Generación de un mapa dinámico de zonas propensas a blanqueamiento en el arrecife de Varadero’s Hope Spot, Cartagena de Indias, Colombia, aplicando algoritmos de machine learning en imágenes de PlanetScope y datos de temperatura de la superficie del mar de NOAA en el periodo 2023-2024.
| dc.contributor.advisor | Medina Daza, Rubén Javier | |
| dc.contributor.author | Peña González, Viviana Andrea | |
| dc.contributor.author | Almanza Padilla, José Gabriel | |
| dc.contributor.orcid | Medina Daza, Rubén Javier [0000-0002-9851-9761] | |
| dc.date.accessioned | 2025-03-04T22:06:39Z | |
| dc.date.available | 2025-03-04T22:06:39Z | |
| dc.date.created | 2025-02-13 | |
| dc.description | El proyecto se centra en la creación de un mapa dinámico de las zonas propensas al blanqueamiento coralino en el Arrecife de Varadero's Hope Spot, ubicado en la Bahía de Cartagena, Colombia, durante el período 2023-2024. Se aplicaron técnicas avanzadas de teledetección y algoritmos de machine learning (Random Forest, ANN y U-Net) a imágenes satelitales de PlanetScope y datos de temperatura marina de NOAA para identificar y clasificar las áreas de alto riesgo. El modelo U-Net demostró el mejor desempeño en la segmentación, con una precisión global del 93.5% y un índice Kappa de 0.90. Las validaciones en campo se realizaron mediante inmersiones en el arrecife para confirmar los resultados. El mapa final es una herramienta clave para la gestión ambiental y apoya el desarrollo de estrategias de conservación destinadas a proteger este ecosistema único y resiliente. | |
| dc.description.abstract | The project focuses on creating a dynamic map of bleaching-prone areas in Varadero's Hope Spot Reef, located in the Bay of Cartagena, Colombia, during the 2023-2024 period. Advanced remote sensing techniques and machine learning algorithms (Random Forest, ANN, and U-Net) were applied to PlanetScope satellite images and NOAA sea temperature data to identify and classify high-risk areas. The U-Net model demonstrated the best performance in segmentation, achieving an overall accuracy of 93.5% and a Kappa index of 0.90. Field validations were conducted through reef dives to confirm the results. The final map serves as a key tool for environmental management and supports the development of conservation strategies aimed at protecting this unique and resilient ecosystem. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/93231 | |
| dc.relation.references | Alegría‐Ortega, A., Sanín‐Pérez, M. J., Quan‐Young, L. I., & Londoño‐Mesa, M. H. (2021). Genetic structure of Orbicella faveolata population reveals high connectivity among a marine protected area and Varadero Reef in the Colombian Caribbean. Aquatic Conservation Marine and Freshwater Ecosystems, 31(4), 764–776. https://doi.org/10.1002/aqc.3489 | |
| dc.relation.references | Artola, Á., Antonio, J., & Carrasco, P. (2019). Clasificación de imágenes usando redes neuronales convolucionales en python. https://idus.us.es/bitstream/handle/11441/89506/TFG-2402-ARTOLA.pdf?sequence=1&isAllowed=y | |
| dc.relation.references | Bakker, A. C., Gleason, A. C. R., Dempsey, A. C., Fox, H. E., Green, R. H., & Purkis, S. J. (2024). Remotely sensed habitat diversity predicts species diversity on coral reefs. Remote Sensing of Environment, 302(113990), 113990. https://doi.org/10.1016/j.rse.2024.113990 | |
| dc.relation.references | Bakker, A. C., Gleason, A., Dempsey, A., Bachman, S., Burdick, D., Tarano, A. M., Chirayath, V., & Purkis, S. (2024). Remotely Sensed Spectral Variability Predicts Reef Fish Diversity. https://doi.org/10.2139/ssrn.4858574 | |
| dc.relation.references | Bayler, E., Chang, P. S., De La Cour, J. L., Helfrich, S. R., Ignatov, A., Key, J., Lance, V., Leuliette, E. W., Byrne, D. A., Liu, Y., & DiGiacomo, P. M. (2024). Satellite Oceanography in NOAA: Research, Development, Applications, and Services Enabling Societal Benefits from Operational and Experimental Missions. Remote Sensing, 16(14), 2656. https://doi.org/10.3390/rs16142656 | |
| dc.relation.references | Caballero Barriga, E. R. (2021). Aplicación práctica de la visión artificial para el reconocimiento de rostros en una imagen, utilizando redes neuronales y algoritmos de reconocimiento de objetos de la biblioteca OpenCV. Universidad Distrital Francisco José de Caldas. | |
| dc.relation.references | Callejas, I. A., Osborn, K. E., Lee, C., Mishra, D. R., Gomez, N. A., Carrias, A., Cherrington, E. A., Griffin, R., Rosado, A., Rosado, S., & Jay, J. A. (2022). A GEE toolkit for water quality monitoring from 2002 to 2022 in support of SDG 14 and coral health in marine protected areas in Belize. Frontiers in Remote Sensing, 3(1020184). https://doi.org/10.3389/frsen.2022.1020184 | |
| dc.relation.references | European Space Agency. (2022). About PlanetScope. https://earth.esa.int/eogateway/missions/planetscope | |
| dc.relation.references | Garzón-Ferreira, J., M.C. Reyes-Nivia y A. Rodríguez-Ramírez. 2002b. Manual de métodos del SIMACSistema Nacional de Monitoreo de Arrecifes Coralinos en Colombia. INVEMAR, Santa Marta, 102p. | |
| dc.relation.references | Giles, A., Ren, K., Davies, J., Abrego, D., & Kelaher, B. P. (2023). Combining drones and deep learning to automate coral reef assessment with RGB imagery. Remote Sensing, 15(9), 2238. https://doi.org/10.3390/rs15092238 | |
| dc.relation.references | Graham, N. A. J., Robinson, J. P. W., Smith, S. E., Govinden, R., Gendron, G., & Wilson, S. K. (2020). Changing role of coral reef marine reserves in a warming climate. Nature Communications, 11(1), 2000–2008. https://doi.org/10.1038/s41467-020-15863-z | |
| dc.relation.references | Hamylton, S. M., Zhou, Z., & Wang, L. (2020). What Can Artificial Intelligence Offer Coral Reef Managers? Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.603829 | |
| dc.relation.references | Hedley, J. D., Roelfsema, C. M., Chollett, I., Harborne, A. R., Heron, S. F., Weeks, S., Skirving, W. J., Strong, A. E., Eakin, C. M., Christensen, T. R. L., Ticzon, V., Bejarano, S., & Mumby, P. J. (2016). Remote Sensing of Coral Reefs for Monitoring and Management: A Review. Remote Sensing, 8(2). https://doi.org/10.3390/rs8020118 | |
| dc.relation.references | Kennedy, E. V, Roelfsema, C. M., Lyons, M. B., Kovacs, E. M., Borrego-Acevedo, R., Roe, M., Phinn, S. R., Larsen, K., Murray, N. J., Yuwono, D., Wolff, J., & Tudman, P. (2021). Reef Cover, a coral reef classification for global habitat mapping from remote sensing. Scientific Data, 8(1). https://doi.org/10.1038/s41597-021-00958-z | |
| dc.relation.references | B. Lyons, M., M. Roelfsema, C., v. Kennedy, E., M. Kovacs, E., Borrego-Acevedo, R., Markey, K., Roe, M., M. Yuwono, D., L. Harris, D., R. Phinn, S., Asner, G. P., Li, J., E. Knapp, D., S. Fabina, N., Larsen, K., Traganos, D., & J. Murray, N. (2020). Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sensing in Ecology and Conservation, 6(4), 557–568. https://doi.org/https://doi.org/10.1002/rse2.157 | |
| dc.relation.references | McField, M. (2017a). Impacts of Climate Change on Coral in the Coastal and Marine Environments of Caribbean Small Island Developing States (SIDS). Science Review, 52–59. https://assets.publishing.service.gov.uk/media/5a81caf240f0b62305b90d53/6._Coral.pdf | |
| dc.relation.references | Mission Blue. (2018). Corales de Varadero: Varadero’s coral reef off the Colombian coast at Cartagena is designated a Hope Spot. https://missionblue.org/2018/04/corales-de-varadero-varaderos-coral-reef-off-the-colombian-coast-at-cartagena-is-designated-a-hope-spot/ | |
| dc.relation.references | Naciones Unidas. (2018). La Agenda 2030 y los Objetivos de Desarrollo Sostenible Una oportunidad para América Latina y el Caribe Objetivos, metas e indicadores mundiales. https://repositorio.cepal.org/server/api/core/bitstreams/cb30a4de-7d87-4e79-8e7a-ad5279038718/content | |
| dc.relation.references | National Oceanic and Atmospheric Administration. (2024). About our agency. https://www.noaa.gov/about-our-agency | |
| dc.relation.references | Nguyen, K. v, Duong, V. C., Kieu, K. T., Tran, T. v, Huang, C., Reef, R., & Hoang, T. M. (2021). Characterizing the spatial distribution of coral reefs in the South-Central Coast region of Viet Nam using Planetscope imagery. PeerJ, 9, e12413. https://doi.org/10.7717/peerj.12413 | |
| dc.relation.references | Pizarro, V., Rodríguez, S. C., López-Victoria, M., Zapata, F. A., Zea, S., Galindo-Martínez, C. T., Iglesias-Prieto, R., Pollock, J., & Medina, M. (2017). Unraveling the structure and composition of Varadero Reef, an improbable and imperiled coral reef in the colombian caribbean. PeerJ, 5, e4119. https://doi.org/10.7717/peerj.4119 | |
| dc.relation.references | Radford, B., Puotinen, M., Sahin, D., Boutros, N., Wyatt, M., & Gilmour, J. (2024). A remote sensing model for coral recruitment habitat. Remote Sensing of Environment, 311(114231), 114231. https://doi.org/10.1016/j.rse.2024.114231 | |
| dc.relation.references | Restrepo, J. D., Zapata, P., Díaz, J. M., Garzón-Ferreira, J., & García, C. B. (2006). Fluvial fluxes into the Caribbean Sea and their impact on coastal ecosystems: The Magdalena River, Colombia. Global and Planetary Change, 50(1), 33–49. https://doi.org/https://doi.org/10.1016/j.gloplacha.2005.09.002 | |
| dc.relation.references | Ruiz Fernández, M. R., & Piraquive Gamba, M. A. (2022). Plugin Machine Learning para QGIS 3.x para la clasificación de imágenes satelitales. Universidad Distrital Francisco José de Caldas. | |
| dc.relation.references | Sánchez Zambrano, J. L., & Zaraza Aguilera, M. A. (2019). Aplicativo web para el análisis de series de tiempo de imágenes satelitales para variables meteorológicas e índices. Universidad Distrital Francisco José de Caldas. | |
| dc.relation.references | Skirving, W., Marsh, B., De La Cour, J., Liu, G., Harris, A., Maturi, E., Geiger, E., & Eakin, C. M. (2020). CoralTemp and the Coral Reef Watch Coral Bleaching Heat Stress Product Suite Version 3.1. Remote Sensing, 12(23), 3856. https://doi.org/10.3390/rs12233856 | |
| dc.relation.references | Spalding, M., Burke, L., Wood, S. A., Ashpole, J., Hutchison, J., & zu Ermgassen, P. (2017). Mapping the global value and distribution of coral reef tourism. Marine Policy, 82, 104–113. https://doi.org/10.1016/J.MARPOL.2017.05.014 | |
| dc.relation.references | Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G., & van Woesik, R. (2019). A global analysis of coral bleaching over the past two decades. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09238-2 | |
| dc.relation.references | Thi, T., Hoang Anh, L., & Thuy, T. (2023). Coral reefs detecting with Artificial Neural Network classification and PlanetScope imagery in Cu Lao Xanh Island, Binh Dinh province. IOP Conference Series Earth and Environmental Science, 1170(1), 12024. https://doi.org/10.1088/1755-1315/1170/1/012024 | |
| dc.relation.references | Unriza Vargas, J. A. (2021). Un modelo basado en sensores remotos e inteligencia artificial para la estimación de la degradación del bosque. Universidad Distrital Francisco José de Caldas. | |
| dc.relation.references | Xu, J., Zhao, J., Wang, F., Chen, Y., & Lee, Z. (2021). Detection of coral reef bleaching based on Sentinel-2 multi-temporal imagery: Simulation and case study. Frontiers in Marine Science, 8(584263). https://doi.org/10.3389/fmars.2021.584263 | |
| dc.relation.references | Zapata-Ramírez, P. A., Hernández-Hamón, H., Fitzsimmons, C., Cano, M., García, J., Zuluaga, C. A., & Vásquez, R. E. (2023). Development of a Google Earth Engine-Based application for the management of shallow coral reefs using drone imagery. Remote Sensing, 15(14), 3504. https://doi.org/10.3390/rs15143504 | |
| dc.relation.references | Planet Labs. (2022). Planet imagery product specifications. Tomado en febrero 1, 2025 de https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf | |
| dc.relation.references | European Space Agency. (n.d.). PlanetScope. Earth Observation Gateway. Tomado en febrero 1, 2025 de https://earth.esa.int/eogateway/missions/planetscope | |
| dc.relation.references | Planet Labs. (n.d.). PlanetScope: Asset types. Planet Developer Center. Tomado en febrero 1, 2025 de https://developers.planet.com/docs/data/planetscope/#asset-types | |
| dc.relation.references | Instituto de Investigaciones Marinas y Costeras (INVEMAR). (2020). Capa vectorial de unidades de las áreas coralinas de Colombia. Multiescalar. Año 2020. Proyecto de Atlas Digital de Áreas Coralinas de Colombia. Recuperado de http://cinto.invemar.org.co/geonetwork/srv/spa/metadata.show?id=4542&currTab=inspire | |
| dc.relation.references | Environmental Systems Research Institute (ESRI). (s.f.). Extract bands function. ArcGIS Pro. Recuperado de https://pro.arcgis.com/es/pro-app/3.3/help/analysis/raster-functions/extract-bands-function.htm | |
| dc.relation.references | EOS Data Analytics. (s.f.). NDVI: Preguntas frecuentes. Recuperado de https://eos.com/es/blog/ndvi-preguntas-frecuentes/ | |
| dc.relation.references | EOS Data Analytics. (s.f.). NDWI: Índice de agua de diferencia normalizada. Recuperado de https://eos.com/es/make-an-analysis/ndwi/ | |
| dc.relation.references | Digital Earth Africa. (s.f.). Wetland turbidity. Recuperado de https://docs.digitalearthafrica.org/en/latest/sandbox/notebooks/Real_world_examples/Wetland_turbidity.html | |
| dc.relation.references | Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention (pp. 234-241). Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28 | |
| dc.relation.references | National Oceanic and Atmospheric Administration (NOAA). (n.d.). 5km Degree Heating Week (DHW) data – Version 3.1. Retrieved February 3, 2025, from https://www.star.nesdis.noaa.gov/pub/socd/mecb/crw/data/5km/v3.1_op/nc/v1.0/daily/ | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.subject | Blanqueamiento coralino | |
| dc.subject | Arrecife de Varadero's Hope Spot, Cartagena de Indias | |
| dc.subject | Aprendizaje automático | |
| dc.subject | PlanetScope | |
| dc.subject | Red Neuronal UNET | |
| dc.subject | Monitoreo de áreas marinas | |
| dc.subject.keyword | Coral bleaching | |
| dc.subject.keyword | Varadero’s Hope Spot Reef, Cartagena de Indias | |
| dc.subject.keyword | Machine learning | |
| dc.subject.keyword | PlanetScope | |
| dc.subject.keyword | UNET Neural Network | |
| dc.subject.keyword | Marine area monitoring | |
| dc.subject.lemb | Ingeniería Catastral y Geodesia -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Detección a distancia | |
| dc.subject.lemb | Aprendizaje automático (Inteligenia artificial) | |
| dc.subject.lemb | Arrecifes madreporicos | |
| dc.subject.lemb | Gestión ambiental | |
| dc.title | Generación de un mapa dinámico de zonas propensas a blanqueamiento en el arrecife de Varadero’s Hope Spot, Cartagena de Indias, Colombia, aplicando algoritmos de machine learning en imágenes de PlanetScope y datos de temperatura de la superficie del mar de NOAA en el periodo 2023-2024. | |
| dc.title.alternative | Uso de machine learning para la detección de zonas de blanqueamiento en corales de Varadero. | |
| dc.title.titleenglish | Generation of a dynamic map of coral bleaching risk zones in Varadero’s Hope Spot reef, Cartagena de Indias, Colombia, using machine learning with PlanetScope images and NOAA sea surface temperature data (2023-2024). | |
| dc.type | bachelorThesis | |
| dc.type.degree | Monografía |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
