Modelado de distribución de nanopartículas e hipertermia magnética para el cáncer de mama
| dc.contributor.advisor | Camargo Casallas, Luz Helena | |
| dc.contributor.author | Alomia Casas, Verónica Yulieth | |
| dc.contributor.author | Moreno Mejía, Cristian Camilo | |
| dc.contributor.orcid | Camargo Casallas Luz Helena [0009-0005-7332-5628] | |
| dc.date.accessioned | 2025-08-19T16:40:31Z | |
| dc.date.available | 2025-08-19T16:40:31Z | |
| dc.date.created | 2025-07-11 | |
| dc.description | Este trabajo presenta el modelado y análisis computacional de la distribución de nanopartículas magnéticas en tejido mamario con el fin de evaluar su comportamiento durante terapias de hipertermia para el tratamiento del cáncer de mama. Se definió una geometría representativa del tejido tumoral basada en imágenes reales, integrando características físicas y topológicas que permiten simular condiciones de contorno realistas. A través de técnicas avanzadas de procesamiento de imágenes, se analizan distribuciones específicas de nanopartículas sobre imágenes segmentadas del tejido mamario. Posteriormente, se evalúa la uniformidad térmica generada por la excitación magnética en distintas configuraciones, considerando variables como la concentración de nanopartículas, la forma del tumor y las condiciones de aplicación del campo magnético. | |
| dc.description.abstract | This work presents the computational modeling and analysis of the distribution of magnetic nanoparticles in breast tissue in order to evaluate their behavior during hyperthermia therapies for breast cancer treatment. A representative geometry of the tumor tissue was defined based on real imaging data, integrating physical and topological characteristics that allow for the simulation of realistic boundary conditions. Through advanced image processing techniques, specific distributions of nanoparticles are analyzed on segmented images of breast tissue. Subsequently, the thermal uniformity generated by magnetic excitation is evaluated under different configurations, considering variables such as nanoparticle concentration, tumor shape, and the conditions of magnetic field application. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/98479 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Floor, S. L., Dumont, J. E., Maenhaut, C., & Raspe, E. (2012). Hallmarks of cancer: of all cancer cells, all the time? Trends in Molecular Medicine, 18(9), 509–515. | |
| dc.relation.references | National Cancer Institute. (2021). What is cancer? Recuperado el 1 de junio de 2025 de https://www.cancer.gov/about-cancer | |
| dc.relation.references | Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. | |
| dc.relation.references | National Cancer Institute. (2024). Cancer statistics for 2024. Recuperado el 1 de junio de 2025 de https://www.cancer.gov/about-cancer/understanding/statistics | |
| dc.relation.references | National Cancer Institute. (2023). Types of cancer treatment. Recuperado el 1 de junio de 2025 de https://www.cancer.gov/about-cancer/treatment/types | |
| dc.relation.references | Rojas-Aguirre, Y., Aguado-Castrejón, K., & González-Méndez, I. (2016). La nanomedicina y los sistemas de liberación de fármacos: ¿la revolución de la terapia contra el cáncer? Educación Química, 27(4), 286–291. | |
| dc.relation.references | Brüningk, S., Powathil, G., Ziegenhein, P., Ijaz, J., Rivens, I., Nill, S., Chaplain, M., Oelfke, U., & ter Haar, G. (2018). Combining radiation with hyperthermia: a multiscale model informed by in vitro experiments. Journal of the Royal Society Interface, 15(138), 20170681. | |
| dc.relation.references | Bull, J. A., Mech, F., Quaiser, T., Waters, S. L., & Byrne, H. M. (2020). Mathematical modelling reveals cellular dynamics within tumour spheroids. PLoS Computational Biology, 16(8), e1007961. | |
| dc.relation.references | Leedale, J. A., Kyffin, J. A., Harding, A. L., Colley, H. E., Murdoch, C., Sharma, P., Williams, D. P., Webb, S. D., & Bearon, R. N. (2020). Multiscale modelling of drug transport and metabolism in liver spheroids. Interface Focus, 10(2), 20190041. | |
| dc.relation.references | National Cancer Institute. (2024). Tumor. Recuperado de https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario-cancer/def/tumor | |
| dc.relation.references | Lambert, A. W., Pattabiraman, D. R., & Weinberg, R. A. (2017). Emerging biological principles of metastasis. Cell, 168(4), 670–691. | |
| dc.relation.references | Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. | |
| dc.relation.references | Organización Mundial de la Salud. (s.f.). Cáncer de mama. Recuperado de https://www.who.int/es/news-room/fact-sheets/detail/breast-cancer | |
| dc.relation.references | Sociedad Española de Oncología Médica (SEOM). (s.f.). Cáncer de mama. Recuperado el 1 de junio de 2025 de https://seom.org/125-Información%20al%20Público%20-%20Patologías/cancer-de-mama | |
| dc.relation.references | Aznar, M. Á., & Raman, S. (2018). Magnetic nanoparticles in cancer therapy: How can thermal approaches help? Journal of Nanobiotechnology, 16(1), 29. | |
| dc.relation.references | Chattopadhyay, A., & Banerjee, R. K. (2007). Modelling blood flow in arteries using fluid-structure interaction. Medical & Biological Engineering & Computing, 45(6), 545–556. | |
| dc.relation.references | Bruus, H. (2008). Theoretical Microfluidics. Oxford University Press. | |
| dc.relation.references | Ferguson, J. D., & Kempen, L. J. T. (2018). Nanomedicine and fluid dynamics: The role of laminar flow in nanoparticle delivery. Nanomedicine, 13(4), 469–48 | |
| dc.relation.references | COMSOL Inc. (2023). Basics of modeling laminar flow in COMSOL Multiphysics. Recuperado de https://www.comsol.com/support/learning-center/article/Basics-of-Modeling-Laminar-Flow-in-comsolmph-74961 | |
| dc.relation.references | Tran, H. M., & Kim, D. H. (2021). Transitional flow dynamics in microvascular bifurcations: Implications for targeted nanoparticle delivery. Biomedical Engineering Letters, 11, 49–58. | |
| dc.relation.references | Karniadakis, G., & Beskok, A. (2005). Microflows and Nanoflows: Fundamentals and Simulation. Springer. | |
| dc.relation.references | Phillips, R. J., & Lee, Y. J. (2020). Advances in turbulent flow management for drug delivery systems. Advanced Drug Delivery Reviews, 160, 104–118. | |
| dc.relation.references | COMSOL Inc. (2024). Particle Tracing Module User's Guide. Recuperado el 4 de junio de 2025 de https://doc.comsol.com/5.6/doc/com.comsol.help.particle/particle_ug_modeling.05.05.html | |
| dc.relation.references | Lee, R. S., Gimenez, F., Hoogi, A., Miyake, K. K., Gorovoy, M., & Rubin, D. L. (2017). A curated mammography data set for use in computer-aided detection and diagnosis research. Scientific Data, 4, 170177. | |
| dc.relation.references | National Cancer Institute (NCI). (s.f.). The National Biomedical Imaging Archive (NBIA). Recuperado de https://imaging.nci.nih.gov | |
| dc.relation.references | Min, H., Wilson, D., Huang, Y., Liu, S., Crozier, S., Bradley, A. P., & Chandra, S. S. (2019). Full CAD via pseudo‑color mammogram & Mask R‑CNN. Repositorio GitHub: https://github.com/Holliemin9090/Mammographic-mass-CAD-via-pseudo-color-mammogram-and-Mask-R-CNN | |
| dc.relation.references | Matterport Inc. (2017). Mask R-CNN implementation on Keras and TensorFlow. GitHub repository. https://github.com/matterport/Mask_RCNN | |
| dc.relation.references | He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision, 2961–2969. | |
| dc.relation.references | Aurenhammer, F. (1991). Voronoi diagrams — a survey of a fundamental geometric data structure. ACM Computing Surveys, 23(3), 345–405. | |
| dc.relation.references | Universidad de Sevilla. (s.f.). Tema 3: El método de los elementos finitos (MEF). Fundamentos de Gráficos por Computador e Ingeniería de la Visualización. Recuperado de https://asignatura.us.es/fgcitig/contenidos/gctem3ma.htm | |
| dc.relation.references | Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The Finite Element Method for Solid and Structural Mechanics (6th ed.). Elsevier Butterworth-Heinemann. | |
| dc.relation.references | Logg, A., Mardal, K.-A., & Wells, G. (2012). Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Springer. https://doi.org/10.1007/978-3-642-23099-8 | |
| dc.relation.references | Overgaard, J. (1989). The current and potential role of hyperthermia in radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 16(3), 535–547. https://doi.org/10.1016/0360-3016(89)90470-7 | |
| dc.relation.references | COMSOL Inc. (2024). COMSOL Multiphysics: Modeling and Simulation Software. Recuperado el 1 de junio de 2025 de https://www.comsol.com/comsol-multiphysics | |
| dc.relation.references | Autodesk. (2024). AutoCAD: Software de diseño asistido por computadora. Recuperado el 1 de junio de 2025 de https://www.autodesk.com/products/autocad/overview | |
| dc.relation.references | MathWorks. (2024). What is MATLAB? Recuperado el 1 de junio de 2025 de https://www.mathworks.com/products/matlab.html | |
| dc.relation.references | Python Software Foundation. (2008). Python Logo. Disponible en https://www.python.org/community/logos/ | |
| dc.relation.references | Ito, A., Shinkai, M., Honda, H., & Kobayashi, T. (2005). Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 100(1), 1–11. | |
| dc.relation.references | Pankhurst, Q. A., Connolly, J., Jones, S. K., & Dobson, J. (2003). Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics, 36(13), R167. | |
| dc.relation.references | Sociedad Española de Senología y Patología Mamaria (SESPM). (s.f.). Nueva estrategia terapéutica para el tratamiento del cáncer de mama. Recuperado el 1 de junio de 2025 de https://sespm.es/nueva-estrategia-terapeutica-para-el-tratamiento-del-cancer-de-mama/ | |
| dc.relation.references | COMSOL AB. (2024). Laminar Flow and Particle Tracing Module User’s Guide. COMSOL Multiphysics® Documentation. | |
| dc.relation.references | COMSOL Multiphysics. (s.f.). Particle Tracing Module. Recuperado de https://www.comsol.com/particle-tracing-module | |
| dc.relation.references | Laurent, S., et al. (2020). Magnetic nanoparticles for biomedical applications. Journal of Nanomedicine. | |
| dc.relation.references | Rosensweig, R. E. (2002). Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials, 252, 370–374. https://doi.org/10.1016/S0304-8853(02)00706-0 | |
| dc.relation.references | Jordan, A., Scholz, R., Maier-Hauff, K., Johannsen, M., Wust, P., Nadobny, J., ... & Felix, R. (1999). The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. Journal of Magnetism and Magnetic Materials, 201, 413–419. https://doi.org/10.1016/S0304-8853(99)00088-8 | |
| dc.relation.references | Pennes, H. H. (1948). Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1(2), 93–122. https://doi.org/10.1152/jappl.1948.1.2.93 | |
| dc.relation.references | Johannsen, M., Gneveckow, U., Taymoorian, K., Thiesen, B., Waldöfner, N., Scholz, R., ... & Jordan, A. (2007). Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. European Urology, 52(6), 1653–1662. | |
| dc.relation.references | Thiesen, B., & Jordan, A. (2008). Clinical applications of magnetic nanoparticles for hyperthermia. International Journal of Hyperthermia, 24(6), 467–474. | |
| dc.relation.references | Instituto Nacional del Cáncer de los Estados Unidos. (s.f.). Diccionario del cáncer: Torrente sanguíneo (corriente sanguínea). Recuperado de https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario-cancer/def/torrente-sanguineo | |
| dc.relation.references | Instituto Nacional del Cáncer de los Estados Unidos. (s.f.). Diccionario del cáncer: Nanopartícula. Recuperado de https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario-cancer/def/nanoparticula | |
| dc.relation.references | Instituto Nacional del Cáncer. (s.f.). Terapia de hipertermia. Recuperado el 1 de junio de 2025 de https://www.cancer.gov/espanol/cancer/tratamiento/tipos/terapia-de-hipertermia | |
| dc.relation.references | Fatima, H., Charinpanitkul, T., & Kim, K.-S. (2021). Fundamentals to apply magnetic nanoparticles for hyperthermia therapy. Nanomaterials, 11(5), 1203. https://doi.org/10.3390/nano11051203 | |
| dc.relation.references | SciTechDaily. (2023). Magnetic field therapy improves breast cancer treatment with fewer side effects. Recuperado de https://scitechdaily.com/magnetic-field-therapy-improves-breast-cancer-treatment-with-fewer-side-effects/ | |
| dc.relation.references | Romero Coripuna, R. L., Cordova Fraga, T., Basurto Islas, G., & Guzmán Cabrera, R. (2019). Modelado con COMSOL Multiphysics: Distribución de temperatura de nanopartículas de Fe₃O₄ para terapia oncológica. Computación y Sistemas, 23(1), 101–107. https://doi.org/10.13053/cys-23-1-3146 | |
| dc.relation.references | COMSOL Multiphysics. (s.f.). Inertial Focusing Between Two Parallel Walls. Application ID: 42951. Recuperado de https://www.comsol.com/model/inertial-focusing-between-two-parallel-walls-42951 | |
| dc.relation.references | COMSOL Multiphysics. (s.f.). Pinched Flow Fractionation. Application ID: 102171. Recuperado de https://www.comsol.com/model/pinched-flow-fractionation-102171 | |
| dc.relation.references | COMSOL Multiphysics. (s.f.). Dielectrophoretic Separation of Platelets from Red Blood Cells. Application ID: 17013. Recuperado de https://www.comsol.com/model/dielectrophoretic-separation-of-platelets-from-red-blood-cells-17013 | |
| dc.relation.references | COMSOL Multiphysics. (s.f.). Hepatic Tumor Ablation. Application ID: 497. Recuperado de https://www.comsol.com/model/hepatic-tumor-ablation-497 | |
| dc.relation.references | COMSOL Multiphysics. (s.f.). Microwave Heating of a Cancer Tumor. Application ID: 30. Recuperado de https://www.comsol.com/model/microwave-heating-of-a-cancer-tumor-30 | |
| dc.relation.references | COMSOL Multiphysics. (s.f.). Modeling a Conical Dielectric Probe for Skin Cancer Diagnosis. Application ID: 18693. Recuperado de https://www.comsol.com/model/modeling-a-conical-dielectric-probe-for-skin-cancer-diagnosis-18693 | |
| dc.relation.references | Addlink Software Científico. (2020). Webinar - Taller: Introducción práctica al modelado RF con COMSOL Multiphysics. Recuperado de https://www.addlink.es/eventos/webinar-taller-introduccion-practica-al-modelado-rf-con-comsol-multiphysics | |
| dc.relation.references | COMSOL Multiphysics. (s.f.). Specific Absorption Rate (SAR) in the Human Brain. Application ID: 2190. Recuperado de https://www.comsol.com/model/specific-absorption-rate-sar-in-the-human-brain-2190 | |
| dc.relation.references | Romero Coripuna, R. L., Córdova Fraga, T., Basurto Islas, G., & Guzmán Cabrera, R. (2019). Modelado con COMSOL Multiphysics: Distribución de temperatura de nanopartículas de Fe₃O₄ para terapia oncológica. Computación y Sistemas, 23(1), 101–107. Recuperado de https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-55462019000100101&lng=es&nrm=iso. https://doi.org/10.13053/cys-23-1-3146 | |
| dc.relation.references | Bost, C. (2019). Heat Transfer in Biological Tissue with Thermal Damage Analysis. Recuperado de https://www.comsol.com/blogs/heat-transfer-in-biological-tissue-with-thermal-damage-analysis | |
| dc.relation.references | García, S., & Mendoza, L. (2020). Efectos terapéuticos de la hipertermia en células tumorales. Ciencia Vital, 3(1). Disponible en: https://cienciavital.uacj.mx/cienciadelasalud/SAL3-1-1.html | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Bioingeniería | |
| dc.subject | Cáncer de mama | |
| dc.subject | Campo magnético | |
| dc.subject | Flujo sanguíneo | |
| dc.subject | Hipertemia magnética | |
| dc.subject | Nanopartículas | |
| dc.subject.keyword | Bioengineering | |
| dc.subject.keyword | Breast cancer | |
| dc.subject.keyword | Blood flow | |
| dc.subject.keyword | Magnetic field | |
| dc.subject.keyword | Magnetic hypertermia | |
| dc.subject.keyword | Nanoparticles | |
| dc.subject.lemb | Ingeniería Electrónica -- Tesis y disertaciones académicas | |
| dc.title | Modelado de distribución de nanopartículas e hipertermia magnética para el cáncer de mama | |
| dc.title.titleenglish | Modeling of Nanoparticle Distribution and Magnetic Hyperthermia for Breast Cancer | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Monografía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
