Balance óptimo de fases en redes de distribución trifásicas considerando la compensación de potencia reactiva en derivación con bancos de condensadores de paso fijo

dc.contributor.advisorMontoya Giraldo, Oscar Danilo
dc.contributor.authorMedina Gaitán, Daniel Federico Antonio
dc.contributor.authorRozo Rodríguez, Ian Dwrley
dc.contributor.orcidMontoya Giraldo, Oscar Danilo [0000-0001-6051-4925]
dc.date.accessioned2024-06-24T17:40:26Z
dc.date.available2024-06-24T17:40:26Z
dc.date.created2022-12-26
dc.descriptionEl método de optimización de agujeros negros (BHO) se aplica en esta investigación para resolver el problema de la compensación óptima de potencia reactiva con bancos de condensadores de paso fijo en redes trifásicas considerando el problema de equilibrio de fase simultáneamente. Un enfoque de optimización maestro-esclavo basado en el BHO en la etapa maestra considera una codificación discreta y el método de flujo de potencia de aproximación sucesiva en la etapa esclava. Se proponen dos evaluaciones diferentes para medir el impacto de la compensación de potencia reactiva en derivación y las estrategias de equilibrio de fase. Estas evaluaciones incluyen un enfoque de metodología de solución en cascada (CSM) y una metodología de solución simultánea (SSM). El enfoque CSM resuelve el problema de equilibrio de fase en la primera etapa. Esta solución se implementa en la red de distribución para determinar las baterías de condensadores de paso fijo instaladas en la segunda etapa. En el SSM, ambos problemas se resuelven utilizando un único vector de codificación. Los resultados numéricos en los sistemas de bus IEEE 8 e IEEE 27 demuestran la eficacia de la metodología de solución propuesta, donde el SSM presenta los mejores resultados numéricos en ambos alimentadores de prueba con reducciones de alrededor del 32,27 %. y 33,52%, respectivamente, en comparación con el CSM. Para validar todos los logros numéricos en el ambiente de programación MATLAB se utilizó el software DIgSILENT para realizar validaciones cruzadas. Cabe destacar que la selección del software DIgISLENT se basa en su amplio reconocimiento en la literatura científica y la industria por realizar validaciones cuasi-experimentales como etapa previa a la implementación física de cualquier intervención de red en redes eléctricas y de distribuciónspa
dc.description.abstractThe black hole optimization (BHO) method is applied in this research to solve the problem of the optimal reactive power compensation with fixed-step capacitor banks in three-phase networks considering the phase-balancing problem simultaneously. A master–slave optimization approach based on the BHO in the master stage considers a discrete codification and the successive approximation power flow method in the slave stage. Two different evaluations are proposed to measure the impact of the shunt reactive power compensation and the phase-balancing strategies. These evaluations include a cascade solution methodology (CSM) approach and a simultaneous solution methodology (SSM). The CSM approach solves the phase-balancing problem in the first stage. This solution is implemented in the distribution network to determine the fixed-step capacitor banks installed in the second stage. In the SSM, both problems are solved using a unique codification vector. Numerical results in the IEEE 8- and IEEE 27-bus systems demonstrate the effectiveness of the proposed solution methodology, where the SSM presents the better numerical results in both test feeders with reductions of about 32.27% and 33.52%, respectively, when compared with the CSM. To validate all the numerical achievements in the MATLAB programming environment, the DIgSILENT software was used for making cross-validations. Note that the selection of the DIgISLENT software is based on its wide recognition in the scientific literature and industry for making quasi-experimental validations as a previous stage to the physical implementation of any grid intervention in power and distribution networksspa
dc.format.mimetypepdfspa
dc.identifier.urihttp://hdl.handle.net/11349/36851
dc.language.isospaspa
dc.relation.referencesChowdhury, P.K.R.; Weaver, J.E.; Weber, E.M.; Lunga, D.; LeDoux, S.T.M.; Rose, A.N.; Bhaduri, B.L. Electricity consumption patterns within cities: Application of a data-driven settlement characterization method. Int. J. Digit. Earth 2019, 13, 119–135.spa
dc.relation.referencesMutumba, G.S.; Odongo, T.; Okurut, N.F.; Bagire, V. A survey of literature on energy consumption and economic growth. Energy Rep. 2021, 7, 9150–9239.spa
dc.relation.referencesNogueira, T.; Sousa, E.; Alves, G.R. Electric vehicles growth until 2030: Impact on the distribution network power. Energy Rep. 2022, 8, 145–152.spa
dc.relation.referencesArefi, A.; Shahnia, F.; Ledwich, G. (Eds.) Electric Distribution Network Management and Control; Springer: Singapore, 2018.spa
dc.relation.referencesCortés-Caicedo, B.; Avellaneda-Gómez, L.S.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. Application of the Vortex Search Algorithm to the Phase-Balancing Problem in Distribution Systems. Energies 2021, 14, 1282spa
dc.relation.referencesArefi, A.; Olamaei, J.; Yavartalab, A.; Keshtkar, H. Loss reduction experiences in electric power distribution companies of Iran. Energy Procedia 2012, 14, 1392–1397spa
dc.relation.referencesAbagiu, S.; Lepadat, I.; Helerea, E. Solutions for energy losses reduction in power networks with renewable energy sources. In Proceedings of the 2016 International Conference on Applied and Theoretical Electricity (ICATE), Craiova, Romania, 6–8 October 2016spa
dc.relation.referencesHesaroor, K.; Das, D. Annual energy loss reduction of distribution network through reconfiguration and renewable energy sources. Int. Trans. Electr. Energy Syst. 2019, 29, e12099spa
dc.relation.references. Chernykh, A.G.; Barykina, Y.N.; Morozevich, O.A. Development of methods for minimizing energy losses in electrical networks. IOP Conf. Ser. Earth Environ. Sci. 2022, 1070, 012006spa
dc.relation.referencesPrakash, D.; Lakshminarayana, C. Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm. Alex. Eng. J. 2017, 56, 499–509.spa
dc.relation.referencesSulaiman, M.H.; Mustaffa, Z. Optimal placement and sizing of FACTS devices for optimal power flow using metaheuristic optimizers. Results Control Optim. 2022, 8, 100145.spa
dc.relation.referencesValencia, A.; Hincapie, R.A.; Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks. J. Energy Storage 2021, 34, 102158spa
dc.relation.referencesGhiasi, M. Detailed study, multi-objective optimization, and design of an AC-DC smart microgrid with hybrid renewable energy resources. Energy 2019, 169, 496–507.spa
dc.relation.referencesSalau, A.O.; Gebru, Y.W.; Bitew, D. Optimal network reconfiguration for power loss minimization and voltage profile enhancement in distribution systems. Heliyon 2020, 6, e04233spa
dc.relation.referencesAskarzadeh, A. Capacitor placement in distribution systems for power loss reduction and voltage improvement: A new methodology. IET Gener. Transm. Distrib. 2016, 10, 3631–3638spa
dc.relation.referencesGhiasi, M.; Olamaei, J. Optimal capacitor placement to minimizing cost and power loss in Tehran metro power distribution system using ETAP (A case study). Complexity 2016, 21, 483–493.spa
dc.relation.referencesTamilselvan, V.; Jayabarathi, T.; Raghunathan, T.; Yang, X.S. Optimal capacitor placement in radial distribution systems using flower pollination algorithm. Alex. Eng. J. 2018, 57, 2775–2786.spa
dc.relation.referencesDevabalaji, K.; Yuvaraj, T.; Ravi, K. An efficient method for solving the optimal sitting and sizing problem of capacitor banks based on cuckoo search algorithm. Ain Shams Eng. J. 2018, 9, 589–597spa
dc.relation.referencesTaher, S.A.; Bagherpour, R. A new approach for optimal capacitor placement and sizing in unbalanced distorted distribution systems using hybrid honey bee colony algorithm. Int. J. Electr. Power Energy Syst. 2013, 49, 430–448.spa
dc.relation.references. Ogita, Y.; Mori, H. Parallel Dual Tabu Search for Capacitor Placement in Smart Grids. Procedia Comput. Sci. 2012, 12, 307–313.spa
dc.relation.referencesFaiz, M.; Chang, A.Q.; Memon, N.; Pathan, A.Z.U. Optimal Capacitor Placement Using Tabu Search Algorithm to Improve the Operational Efficiency in GEPCO Network. Int. J. Electr. Electron. Eng. 2021, 8, 1–5.spa
dc.relation.referencesGil-González, W.; Montoya, O.D.; Rajagopalan, A.; Grisales-Noreña, L.F.; Hernández, J.C. Optimal Selection and Location of Fixed-Step Capacitor Banks in Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Energies 2020, 13, 4914spa
dc.relation.referencesKhan, N.A.; Ghosh, S.; Ghoshal, S.P. Binary Gravitational Search based Algorithm for Optimum Siting and Sizing of DG and Shunt Capacitors in Radial Distribution Systems. Energy Power Eng. 2013, 05, 1005–1010spa
dc.relation.referencesZadeh, A.Z.; Andami, H.; Talavat, V.; Ebrahimi, J. Optimal Capacitor Placement in the Unbalanced Distribution Networks Contaminated by Harmonic through Imperialist Competitive Algorithm. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 1230–1235.spa
dc.relation.referencesMurty, V.; Kumar, A. Capacitor Allocation in Unbalanced Distribution System under Unbalances and Loading Conditions. Energy Procedia 2014, 54, 47–74.spa
dc.relation.referencesEcheverri, M.G.; Rendón, R.A.G.; Lezama, J.M.L. Optimal Phase Balancing Planning for Loss Reduction in Distribution Systems using a Specialized Genetic Algorithm. Ing. Cienc. 2012, 8, 121–140.spa
dc.relation.referencesKhodr, H.; Zerpa, I.; de Jesu’s, P.D.O.; Matos, M. Optimal Phase Balancing in Distribution System Using Mixed-Integer Linear Programming. In Proceedings of the 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, Caracas, Venezuela, 15–18 August 2006spa
dc.relation.referencesEl Hassan, M.; Najjar, M.; Tohme, R. A Practical Way to Balance Single Phase Loads in a Three Phase System at Distribution and Unit Level. Renew. Energy Power Qual. J. 2022, 20, 173–177.spa
dc.relation.references. Mansani, S.; Udaykumay, R.Y. An optimal phase balancing technique for unbalanced three-phase secondary distribution systems. In Proceedings of the 2016 IEEE 7th Power India International Conference (PIICON), Bikaner, India, 25–27 November 2016.spa
dc.relation.referencesAlhmoud, L.; Nawafleh, Q.; Merrji, W. Three-Phase Feeder Load Balancing Based Optimized Neural Network Using Smart Meters. Symmetry 2021, 13, 2195.spa
dc.relation.references. Cruz-Reyes, J.L.; Salcedo-Marcelo, S.S.; Montoya, O.D. Application of the Hurricane-Based Optimization Algorithm to the Phase-Balancing Problem in Three-Phase Asymmetric Networks. Computers 2022, 11, 43.spa
dc.relation.referencesPandey, A.; Jereminov, M.; Wagner, M.R.; Bromberg, D.M.; Hug, G.; Pileggi, L. Robust Power Flow and Three-Phase Power Flow Analyses. IEEE Trans. Power Syst. 2019, 34, 616–626.spa
dc.relation.referencesGarces, A. A Linear Three-Phase Load Flow for Power Distribution Systems. IEEE Trans. Power Syst. 2016, 31, 827–828.spa
dc.relation.referencesMarini, A.; Mortazavi, S.; Piegari, L.; Ghazizadeh, M.S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations. Electr. Power Syst. Res. 2019, 170, 229–243.spa
dc.relation.referencesShen, T.; Li, Y.; Xiang, J. A Graph-Based Power Flow Method for Balanced Distribution Systems. Energies 2018, 11, 511spa
dc.relation.references. Gnanambal, K.; Marimuthu, N.; Babulal, C. Three-phase power flow analysis in sequence component frame using Hybrid Particle Swarm Optimization. Appl. Soft Comput. 2011, 11, 1727–1734.spa
dc.relation.referencesSingh, M.K.; Gupta, A.R.; Kumar, A. Analysis of Unbalanced Radial Distribution System with SVR and Impact of Phase Shifter Angle considering Time Varying Loads. Smart Sci. 2021, 1–16.spa
dc.relation.referencesSwapna, M.; Udaykumar, R.Y. An algorithm for optimal phase balancing of secondary distribution systems at each node. In Proceedings of the 2016 IEEE PES 13th International Conference on Transmission & Distribution Construction, Operation & Live-Line Maintenance (ESMO), Columbus, OH, USA, 12–15 September 2016.spa
dc.relation.referencesKumar, S.; Datta, D.; Singh, S.K. Black Hole Algorithm and Its Applications. In Studies in Computational Intelligence; Springer International Publishing: Cham, Switzerland, 2014; pp. 147–170.spa
dc.relation.referencesAbualigah, L.; Elaziz, M.A.; Sumari, P.; Khasawneh, A.M.; Alshinwan, M.; Mirjalili, S.; Shehab, M.; Abuaddous, H.Y.; Gandomi, A.H. Black hole algorithm: A comprehensive survey. Appl. Intell. 2022, 52, 11892–11915.spa
dc.relation.referencesVelasquez, O.S.; Montoya, O.D.; Garrido, V.M.; Grisales, L.F. Optimal Power Flow in Direct-Current Power Grids via Black Hole Optimization. Adv. Electr. Electron. Eng. 2019, 17, 24–32 .spa
dc.relation.referencesArenas-Acuña, C.A.; Rodriguez-Contreras, J.A.; Montoya, O.D.; Rivas-Trujillo, E. Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures. Computers 2021, 10, 124.spa
dc.relation.referencesHatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184spa
dc.relation.referencesRamana, T.; Ganesh, V.; Sivanagaraju, S. Distributed Generator Placement In addition, Sizing in Unbalanced Radial Distribution System. Cogener. Distrib. Gener. J. 2010, 25, 52–71.spa
dc.relation.referencesGanesh, S.; Perilla, A.; Torres, J.R.; Palensky, P.; van der Meijden, M. Validation of EMT Digital Twin Models for Dynamic Voltage Performance Assessment of 66 kV Offshore Transmission Network. Appl. Sci. 2020, 11, 244spa
dc.relation.referencesBifaretti, S.; Bonaiuto, V.; Pipolo, S.; Terlizzi, C.; Zanchetta, P.; Gallinelli, F.; Alessandroni, S. Power Flow Management by Active Nodes: A Case Study in Real Operating Conditions. Energies 2021, 14, 4519.spa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.accessrightsOpenAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectProblema de balance de fasesspa
dc.subjectCompensación reactiva en derivaciónspa
dc.subjectOptimización agujero negrospa
dc.subjectAproximaciones sucesivasspa
dc.subjectSolución flujo de potenciaspa
dc.subjectMetodología solución en cascadaspa
dc.subjectMetodología solución en simultáneospa
dc.subject.keywordPhase-balancing problemspa
dc.subject.keywordShunt reactive compensationspa
dc.subject.keywordBlack hole optimizationspa
dc.subject.keywordSuccessive approximationsspa
dc.subject.keywordPower flow solutionspa
dc.subject.keywordCascade solution methodologyspa
dc.subject.keywordSimultaneous solution methodologyspa
dc.subject.lembIngeniería Eléctrica -- Tesis y disertaciones académicasspa
dc.subject.lembCompensación de potencia reactivaspa
dc.subject.lembBancos de condensadoresspa
dc.subject.lembEquilibrio de fasespa
dc.subject.lembOptimización maestro-esclavospa
dc.titleBalance óptimo de fases en redes de distribución trifásicas considerando la compensación de potencia reactiva en derivación con bancos de condensadores de paso fijospa
dc.title.titleenglishOptimal phase-balancing in three-phase distribution networks considering shunt reactive power compensation with fixed-step capacitor banksspa
dc.typearticlespa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
RozoRodriguezIanDwrley2022.pdf
Tamaño:
363.75 KB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
No hay miniatura disponible
Nombre:
Licencia y autorización especial.pdf
Tamaño:
1.16 MB
Formato:
Adobe Portable Document Format
Descripción:
Licencia de uso y publicación

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: