En: ISPRS International Journal of Geo-Information 13.10 (2024). issn: 2220-9964. doi: 10.3390/ijgi13100358. url: https://www.mdpi.com/2220 9964/13/10/358. | |
dc.relation.references | R. Banerjee, D. P. Bharti y S. Khan. Crop Yield Prediction Using Artificial Intelligence and Remote Sensing Methods. Artificial Intelligence and Smart Agriculture. Advances in Geographical and Environmental Sciences. Springer, Singapore., 2024. doi: https://doi.org/10.1007/978-981-97-0341-8_6. | |
dc.relation.references | M. A. Jabed y M. A. Azmi Murad. Crop yield prediction in agriculture: A comprehensive review of machine learning and deep learning approaches, with insights for future research and sustainability. En: Heliyon 10.24 (2024), e40836. issn: 2405-8440. doi: https://doi.org/10.1016/j.heliyon.2024.e40836. url: https://www.sciencedirect.com/scienc e/article/pii/S2405844024168673. | |
dc.relation.references | S. Castillo-Girones et al. Artificial Neural Networks in Agriculture, the core of artificial intelligence: What, When, and Why. En: Computers and Electronics in Agriculture 230 (2025), pág. 109938. issn: 0168-1699. doi: https://doi.org/10.1016/j.compag.2025.109938. url: https://www.sciencedirect.com/science/article/pii/S0168169925000444. | |
dc.relation.references | Y. Kittichotsatsawat, N. Tippayawong y K. Y. Tippayawong. Prediction of arabica coffee production using artificial neural network and multiple linear regression techniques. En: Soil and Tillage Research 12.14488 (2022). doi: https://doi.org/10.1038/s41598-02218635-5. | |
dc.relation.references | K.Abrougui et al. Prediction of organic potato yield using tillage systems and soil properties by artificial neural network (ANN) and multiple linear regressions (MLR). En: Soil and Tillage Research 190 (2019), págs. 202-208. issn: 0167-1987. doi: https://doi.org/10.10 16/j.still.2019.01.011. url: https://www.sciencedirect.com/science/article/pi i/S0167198718313515. | |
dc.relation.references | S. S. Almady et al. Employing an Artificial Neural Network Model to Predict Citrus Yield Based on Climate Factors. En: Agronomy 14.7 (2024). issn: 2073-4395. doi: 10.3390/agronomy14071548. url: https://www.mdpi.com/2073-4395/14/7/1548. | |
dc.relation.references | M. N. Thimmegowda et al. Weather-Based Statistical and Neural Network Tools for Fore casting Rice Yields in Major Growing Districts of Karnataka. En: Agronomy 13.3 (2023). issn: 2073-4395. url: https://www.mdpi.com/2073-4395/13/3/704. | |
dc.relation.references | A. Satpathi et al. Comparative Analysis of Statistical and Machine Learning Techniques for Rice Yield Forecasting for Chhattisgarh, India. En: Sustainability 15.3 (2023). issn: 2071 1050. doi: 10.3390/su15032786. url: https://www.mdpi.com/2071-1050/15/3/2786. | |
dc.relation.references | E. R. Abraham et al. Time Series Prediction with Artificial Neural Networks: An Analysis Using Brazilian Soybean Production. En: Agriculture 10.10 (2020). issn: 2077-0472. doi: 10.3390/agriculture10100475. url: https://www.mdpi.com/2077-0472/10/10/475. | |
dc.relation.references | I. Varga et al. Prediction of sugar beet yield and quality parameters with varying nitrogen fertilization using ensemble decision trees and artificial neural networks. En: Computers and Electronics in Agriculture 212 (2023), pág. 108076. issn: 0168-1699. doi: https://doi.org/10.1016/j.compag.2023.108076. url: https://www.sciencedirect.com/science/article/pii/S0168169923004647. | |
dc.relation.references | R. K. Dhanaraj y M. Chandraprabha. Ant lion optimization in deep neural network for forecasting the rice crop yield based on soil nutrients. En: Progress in Artificial Intelligence (2024). doi: https://doi.org/10.1007/s13748-024-00351-y. | |
dc.relation.references | S. Sannakki et al. A neural network approach for disease forecasting in grapes using weather parameters . En: 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT). 2013, págs. 1-5. doi: 10.1109/ICCCNT.2013.6726613. | |
dc.relation.references | A. Taheri-Garavand et al. Predictive modeling of Satureja rechingeri essential oil yield and composition under water deficit and soil amendment conditions using artificial neural networks (ANNs). En: Computers and Electronics in Agriculture 222 (2024), pág. 109072. issn: 0168-1699. doi: https://doi.org/10.1016/j.compag.2024.109072. url: https://www.sciencedirect.com/science/article/pii/S0168169924004630. | |
dc.relation.references | T. Sudhamathi y K. Perumal. A novel hybrid DNN-RNN framework for precise crop yield prediction. En: International Journal of System Assurance Engineering and Management (2024). doi: https://doi.org/10.1007/s13198-024-02577-4. | |
dc.relation.references | Y. R. Chavan et al. Enhanced Crop Yield Forecasting Using Deep Reinforcement Learning and Multi-source Remote Sensing Data. En: Remote Sensing in Earth Systems Sciences 7 (2024), págs. 426-442. doi: https://doi.org/10.1007/s41976-024-00135-x. | |
dc.relation.references | M. F. Aslan, K. Sabanci y B. Aslan. Artificial Intelligence Techniques in Crop Yield Estimation Based on Sentinel-2 Data: A Comprehensive Survey. En: Sustainability 16.18 (2024). issn: 2071-1050. doi: 10.3390/su16188277. url: https://www.mdpi.com/2071-1050/16/18/8277. | |
dc.relation.references | G. S. Atsalakis. Agriculture Commodity Prices Forecasting Using a Fuzzy Inference System. Agricultural Cooperative Management and Policy. Cooperative Management. Springer, Cham., 2014. doi: https://doi.org/10.1007/978-3-319-06635-6_19. | |
dc.relation.references | A. Dutta et al. A Neuro Fuzzy System Based Inflation Prediction of Agricultural Commodities. En: 2020 11th International Conference on Computing, Communication and Networ king Technologies (ICCCNT). 2020, págs. 1-6. doi: 10.1109/ICCCNT49239.2020.9225453. | |
dc.relation.references | M. Abd Elfattah et al. Carbon price time series forecasting utilizing an optimized ANFIS model. En: Evolutionary Intelligence 17 (2024). doi: https://doi.org/10.1007/s12065 024-00955-2. | |
dc.relation.references | S. Remya. An adaptive neuro-fuzzy inference system to monitor and manage the soil quality to improve sustainable farming in agriculture. En: Soft Computing 26 (2022). doi: https://doi.org/10.1007/s00500-022-06832-3. | |
dc.relation.references | A. Burmakova y D. Kalibatiene. An ANFIS-based Model to Predict the Oil Spill Consequences on the Ground. En: IEEE Open Conference of Electrical, Electronic and Information Sciences (2021). issn: 2690-8506. doi: https://doi.org/10.1109/eStream53087.2021.9431405. | |
dc.relation.references | D. K. Ghose et al. Performance Evaluation of hybrid ANFIS model for Flood Prediction. En: 8th International Conference on Advanced Computing and Communication Systems (ICACCS) (2022). issn: 2690-8506. doi: 10.1109/ICACCS54159.2022.9785002. | |
dc.relation.references | B. Garg y T. Sah. Prediction of Crop Yield Using Fuzzy-Neural System. EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing. EAI/Springer Innovations in Communication y Computing. Springer, Cham., 2020. doi: https://doi.org/10.1007/978-3-030-19562-5_21 | |
dc.relation.references | M. Gunasundari Ananthara, T. Arunkumar y R. Hemavathy. CRY- An improved crop yield prediction model using bee hive clustering approach for agricultural data sets. En: 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering. 2013, págs. 473-478. doi: https://doi.org/10.1109/ICPRIME.2013.6496717 | |
dc.relation.references | W. Rahman. AI and Machine Learning. SAGE Publications Pvt. Ltd, 2020. doi: https://doi.org/10.4135/9789354791796 | |
dc.relation.references | D Hudson y M. Cohen. Neural Networks and Artificial Intelligence for Biomedical Enginee ring. Wiley-IEEE Press, 2000. doi: 10.1109/9780470545355. | |
dc.relation.references | W. Suparta y K. M. Alhasa. Modeling of Tropospheric Delays Using ANFIS. Springer Cham, 2016. doi: https://doi.org/10.1007/978-3-319-28437-8. | |
dc.relation.references | Lofti Zadeh. Fuzzy sets. En: Information and Control 8.3 (1965). doi: https://doi.org/10.1016/S0019-9958(65)90241-X. | |
dc.relation.references | M. Gupta, L. Jin y N. Homma. Fuzzy sets and Fuzzy Neural Networks. Wiley-IEEE Press, 2003. doi: https://doi.org/10.1002/0471427950.ch15. | |
dc.relation.references | Sirwan A. MoahmmedyProf.Dr.Sattar B. Sadkhan. A Comparison of Mamdani and Sugeno Fuzzy Inference Systems based on Block Cipher Evaluation . En: International Journal of Scientific & Engineering Researchl 4.12 (2013). url: https://api.semanticscholar.org /CorpusID:6069455. | |
dc.relation.references | T. Samavat et al. A Comparative Analysis of the Mamdani and Sugeno Fuzzy Inference Systems for MPPT of an Islanded PV System. En: International Journal of Energy Research 7676113 (2023). doi: https://doi.org/10.1155/2023/7676113. | |
dc.relation.references | A. A. Zakri, M. W. Mustafa e I. Tribowo. ANFIS Design Based on Prediction Models for The Photovoltaic System. En: 2019 International Conference on Sustainable Information Engineering and Technology (SIET) (2019). doi: 10.1109/SIET48054.2019.8986133. | |
dc.relation.references | J.-S. R. Jang. ANFIS:Adaptive-Network-Based Fuzzy Inference System. En: IEEE Transac tions on Systems, Man, and Cybernetics 23.3 (1993). doi: 10.1109/21.256541. | |
dc.relation.references | E. T. Khalid, S. A. Jassim y S. Saqaeeyan. Fuzzy C-mean clustering technique based visual features fusion for automatic video summarization method. En: Multimedia Tools and Applications 83 (2024). doi: https://doi.org/10.1007/s11042-024-18820-w. | |
dc.relation.references | T. Hastie, R. Tibshirani y J. Friedman. The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer, 2017. doi: https://doi.org/10.1007/978-0-387-84858-7. | |
dc.relation.references | Dirección de Metodologpia y Producción Estadística/DIPME. Metodología General Encuesta Nacional Agropecuaria- ENA 2019. Inf. téc. Departamento Administrativo Nacional de Estadística, 2019. | |
dc.relation.references | J. A. Betancourt, G. Y. Florez-Yepes e Y. A. Garcés-Gómez. Agricultural Productivity and Multidimensional Poverty Reduction in Colombia: An Analysis of Coffee, Plantain, and Corn Crops . En: Earth 5.4 (2024), págs. 623-639. issn: 2673-4834. doi: 10.3390/earth5040032. url: https://www.mdpi.com/2673-4834/5/4/32. | |
dc.relation.references | A. Abdoussalami, Z. Hu y A.R.M.T. Islam. Climate change and its impacts on banana production: a systematic analysis. En: Environment, Development and Sustainability 25 (2023), págs. 12217-12246. doi: https://doi.org/10.1007/s10668-023-03168-2. | |
dc.relation.references | A. Ortega. The Colombian Cacao Sector- 2024 Update. Inf. téc. Global Agricultural Infor mation Network, 2024. url: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=The%20Colombian%20Cacao%20Sector%20-%202024%20 Update_Bogota_Colombia_CO2024-0011.pdf. | |
dc.relation.references | M. V. Correa. Colombia reportó en 2024 producción histórica de cacao. Inf. téc. Federación Nacional de Cacaoteros, 2024. url: https://www.fedecacao.com.co/post/colombia-report%C3%B3-en-2024-producci%C3%B3n-hist%C3%B3rica-de-cacao?. | |
dc.relation.references | Federación Nacional de Cafeteros de Colombia. Informe del Gerente 2024. Inf. téc. Congreso Nacional de Cafeteros, 2024. url: https://federaciondecafeteros.org/app/uploads/2024/12/IG-2024-93-CNC_Digital.pdf?. | |
dc.relation.references | Organización Internacional del Café. Informe del mercado de Café. Inf. téc. OIC, 2024. url: https://www.icocoffee.org/documents/cy2023-24/cmr-0724-c.pdf?. | |
dc.relation.references | G. Rodríguez et al. Producción de panela como estrategia de diversificación en la generación de ingresos en áreas rurales de América Latina. Inf. téc. Organización de las Naciones Unidas para la Agricultura y la Alimentación, 2004. url: https://www.fao.org/fileadmin/user_upload/ags/publications/AGSF_WD6s.pdf?. | |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural, Ministerio de Ambiente y Desarrollo Sos tenible, Ministerio de Comercio Industria y Turismo, Instituto Colombiano Agro pecuario, Agencia de Desarrollo Rural, INVIMA, AGROSAVIA, Cenicaña, SENA, Panela Colombia JOFARES, Corporación Panelera Doña Panela, Federación Nacional de Productores de Panela. Plan de Ordenamiento Productivo. Análisis situacional de la cadena agroindustrial de la panela en Colombia. Inf. téc. Unidad de Planificación Rural Agropecuaria, 2023. url: https://www.upra.gov.co/es-co/POP_Documentos/DT_A_Situacional_Cadena_Panela.pdf?. | |
dc.relation.references | Ministerio de Agricultura. Cadena Agroindustrial de la panela. Inf. téc. Ministerio de Agricultura y Desarrollo Rural, 2021. url: https://sioc.minagricultura.gov.co/panela/documentos/2021-06-30%20cifras%20sectoriales.pdf?utm_source=chatgpt.com. | |
dc.relation.references | Fondo de Fomento Panelero. Informe de Inteligencia de Mercados. Inf. téc. Fondo de Fomento Panelero, 2022. url: https://fedepanela.org.co/gremio/wp-content/uploads/2023/04/Informe-Inteligencia-de-mercados-2022.pdf?utm_source=chatgpt.com. | |
dc.relation.references | V. A. Vargas Silva y A. M. de la Paz Mejía Saavedra. Análisis de la Panela Orgánica Pulverizada de Cundinamarca en el Mercado Canadiense. Inf. téc. Fundación Universitaria Empresarial de la Cámara de Comercio de Bogotá, 2021. url: https://bibliotecadigital.ccb.org.co/server/api/core/bitstreams/5c94b93d-f3cc-4ea1-a532-2aa7ce35cf45/content. | |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. Cadena del cítricos. Indicadores e Instrumen tos. Inf. téc. Ministerio de Agricultura y Desarrollo Rural, 2020. url: https://sioc.minagricultura.gov.co/Citricos/Documentos/2020-03-30%20Cifras%20Sectoriales.pdf. | |
dc.relation.references | C. E. Orrego et al. Productividad y competitividad frutícola Andina. Inf. téc. Fondo Regional de Tecnología Agropecuaria, 2021. url: https://www.fontagro.org/new/uploads/productos/16111_-_Producto_3.pdf?. | |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. Cadena de Plátano. Inf. téc. Dirección de Cadenas Agrícolas y Forestales, 2021. url: https://sioc.minagricultura.gov.co/Platano/Documentos/2021-03-31%20Cifras%20Sectoriales.pdf?utm_source=chatgpt.com. | |
dc.relation.references | J. C. Aguado y S. Buitrago Grand. Análisis del mercado de las exportaciones del plátano Hartón Premium de Colombia al mercado estadounidense . Tesis de mtría. Universidad Católica de Pereira, 2023. url: https://repositorio.ucp.edu.co/server/api/core/bitstreams/178a4b85-e3e0-4e24-bd34-29a4e204c1ca/content. | |
dc.rights.acceso | Abierto (Texto Completo) | |
dc.rights.accessrights | OpenAccess | |
dc.subject | Producción Agrícola | |
dc.subject | Redes neuronales | |
dc.subject | Sistemas neuro difusos | |
dc.subject | Producción agrícola | |
dc.subject.keyword | Agricultural production | |
dc.subject.keyword | Artificial neural networks | |
dc.subject.keyword | Neuro fuzzy systems | |
dc.subject.keyword | Agricultural production | |
dc.subject.lemb | Ingeniería de Sistemas -- Tesis y disertaciones académicas | |
dc.subject.lemb | Inteligencia artificial | |
dc.subject.lemb | Redes neurales (Computadores) | |
dc.subject.lemb | Lógica difusa | |
dc.title | Modelo predictivo de producción agrícola colombiana utilizando redes neuronales y sistemas neuro difusos | |
dc.title.titleenglish | Predictive model of colombian agricultural production using neural networks and neuro-fuzzy systems | |
dc.type | bachelorThesis | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.degree | Monografía |
Archivos
Bloque original
1 - 2 de 2
No hay miniatura disponible
- Nombre:
- Licencia de Uso y Publicación.pdf
- Tamaño:
- 719.64 KB
- Formato:
- Adobe Portable Document Format
No hay miniatura disponible
- Nombre:
- GómezCameloAndreaCarolina2025.pdf
- Tamaño:
- 1.86 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de Grado
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: