Análisis de la influencia de la adición de biosólidos calcinados en la resistencia a la compresión de un mortero

dc.contributor.advisorPineda Jaimes, Jorge Arturo
dc.contributor.authorRamírez Muñoz, Martín Felipe
dc.contributor.orcidPineda Jaimes, Jorge Arturo [0000-0002-0953-9745]
dc.date.accessioned2025-09-04T20:57:07Z
dc.date.available2025-09-04T20:57:07Z
dc.date.created2025-08-20
dc.descriptionSe estudia la viabilidad de que los biosólidos, provenientes de una planta de tratamiento de aguas residuales (PTAR), sean utilizados como suplemento cementante y sean incinerados a 850 °C. Se prepararon dos tipos de cenizas, diferenciadas por su tiempo de calcinación: BC1 (biosólidos calcinados por sesenta minutos) y BC3 (biosólidos calcinados por ciento ochenta minutos). Ambas fueron incluidas en lugar del 5%, 10%, 15%, 20%, 25% y el 30% de la mezcla de cemento, generando series de probetas cúbicas con dimensiones de 50 mm que se curaron por un lapso de 28 días. Los resultados del ensayo de resistencia a la compresión muestran dos situaciones ideales: 1. BC3 al 5 %, que mejora la resistencia a la compresión hasta los 186 kg/cm² (+52 % en comparación con el control), y 2. BC1 al 30 %, alcanza una resistencia de 218 kg/cm² (+79 % en comparación con el control). El estudio multiescala SEM-EDS (200→2 µm) reveló que la ceniza de 3 horas, la cual es rica en óxidos reactivos de Ca-Si-Al, consume portlandita y produce geles C-S-H/C-A-S-H densos, los cuales tapan el área de transición entre la pasta y el árido. En cambio, la ceniza de 1 hora, con carbono residual, también funciona como agente de curado interno y como filler al llenar capilares a dosificaciones elevadas. Los espectros EDS confirmaron que las mezclas con mejor rendimiento tenían una relación Ca/Si de entre 1.2 y 1.5, así como la existencia de carbón-aluminatos y etringita que fortalecen la matriz.
dc.description.abstractThe feasibility of using biosolids from a wastewater treatment plant (WWTP) as a cementitious supplement and incinerated at 850°C is being studied. Two types of ash were prepared, differentiated by their calcination time: BC1 (biosolids calcined for sixty minutes) and BC3 (biosolids calcined for one hundred and eighty minutes). Both were included in place of 5%, 10%, 15%, 20%, 25%, and 30% of the cement mix, generating series of 50 mm cubic specimens that were cured for a period of 28 days. The compressive strength test results show two ideal situations: 1. BC3 at 5%, which improves the compressive strength to 186 kg/cm² (+52% compared to the control), and 2. BC1 at 30%, reaching a strength of 218 kg/cm² (+79% compared to the control). The multiscale SEM-EDS study (200→2 µm) revealed that the 3-hour ash, which is rich in reactive Ca-Si-Al oxides, consumes portlandite and produces dense C-S-H/C-A-S-H gels, which obscure the transition area between the paste and the aggregate. In contrast, the 1-hour ash, with residual carbon, also functions as an internal curing agent and as a filler by filling capillaries at high dosages. EDS spectra confirmed that the best-performing mixtures had a Ca/Si ratio between 1.2 and 1.5, as well as the presence of carbon-aluminates and ettringite that strengthen the matrix.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/98812
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAbd Mutalib, M., Rahman, M., Othman, M. H., Ismail, A., & Jaafar, J. (2017). Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Spectroscopy. En Membrane Characterization (pp. 161-179). https://doi.org/10.1016/B978-0-444-63776-5.00009-7
dc.relation.referencesAdesina, A. (2020). Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environmental Challenges, 1, 100004. https://doi.org/10.1016/j.envc.2020.100004
dc.relation.referencesAhmad, S. I., Ahmed, Z. B., & Ahmed, T. (2022). Feasibility of sludge generated in water-based paint industries as cement replacement material. Case Studies in Construction Materials, 16, e01119. https://doi.org/10.1016/j.cscm.2022.e01119
dc.relation.referencesAltunci, Y. (2024). A STUDY ON THE UTILIZATION OF WASTEWATER TREATMENT SLUDGE IN THE CONSTRUCTION SECTOR. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, 8. https://doi.org/10.62301/usmtd.1592727
dc.relation.referencesAmmari, T. G., Al-Hadidi, M., Al-Kharabsheh, N., Khater, D., & Abu-Romman, S. (2021). Dry Biosolids Reuse as Costless Biodegradable Adsorbent for Cadmium Removal from Water Systems. J. Ecol. Eng., 22(5), 1-12. https://doi.org/10.12911/22998993/135901
dc.relation.referencesAndrade, J. J. de O., Possan, E., Wenzel, M. C., & Silva, S. R. da. (2019). Feasibility of Using Calcined Water Treatment Sludge in Rendering Mortars: A Technical and Sustainable Approach. Sustainability, 11(13). https://doi.org/10.3390/su11133576
dc.relation.referencesAocharoen, Y., & Chotickai, P. (2021). Compressive mechanical properties of cement mortar containing recycled high-density polyethylene aggregates: Stress–strain relationship. Case Studies in Construction Materials, 15, e00752. https://doi.org/10.1016/j.cscm.2021.e00752
dc.relation.referencesAodkeng, S., & Chaipanich, A. (2025). Compressive strength, characterizations and drying shrinkage mechanism of mortars using calcined clay from different sources. Case Studies in Construction Materials, 22, e04738. https://doi.org/10.1016/j.cscm.2025.e04738
dc.relation.referencesArarat Gómez, C. A. (2023). Metodología Para el uso de lodos provenientes de plantas de tratamiento de agua residual (PTAR) para la elaboración de bloques de concreto y su impacto en la economía circular. Casos de estudio. [Tesis de pregrado, Universidad Militar Nueva Granada]. https://repository.umng.edu.co/server/api/core/bitstreams/51e4ba7c-36ae-4e27-a165-93ee21ef0f59/content
dc.relation.referencesArgüello Toca, Y. M., & Neira Cabra, Y. S. (2018). Elaboración de mezclas de concreto con inclusión de biosólido procente del tratamiento de aguas residuales [Tesis de pregrado, Universidad Santo Tomas]. https://repository.usta.edu.co/items/3a9f5a8e-2ff0-434d-9836-0cacdb074883
dc.relation.referencesASTM C618-22. (2023). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. https://doi.org/10.1520/C0618-22
dc.relation.referencesAvci, H., Ghorbanpoor, H., Topcu, I. B., & Nurbas, M. (2017). Investigation and recycling of paint sludge with cement and lime for producing lightweight construction mortar. Journal of Environmental Chemical Engineering, 5(1), 861-869. https://doi.org/10.1016/j.jece.2017.01.009
dc.relation.referencesBaeza-Brotons, F., Garcés, P., Payá, J., & Saval, J. M. (2014). Portland cement systems with addition of sewage sludge ash. Application in concretes for the manufacture of blocks. Journal of Cleaner Production, 82, 112-124. https://doi.org/10.1016/j.jclepro.2014.06.072
dc.relation.referencesBamshad, O., Mahdikhani, M., Ramezanianpour, A. M., Maleki, Z., Majlesi, A., Habibi, A., & Delavar, M. A. (2023). Prediction and multi-objective optimization of workability and compressive strength of recycled self-consolidating mortar using Taguchi design method. Heliyon, 9(6), e16381. https://doi.org/10.1016/j.heliyon.2023.e16381
dc.relation.referencesBarbhuiya, S., Kanavaris, F., Das, B. B., & Idrees, M. (2024). Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development. Journal of Building Engineering, 86, 108861. https://doi.org/10.1016/j.jobe.2024.108861
dc.relation.referencesBasak, B., Arsh, K., Masum, M. H., Pal, S. K., Hoque, A., Hasan, M. M., Shahidullah, M., & Biswas, A. (2022). EVALUATING OPPORTUNITIES OF TRANSFORMING WASTE PAINT SLUDGE (PS) TO AN ASSET IN ALTERNATIVE USES BASED ON SEM AND EDX ANALYSES.
dc.relation.referencesBasto, P. de A., Junior, H. S., & Neto, A. A. de M. (2019). Characterization and pozzolanic properties of sewage sludge ashes (SSA) by electrical conductivity. Cement and Concrete Composites, 104, 103410. https://doi.org/10.1016/j.cemconcomp.2019.103410
dc.relation.referencesBeaudoin, J., & Odler, I. (2019). 5—Hydration, Setting and Hardening of Portland Cement. En P. C. Hewlett & M. Liska (Eds.), Lea’s Chemistry of Cement and Concrete (Fifth Edition) (Fifth Edition, pp. 157-250). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-100773-0.00005-8
dc.relation.referencesBonilla, M. C. (2022, noviembre 23). El cemento también es responsable del cambio climático, ¿podremos sustituirlo? El Espectador. https://www.elespectador.com/ambiente/el-cemento-tambien-es-responsable-del-cambio-climatico-podremos-sustituirlo/
dc.relation.referencesBonney, P., Kearnes, M., & Rickards, L. (2025). Responsible biosolids reuse: A critical reassessment of public engagement in the wastewater sector. Journal of Environmental Management, 387, 125556. https://doi.org/10.1016/j.jenvman.2025.125556
dc.relation.referencesBroyles, J. M., & Gevaudan, J. P. (2025). Disparities in low-carbon concrete GWP at the metropolitan level in the United States. npj Materials Sustainability, 3(1), 5. https://doi.org/10.1038/s44296-025-00051-1
dc.relation.referencesBrusselaers, J., & Van Der Linden, A. (2020). Bio-waste in Europe—Turning challenges into opportunities.
dc.relation.referencesCadix, A., & James, S. (2022). Chapter 5—Cementing additives. En Q. Wang (Ed.), Fluid Chemistry, Drilling and Completion (pp. 187-254). Gulf Professional Publishing. https://doi.org/10.1016/B978-0-12-822721-3.00008-3
dc.relation.referencesChakraborty, S., Jo, B. W., Jo, J. H., & Baloch, Z. (2017). Effectiveness of sewage sludge ash combined with waste pozzolanic minerals in developing sustainable construction material: An alternative approach for waste management. Journal of Cleaner Production, 153, 253-263. https://doi.org/10.1016/j.jclepro.2017.03.059
dc.relation.referencesChang, Z., Long, G., Zhou, J. L., & Ma, C. (2020). Valorization of sewage sludge in the fabrication of construction and building materials: A review. Resources, Conservation and Recycling, 154, 104606. https://doi.org/10.1016/j.resconrec.2019.104606
dc.relation.referencesCharles, M., Tchadjie, L., & Sithole, T. (2023). The feasibility of utilizing sewage sludge as a source of aluminosilicate to synthesise geopolymer cement. Journal of Materials Research and Technology, 25. https://doi.org/10.1016/j.jmrt.2023.06.116
dc.relation.referencesChen, F., Bai, S., Liu, H., Gou, H., Zhang, J., & Guan, X. (2025). Comparative study on the effect of two air-entrainment methods on the microstructure of cement mortar. Construction and Building Materials, 475, 141200. https://doi.org/10.1016/j.conbuildmat.2025.141200
dc.relation.referencesChen, Z., Li, J. S., & Poon, C. S. (2018). Combined use of sewage sludge ash and recycled glass cullet for the production of concrete blocks. Journal of Cleaner Production, 171, 1447-1459. https://doi.org/10.1016/j.jclepro.2017.10.140
dc.relation.referencesChen, Z., & Poon, C. S. (2017a). Comparative studies on the effects of sewage sludge ash and fly ash on cement hydration and properties of cement mortars. Construction and Building Materials, 154, 791-803. https://doi.org/10.1016/j.conbuildmat.2017.08.003
dc.relation.referencesChen, Z., & Poon, C. S. (2017b). Comparing the use of sewage sludge ash and glass powder in cement mortars. Environmental Technology, 38(11), 1390-1398. https://doi.org/10.1080/09593330.2016.1230652
dc.relation.referencesCheng, D., Reiner, D. M., Yang, F., Cui, C., Meng, J., Shan, Y., Liu, Y., Tao, S., & Guan, D. (2023). Projecting future carbon emissions from cement production in developing countries. Nature Communications, 14(1), 8213. https://doi.org/10.1038/s41467-023-43660-x
dc.relation.referencesChiang, K.-Y., Chou, P.-H., Hua, C.-R., Chien, K.-L., & Cheeseman, C. (2009). Lightweight bricks manufactured from water treatment sludge and rice husks. Journal of Hazardous Materials, 171(1), 76-82. https://doi.org/10.1016/j.jhazmat.2009.05.144
dc.relation.referencesChin, S. C., Shu Ing, D., Kusbiantoro, A., & Wan Ahmad, S. (2016). Characterization of sewage sludge ASH (SSA) in cement mortar. Journal of Engineering and Applied Sciences, 11, 2242-2247.
dc.relation.referencesClastres, P., Cyr, M., & Coutand, M. (2006). Use of sewage sludge ash as mineral admixture in mortars. Proceedings of The Ice - Construction Materials, 159, 153-162. https://doi.org/10.1680/coma.2006.159.4.153
dc.relation.referencesCorrea, R. (2001). La tecnología de los morteros. Ciencia e Ingeniería Neogranadina, 11, 41-48. https://doi.org/10.18359/rcin.1353
dc.relation.referencesCoutand, M., Cyr, M., & Clastres, P. (2006). Use of sewage sludge ash as mineral admixture in mortars. Proceedings of the Institution of Civil Engineers - Construction Materials, 159(4), 153-162. https://doi.org/10.1680/coma.2006.159.4.153
dc.relation.referencesCremades, L. V., Cusidó, J. A., & Arteaga, F. (2018). Recycling of sludge from drinking water treatment as ceramic material for the manufacture of tiles. Journal of Cleaner Production, 201, 1071-1080. https://doi.org/10.1016/j.jclepro.2018.08.094
dc.relation.referencesDaza-Marquez, N., Guzmán, A., Avila, Y., & Abellan-Garcia, J. (2024). Exploring the potential of nitrophosphogypsum and calcined water-treatment plant sludges in mortar mixtures: A study on workability and strength. Construction and Building Materials, 432, 136646. https://doi.org/10.1016/j.conbuildmat.2024.136646
dc.relation.referencesDecreto 1287, No. 1287 de 2014 (2014). https://www.suin-juriscol.gov.co/viewDocument.asp?id=1259502
dc.relation.referencesDhiman, D., & Anshul, A. (2025). Encapsulation techniques of sludge generated from wastewater treatment. Journal of Environmental Management, 387, 125788. https://doi.org/10.1016/j.jenvman.2025.125788
dc.relation.referencesDing, T., Shen, K., Cai, C., Xiao, J., Xiao, X., & Liang, W. (2024). 3D printed concrete with sewage sludge ash: Fresh and hardened properties. Cement and Concrete Composites, 148, 105475. https://doi.org/10.1016/j.cemconcomp.2024.105475
dc.relation.referencesEndale, S. A., Yehualaw, M. D., Taffese, W. Z., & Vo, D.-H. (2025). Ecofriendly Mortar with Paint Sludge Ash. Materials, 18(9). https://doi.org/10.3390/ma18092080
dc.relation.referencesEPA. (2025). 2540 SOLIDS. En Standard Methods For the Examination of Water and Wastewater. https://doi.org/10.2105/SMWW.2882.030
dc.relation.referencesFerrentino, R., Langone, M., Fiori, L., & Andreottola, G. (2023). Full-Scale Sewage Sludge Reduction Technologies: A Review with a Focus on Energy Consumption. Water, 15(4). https://doi.org/10.3390/w15040615
dc.relation.referencesFuentes Molina, N., Isenia León, S. A., & Ascencio Mendoza, J. G. (2017). Biosólidos de tratamiento de aguas residuales domésticas, como adiciones en la elaboración de ladrillos cerámicos. Producción + Limpia, 12(2), 92-102. https://doi.org/10.22507/pml.v12n2a8
dc.relation.referencesFuentes Molina, N., Isenia León, S. A., & Ascencio Mendoza, J. G. (2019). Adición de lodos residuales en la elaboración de matrices de cerámicas. Revista EIA, 16(32), 12-25. https://doi.org/doi.org/10.24050/reia.v16i32.1061
dc.relation.referencesGao, N., Kamran, K., Quan, C., & Williams, P. T. (2020). Thermochemical conversion of sewage sludge: A critical review. Progress in Energy and Combustion Science, 79, 100843. https://doi.org/10.1016/j.pecs.2020.100843
dc.relation.referencesGarcía Bello, N. E. (2021). Análisis y propuesta para el uso potencial de biosólidos de PTAR en la fabricación de ladrillos de arcilla [Tesis de maestría, Universidad Militar Nueva Granada]. https://repository.umng.edu.co/server/api/core/bitstreams/16aa39fa-8416-4e48-ab37-ac9765056303/content
dc.relation.referencesGeorget, F., Wilson, W., & Scrivener, K. L. (2021). edxia: Microstructure characterisation from quantified SEM-EDS hypermaps. Cement and Concrete Research, 141, 106327. https://doi.org/10.1016/j.cemconres.2020.106327
dc.relation.referencesGherghel, A., Teodosiu, C., & Gisi, S. D. (2019). A review on wastewater sludge valorisation and its challenges in the context of circular economy. Journal of Cleaner Production, 228, 244-263. https://doi.org/10.1016/j.jclepro.2019.04.240
dc.relation.referencesGodoy, L. G. G. de, Rohden, A. B., Garcez, M. R., Costa, E. B. da, Dalt, S. D., & Andrade, J. J. O. (2019). Valorization of water treatment sludge waste by application as supplementary cementitious material. Construction and Building Materials. https://api.semanticscholar.org/CorpusID:201293251
dc.relation.referencesGodoy, L., Rohden, A., Garcez, M., Da Dalt, S., & Bonan Gomes, L. (2020). Production of supplementary cementitious material as a sustainable management strategy for water treatment sludge waste. Case Studies in Construction Materials, 12, e00329. https://doi.org/10.1016/j.cscm.2020.e00329
dc.relation.referencesGomes, S. D. C., Zhou, J. L., Li, W., & Long, G. (2019). Progress in manufacture and properties of construction materials incorporating water treatment sludge: A review. Resources, Conservation and Recycling, 145, 148-159. https://doi.org/10.1016/j.resconrec.2019.02.032
dc.relation.referencesGonzález, K. B., Pacheco, E., Guzmán, A., Pereira, Y. A., Cuadro, H. C., & Valencia, J. A. F. (2020). Use of sludge ash from drinking water treatment plant in hydraulic mortars. Materials Today Communications, 23, 100930. https://doi.org/10.1016/j.mtcomm.2020.100930
dc.relation.referencesGoyal, S., Siddique, R., Jha, S., & Sharma, D. (2019). Utilization of textile sludge in cement mortar and paste. Construction and Building Materials, 214, 169-177. https://doi.org/10.1016/j.conbuildmat.2019.04.023
dc.relation.referencesGu, H., Meng, Z., Wang, Y., Gao, X., Wang, R., Wang, D., Sheng, J., & Wang, J. (2025). Investigations into Replacing Calcined Clay with Sewage Sludge Ash in Limestone Calcined Clay Cement (LC3). Materials, 18(4). https://doi.org/10.3390/ma18040782
dc.relation.referencesHaach, V. G., Vasconcelos, G., & Lourenço, P. B. (2011). Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Construction and Building Materials, 25(6), 2980-2987. https://doi.org/10.1016/j.conbuildmat.2010.11.011
dc.relation.referencesHagemann, S. E., Gastaldini, A. L. G., Cocco, M., Jahn, S. L., & Terra, L. M. (2019). Synergic effects of the substitution of Portland cement for water treatment plant sludge ash and ground limestone: Technical and economic evaluation. Journal of Cleaner Production, 214, 916-926. https://doi.org/10.1016/j.jclepro.2018.12.324
dc.relation.referencesHakeem, I. G., Halder, P., Dike, C. C., Chiang, K., Sharma, A., Paz-Ferreiro, J., & Shah, K. (2022). Advances in biosolids pyrolysis: Roles of pre-treatments, catalysts, and co-feeding on products distribution and high-value chemical production. Journal of Analytical and Applied Pyrolysis, 166, 105608. https://doi.org/10.1016/j.jaap.2022.105608
dc.relation.referencesHanifa, M., Agarwal, R., Sharma, U., Thapliyal, P. C., & Singh, L. P. (2023). A review on CO2 capture and sequestration in the construction industry: Emerging approaches and commercialised technologies. Journal of CO2 Utilization, 67, 102292. https://doi.org/10.1016/j.jcou.2022.102292
dc.relation.referencesHarutyunyan, V. S. (2022). XRD and combined SEM-EDS analysis of long-term hydration products of ye’elimite. Materials Chemistry and Physics, 276, 125373. https://doi.org/10.1016/j.matchemphys.2021.125373
dc.relation.referencesHassen, A., Zaafouri, K., Friaa, A., Abidi, S., Naoui, S., & Jamaaoui, F. (2021). Municipal sewage sludge energetic conversion as a tool for environmental sustainability: Production of innovative biofuels and biochar. Environmental Science and Pollution Research, 28, 1-15. https://doi.org/10.1007/s11356-020-11400-z
dc.relation.referencesHaustein, E., Kuryłowicz-Cudowska, A., Łuczkiewicz, A., Fudala-Książek, S., & Cieślik, B. M. (2022). Influence of Cement Replacement with Sewage Sludge Ash (SSA) on the Heat of Hydration of Cement Mortar. Materials, 15(4). https://doi.org/10.3390/ma15041547
dc.relation.referencesHe, Z., Wu, Z., Liu, J., Wang, Q., Zhuang, L., Wang, S., & Zhao, Q. (2024). Evaluating the Flexural Performance of Sintered Sludge Ash-Modified Cement Paste Using Surface Cracks and Fracture Toughness. Buildings, 14, 3070. https://doi.org/10.3390/buildings14103070
dc.relation.referencesHernandez-Garcia, J.-F., Sánchez-Perdomo, L.-J., & Silva-Vega, G.-S. (2021). Estudio del impacto de la adición de biosólidos secos, al cemento tipo Portland en el proceso de elaboración de morteros. Revista Facultad de Ingeniería, 30(56), e12661. https://doi.org/10.19053/01211129.v30.n56.2021.12661
dc.relation.referencesHerrera, B., Amell, A., Chejne, F., Cacua, K., Manrique, R., Henao, W., & Vallejo, G. (2017). Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia. Energy, 140, 1047-1058. https://doi.org/10.1016/j.energy.2017.09.041
dc.relation.referencesHuang, X., Yuhao, Haojie, W., Xiuqing, X., Chunbiao, Q., Fei, X., & Xiaorong, Z. (2025). Recycle sludge incineration ash for efficient preparation of foam concrete: Performance, microstructure, and mechanisms. Next Sustainability, 6, 100125. https://doi.org/10.1016/j.nxsust.2025.100125
dc.relation.referencesHwang, C.-L., Chiang, C.-H., Huynh, T.-P., Vo, D.-H., Jhang, B.-J., & Ngo, S.-H. (2017). Properties of alkali-activated controlled low-strength material produced with waste water treatment sludge, fly ash, and slag. Construction and Building Materials, 135, 459-471. https://doi.org/10.1016/j.conbuildmat.2017.01.014
dc.relation.referencesIge, O. E., Olanrewaju, O. A., Duffy, K. J., & Obiora, C. (2021). A review of the effectiveness of Life Cycle Assessment for gauging environmental impacts from cement production. Journal of Cleaner Production, 324, 129213. https://doi.org/10.1016/j.jclepro.2021.129213
dc.relation.referencesJadhav, S. V., Haramkar, S. S., Kamble, A. R., & Thorat, B. N. (2019). Insights into dewatering and characterization of the waste activated sludge. Journal of the Taiwan Institute of Chemical Engineers, 94, 81-87. https://doi.org/10.1016/j.jtice.2017.11.035
dc.relation.referencesJang, C., & Abebe, T. N. (2024). Utilizing Wheel Washing Machine Sludge as a Cement Substitute in Repair Mortar: An Experimental Investigation into Material Characteristics. Materials (Basel, Switzerland), 17(9). https://doi.org/10.3390/ma17092037
dc.relation.referencesJang, Y., Lee, B.-J., & Lee, J.-W. (2019). Strength and Water Purification Properties of Environment-Friendly Construction Material Produced with the (D)PAOs and Zeolite. Applied Sciences, 9, 972. https://doi.org/10.3390/app9050972
dc.relation.referencesJoint Research Centre. (2020). Deep decarbonisation of industry: The cement sector.
dc.relation.referencesJuala, R., Ballim, Y., & Mulopo, J. (2022). Assessment of local sewage sludge ash as a supplementary cementitious material-effects of incineration temperature and cooling rate of the ash. Journal of the South African Institution of Civil Engineering, 64(1), 37-47.
dc.relation.referencesJudd, J., Fonseca, F., Day, B., Reynolds, M., & Moffett, T. (2023). Effect of size and water content on the compressive strength of mortar. Construction and Building Materials, 368, 130505. https://doi.org/10.1016/j.conbuildmat.2023.130505
dc.relation.referencesK, L., L K, A., & Vijaya, S. (2024). Strength and Durability Studies on Concrete Utilizing Sewage Sludge Ash and Treated Sewage Water. International Research Journal on Advanced Engineering Hub (IRJAEH), 2, 2446-2455. https://doi.org/10.47392/IRJAEH.2024.0335
dc.relation.referencesKalak, T., Szypura, P., Cierpiszewski, R., & Ulewicz, M. (2023). Modification of Concrete Composition Doped by Sewage Sludge Fly Ash and Its Effect on Compressive Strength. Materials (Basel, Switzerland), 16(11). https://doi.org/10.3390/ma16114043
dc.relation.referencesKanteraki, A. E., Isari, E. A., Zafeiropoulos, I., Cangemi, S., Bountla, A., & Kalavrouziotis, I. K. (2024). Structural analysis and characterization of biosolids. A case study of biosolids from wastewater treatment plants in Western Greece. Science of The Total Environment, 908, 168425. https://doi.org/10.1016/j.scitotenv.2023.168425
dc.relation.referencesKizinievič, O., Žurauskienė, R., Kizinievič, V., & Žurauskas, R. (2013). Utilisation of sludge waste from water treatment for ceramic products. Construction and Building Materials, 41, 464-473. https://doi.org/10.1016/j.conbuildmat.2012.12.041
dc.relation.referencesKong, Y., Wang, P., Liu, S., Zhao, G., & Peng, Y. (2016). SEM Analysis of the Interfacial Transition Zone between Cement-Glass Powder Paste and Aggregate of Mortar under Microwave Curing. Materials, 9(9). https://doi.org/10.3390/ma9090733
dc.relation.referencesKusuma, R. T., Hiremath, R. B., Rajesh, P., Kumar, B., & Renukappa, S. (2022). Sustainable transition towards biomass-based cement industry: A review. Renewable and Sustainable Energy Reviews, 163, 112503. https://doi.org/10.1016/j.rser.2022.112503
dc.relation.referencesLatosińska, J., & and, M. Ż. (2011). The application of sewage sludge as an expanding agent in the production of lightweight expanded clay aggregate mass. Environmental Technology, 32(13), 1471-1478. https://doi.org/10.1080/09593330.2010.540716
dc.relation.referencesLe, T. H. M., Park, D.-W., & Seo, J.-W. (2019). Evaluation on the mechanical properties of cement asphalt mortar with quick hardening admixture for railway maintenance. Construction and Building Materials, 206, 375-384. https://doi.org/10.1016/j.conbuildmat.2019.02.104
dc.relation.referencesLee, J.-B. (2024). Incorporating Wastewater Sludge as a Cement Alternative in Repair Mortar: An Experimental Study of Material Properties. Materials, 17(22). https://doi.org/10.3390/ma17225625
dc.relation.referencesLi, J.-S., Guo, M.-Z., Xue, Q., & Poon, C. S. (2017). Recycling of incinerated sewage sludge ash and cathode ray tube funnel glass in cement mortars. Journal of Cleaner Production, 152, 142-149. https://doi.org/10.1016/j.jclepro.2017.03.116
dc.relation.referencesLi, R., & Zhai, C. (2025). Constructing sports facilities using environment-friendly materials. Frontiers in Materials, Volume 11-2024. https://doi.org/10.3389/fmats.2024.1524729
dc.relation.referencesLi, Y., Yu, M., Li, W., & Bian, X. (2025). Relation between pore structure uniformity and compressive strength of iron tailings mortar. Cement and Concrete Composites, 157, 105964. https://doi.org/10.1016/j.cemconcomp.2025.105964
dc.relation.referencesLiang, C., Le, X., Fang, W., Zhao, J., Fang, L., & Hou, S. (2022). The Utilization of Recycled Sewage Sludge Ash as a Supplementary Cementitious Material in Mortar: A Review. Sustainability, 14, 4432. https://doi.org/10.3390/su14084432
dc.relation.referencesLin, W. Y., Ng, W. C., Wong, B. S. E., Teo, S. L.-M., Sivananthan, G. d/o, Baeg, G. H., Ok, Y. S., & Wang, C.-H. (2018). Evaluation of sewage sludge incineration ash as a potential land reclamation material. Journal of Hazardous Materials, 357, 63-72. https://doi.org/10.1016/j.jhazmat.2018.05.047
dc.relation.referencesLing, Y. P., Tham, R.-H., Lim, S.-M., Fahim, M., Ooi, C.-H., Krishnan, P., Matsumoto, A., & Yeoh, F.-Y. (2017). Evaluation and reutilization of water sludge from fresh water processing plant as a green clay substituent. Applied Clay Science, 143, 300-306. https://doi.org/10.1016/j.clay.2017.04.007
dc.relation.referencesLiu, J., Liu, G., Zhang, W., Li, Z., Xing, F., & Tang, L. (2022). Application potential analysis of biochar as a carbon capture material in cementitious composites: A review. Construction and Building Materials, 350, 128715. https://doi.org/10.1016/j.conbuildmat.2022.128715
dc.relation.referencesLiu, Y., Zhuge, Y., Chow, C. W. K., Keegan, A., Pham, P. N., Li, D., Qian, G., & Wang, L. (2020). Recycling drinking water treatment sludge into eco-concrete blocks with CO2 curing: Durability and leachability. Science of The Total Environment, 746, 141182. https://doi.org/10.1016/j.scitotenv.2020.141182
dc.relation.referencesLuo, H.-L., Chang, W.-C., & Lin, D.-F. (2009). The effects of different types of nano-silicon dioxide additives on the properties of sludge ash mortar. Journal of the Air & Waste Management Association (1995), 59(4), 440-446. https://doi.org/10.3155/1047-3289.59.4.440
dc.relation.referencesLv, T., Zhang, J., Hou, D., Long, W.-J., & Dong, B. (2024). Mechanical properties and microstructural characteristics of seawater-mixed sintered sludge cement paste. Construction and Building Materials, 414. https://doi.org/10.1016/j.conbuildmat.2024.134996
dc.relation.referencesLynn, C. J., Dhir, R. K., Ghataora, G. S., & West, R. P. (2015). Sewage sludge ash characteristics and potential for use in concrete. Construction and Building Materials, 98, 767-779. https://doi.org/10.1016/j.conbuildmat.2015.08.122
dc.relation.referencesMachi, A. E., Mabroum, S., Taha, Y., Tagnit-Hamou, A., Benzaazoua, M., & Hakkou, R. (2021). Use of flint from phosphate mine waste rocks as an alternative aggregates for concrete. Construction and Building Materials, 271, 121886. https://doi.org/10.1016/j.conbuildmat.2020.121886
dc.relation.referencesManali, A., Pothoulaki, A., & Gikas, P. (2024). The state of the art in biosolids gasification. Journal of Environmental Management, 364, 121385. https://doi.org/10.1016/j.jenvman.2024.121385
dc.relation.referencesMaragh, J. M., Palkovic, S. D., Shukla, A., Büyüköztürk, O., & Masic, A. (2021). SEM-EDS and microindentation-driven large-area high-resolution chemomechanical mapping and computational homogenization of cementitious materials. Materials Today Communications, 28, 102698. https://doi.org/10.1016/j.mtcomm.2021.102698
dc.relation.referencesMarzbali, M. H., Hakeem, I. G., Ngo, T., Balu, R., Jena, M. K., Vuppaladadiyam, A., Sharma, A., Choudhury, N. R., Batstone, D. J., & Shah, K. (2024). A critical review on emerging industrial applications of chars from thermal treatment of biosolids. Journal of Environmental Management, 369, 122341. https://doi.org/10.1016/j.jenvman.2024.122341
dc.relation.referencesMejdi, M., Saillio, M., Chaussadent, T., Divet, L., & Tagnit-Hamou, A. (2020). Hydration mechanisms of sewage sludge ashes used as cement replacement. Cement and Concrete Research, 135, 106115. https://doi.org/10.1016/j.cemconres.2020.106115
dc.relation.referencesMohajerani, A., Ukwatta, A., Jeffrey-Bailey, T., Swaney, M., Ahmed, M., Rodwell, G., Bartolo, S., Eshtiaghi, N., & Setunge, S. (2019). A Proposal for Recycling the World’s Unused Stockpiles of Treated Wastewater Sludge (Biosolids) in Fired-Clay Bricks. Buildings, 9(1). https://doi.org/10.3390/buildings9010014
dc.relation.referencesMojapelo, K., Kupolati, W., Burger, E., Ndambuki, J., Snyman, J., Achi, C., & Quadri, A. (2025). Durability and Environmental Impact of Wastewater Sludge Ash as a Cement Replacement in Concrete: Challenges and Future Directions. Materials Circular Economy, 7. https://doi.org/10.1007/s42824-025-00172-x
dc.relation.referencesMonzó, J., Payá, J., Borrachero, M. V., & Girbés, I. (2003). Reuse of sewage sludge ashes (SSA) in cement mixtures: The effect of SSA on the workability of cement mortars. Waste Management (New York, N.Y.), 23(4), 373-381. https://doi.org/10.1016/S0956-053X(03)00034-5
dc.relation.referencesMonzó, J., Payá, J., Borrachero, M. V., & Peris-Mora, E. (1999). Mechanical behavior of mortars containing sewage sludge ash (SSA) and Portland cements with different tricalcium aluminate content. Cement and Concrete Research, 29(1), 87-94. https://doi.org/10.1016/S0008-8846(98)00177-X
dc.relation.referencesMosaberpanah, M., Olabimtan, S., Balkis, A., Rabiu, B., Oluwole, B., & Ajuonuma, C. (2024). Effect of Biochar and Sewage Sludge Ash as Partial Replacement for Cement in Cementitious Composites: Mechanical, and Durability Properties. Sustainability, 16, 1522. https://doi.org/10.3390/su16041522
dc.relation.referencesNaamane, S., Rais, Z., & Taleb, M. (2016). The effectiveness of the incineration of sewage sludge on the evolution of physicochemical and mechanical properties of Portland cement. Construction and Building Materials, 112, 783-789. https://doi.org/10.1016/j.conbuildmat.2016.02.121
dc.relation.referencesNg, Y. L., Aldahdooh, M. A. A., Alazaiza, M. Y. D., Bashir, M. J., Chok, V. S., & Ng, C. A. (2022). Influence of alum sludge ash and ground granulated blast furnace slag on properties of cement mortar. Cleaner Engineering and Technology, 6, 100376. https://doi.org/10.1016/j.clet.2021.100376
dc.relation.referencesNicolas, R. S., Cyr, M., & Escadeillas, G. (2013). Characteristics and applications of flash metakaolins. Applied Clay Science, 83-84, 253-262. https://doi.org/10.1016/j.clay.2013.08.036
dc.relation.referencesNilimaa, J. (2023). Smart materials and technologies for sustainable concrete construction. Developments in the Built Environment, 15, 100177. https://doi.org/10.1016/j.dibe.2023.100177
dc.relation.referencesNSR-10. (2010). Reglamento colombiano de construcción sismo resistente. https://www.unisdr.org/campaign/resilientcities/uploads/city/attachments/3871-10684.pdf
dc.relation.referencesNTC 77. (2018). Concretos. Método de ensayo para el análisis por tamizado de los agregados finos y gruesos. (Versión Cuarta). https://tienda.icontec.org/gp-concretos-metodo-de-ensayo-para-el-analisis-por-tamizado-de-los-agregados-finos-y-gruesos-ntc77-2018.html
dc.relation.referencesNTC 107. (2019). Cementos. Método de ensayo para determinar la expansión en autoclave del cemento hidráulico (Versión Sexta). https://tienda.icontec.org/gp-cementos-metodo-de-ensayo-para-determinar-la-expansion-en-autoclave-del-cemento-hidraulico-ntc107-2019.html
dc.relation.referencesNTC 118. (2022). Cementos. Método de ensayo para determinar el tiempo de fraguado del cemento hidráulico mediante aguja de vicat (Versión Decima). https://tienda.icontec.org/gp-ntc-cementos-metodo-de-ensayo-para-determinar-el-tiempo-de-fraguado-del-cemento-hidraulico-mediante-aguja-de-vicat-ntc118-2022.html
dc.relation.referencesNTC 121. (2021). Especificación de desempeño para cemento hidráulico (Versión Quinta). https://tienda.icontec.org/gp-especificacion-de-desempeno-para-cemento-hidraulico-ntc121-2021.html
dc.relation.referencesNTC 220. (2022). Cementos. Determinación de la resistencia de morteros de cemento hidráulico a la compresión, usando cubos de 50 mm o 2 pulgadas de lado. (Versión Novena). https://tienda.icontec.org/gp-ntc-cementos-determinacion-de-la-resistencia-de-morteros-de-cemento-hidraulico-a-la-compresion-usando-cubos-de-50-mm-o-2-pulgadas-de-lado-ntc220-2022.html
dc.relation.referencesNTC 221. (2019). Cementos. Método de ensayo para determinar la densidad del cemento hidráulico. (Versión Sexta). https://tienda.icontec.org/gp-cementos-metodo-de-ensayo-para-determinar-la-densidad-del-cemento-hidraulico-ntc221-2019.html
dc.relation.referencesNTC 224. (2020). Cementos. Método de ensayo para determinar el contenido de aire en morteros de cemento hidráulico (Versión Quinta). https://tienda.icontec.org/gp-cementos-metodo-de-ensayo-para-determinar-el-contenido-de-aire-en-morteros-de-cemento-hidraulico-ntc224-2020.html
dc.relation.referencesNTC 1032. (2013). Ingeniería civil y arquitectura. Método de ensayo para la determinación del contenido de aire en el concreto fresco. Método de presión. (Versión Tercera). https://tienda.icontec.org/gp-ingenieria-civil-y-arquitectura-metodo-de-ensayo-para-la-determinacion-del-contenido-de-aire-en-el-concreto-fresco-metodo-de-presion-ntc1032-2013.html
dc.relation.referencesNTC 1776. (2019). Método de ensayo para determinar el contenido total de humedad evaporable por secado de los agregados (No. Tercera). https://tienda.icontec.org/gp-metodo-de-ensayo-para-determinar-el-contenido-total-de-humedad-evaporable-por-secado-de-los-agregados-ntc1776-2019.html
dc.relation.referencesNTC 2240. (2020). Agregado para mortero de mampostería. (Versión Quinta). https://tienda.icontec.org/gp-agregado-para-mortero-de-mamposteria-ntc2240-2020.html
dc.relation.referencesNTC 3356. (2000). Concretos. Mortero premezclado para mamposteria. (Versión Tercera). https://tienda.icontec.org/gp-concretos-mortero-premezclado-para-mamposteria-ntc3356-2000.html
dc.relation.referencesNTC 3546. (2021). Métodos de ensayo para la evaluación previa y durante la construcción, de morteros para unidades de mampostería simple y reforzada. (Versión Tercera). https://tienda.icontec.org/gp-metodos-de-ensayo-para-la-evaluacion-previa-y-durante-la-construccion-de-morteros-para-unidades-de-mamposteria-simple-y-reforzada-ntc3546-2021.html
dc.relation.referencesNTC 4050. (2023). Cemento para mampostería (Versión Cuarta). https://tienda.icontec.org/gp-ntc-cemento-para-mamposteria-ntc4050-2023.html
dc.relation.referencesOtero, M., Sanchez, M. E., Gómez, X., & Morán, A. (2010). Thermogravimetric analysis of biowastes during combustion. Waste Management, 30(7), 1183-1187. https://doi.org/10.1016/j.wasman.2009.12.010
dc.relation.referencesOthman, R., Putra Jaya, R., Duraisamy, Y., Sulaiman, M. A., Chong, B. W., & Ghamari, A. (2023). Efficiency of Waste as Cement Replacement in Foamed Concrete—A Review. Sustainability, 15(6). https://doi.org/10.3390/su15065163
dc.relation.referencesOwaid, H. M., Hamid, R., & Taha, M. R. (2019). Durability properties of multiple-blended binder concretes incorporating thermally activated alum sludge ash. Construction and Building Materials, 200, 591-603. https://doi.org/10.1016/j.conbuildmat.2018.12.149
dc.relation.referencesOyan, V., Özvan, A., & Tapan, M. (2013, febrero). Effectiveness of Pumice And Scoria Aggregates in Controlling Alkali Silica Reaction.
dc.relation.referencesPage, J., Khadraoui, F., Gomina, M., & Boutouil, M. (2019). Influence of different surface treatments on the water absorption capacity of flax fibres: Rheology of fresh reinforced-mortars and mechanical properties in the hardened state. Construction and Building Materials, 199, 424-434. https://doi.org/10.1016/j.conbuildmat.2018.12.042
dc.relation.referencesPatel, S., Kundu, S., Halder, P., Rathnayake, N., Hedayati Marzbali, M., Aktar, S., Selezneva, E., Paz-Ferreiro, J., Surapaneni, A., Figueiredo, C., Sharma, A., Mallavarapu, M., & Shah, K. (2020). A critical literature review on biosolids to biochar: An alternative biosolids management option. Reviews in Environmental Science and Bio/Technology, 19, 807-841. https://doi.org/10.1007/s11157-020-09553-x
dc.relation.referencesPatel, S., Kundu, S., Halder, P., Rickards, L., Paz-Ferreiro, J., Surapaneni, A., Madapusi, S., & Shah, K. (2019). Thermogravimetric Analysis of biosolids pyrolysis in the presence of mineral oxides. Renewable Energy, 141, 707-716. https://doi.org/10.1016/j.renene.2019.04.047
dc.relation.referencesPavlík, Z., Fořt, J., Záleská, M., Pavlíková, M., Trník, A., Medved, I., Keppert, M., Koutsoukos, P. G., & Černý, R. (2016). Energy-efficient thermal treatment of sewage sludge for its application in blended cements. Journal of Cleaner Production, 112, 409-419. https://doi.org/10.1016/j.jclepro.2015.09.072
dc.relation.referencesPei, J. S. F., Choo, C. S., Khaerudini, D. S., Ng, S. M., Ong, D. E. L., Tan, M., & Sunarso, J. (2024). Workability, compressive strength, and efflorescence characteristics of one-part mix alkali-activated circulating fluidised bed combustion fly ash-based mortars. CEMENT, 18, 100123. https://doi.org/10.1016/j.cement.2024.100123
dc.relation.referencesPeys, A., Hertel, T., & Snellings, R. (2022). Co-Calcination of Bauxite Residue With Kaolinite in Pursuit of a Robust and High-Quality Supplementary Cementitious Material. Frontiers in Materials, 9, 913151. https://doi.org/10.3389/fmats.2022.913151
dc.relation.referencesPinarli, V., & and, G. K. (1994a). An innovative sludge disposal option‐reuse of sludge ash by incorporation in construction materials. Environmental Technology, 15(9), 843-852. https://doi.org/10.1080/09593339409385491
dc.relation.referencesPinarli, V., & and, N. K. E. (1994b). Constructive sludge management ‐ reutilization of municipal sewage sludge in Portland cement mortars. Environmental Technology, 15(9), 833-841. https://doi.org/10.1080/09593339409385490
dc.relation.referencesPinarli, V., Karaca, G., Salihoglu, G., & And, N. K. S. (2005). Stabilization and Solidification of Waste Phosphate Sludge Using Portland Cement and Fly Ash as Cement Substitute. Journal of Environmental Science and Health, Part A, 40(9), 1763-1774. https://doi.org/10.1081/ESE-200068051
dc.relation.referencesPrabhakar, A. K., Krishnan, P., Lee, S. S.-C., Lim, C. S., Dixit, A., Mohan, B. C., Teoh, J. H., Pang, S. D., Tsang, D. C. W., Teo, S. L.-M., & Wang, C.-H. (2022). Sewage sludge ash-based mortar as construction material: Mechanical studies, macrofouling, and marine toxicity. Science of The Total Environment, 824, 153768. https://doi.org/10.1016/j.scitotenv.2022.153768
dc.relation.referencesRagazzi, M., Rada, E. C., & Ferrentino, R. (2015). Analysis of real-scale experiences of novel sewage sludge treatments in an Italian pilot region. Desalination and Water Treatment, 55(3), 783-790. https://doi.org/10.1080/19443994.2014.932717
dc.relation.referencesRaj, T., & Shanmugapriya, T. (2022). A comprehensive analysis on optimization of Sewage sludge ash as a binding material for a sustainable construction practice: A state of the art review. Materials Today: Proceedings, 64. https://doi.org/10.1016/j.matpr.2022.05.479
dc.relation.referencesRaza, A., Saad, N., Elhadi, K., Azab, M., Deifalla, A., Elhag, A., & Ali, K. (2022). Mechanical, Durability, and Microstructural Evaluation of Coal Ash Incorporated Recycled Aggregate Concrete: An Application of Waste Effluents for Sustainable Construction. Buildings, 12. https://doi.org/10.3390/buildings12101715
dc.relation.referencesReddy, P. V. R. K., & Prasad, D. R. (2022). A study on workability, strength and microstructure characteristics of graphene oxide and fly ash based concrete. Materials Today: Proceedings, 62, 2919-2925. https://doi.org/10.1016/j.matpr.2022.02.495
dc.relation.referencesReis, J. B., Levandoski, W. M. K., Krogel, M., Ferrazzo, S. T., Pasquali, G. D. L., & and, E. P. K. (2024). Technological characterization and environment-friendly possibilities to reuse water treatment sludge in building materials. Journal of Environmental Science and Health, Part A, 59(5), 241-250. https://doi.org/10.1080/10934529.2024.2367353
dc.relation.referencesRoychand, R., Patel, S., Halder, P., Kundu, S., Hampton, J., Bergmann, D., Surapaneni, A., Shah, K., & Pramanik, B. (2021). Recycling biosolids as cement composites in raw, pyrolyzed and ashed forms: A waste utilisation approach to support circular economy. Journal of Building Engineering, 38, 102199. https://doi.org/10.1016/j.jobe.2021.102199
dc.relation.referencesRumayor, M., Fernández-González, J., Domínguez-Ramos, A., & Irabien, A. (2022). Deep Decarbonization of the Cement Sector: A Prospective Environmental Assessment of CO2 Recycling to Methanol. ACS Sustainable Chemistry & Engineering, 10(1), 267-278. https://doi.org/10.1021/acssuschemeng.1c06118
dc.relation.referencesRutkowska, G., Wichowski, P., Franus, M., Mendryk, M., & Fronczyk, J. (2020). Modification of Ordinary Concrete Using Fly Ash from Combustion of Municipal Sewage Sludge. Materials, 13(2). https://doi.org/10.3390/ma13020487
dc.relation.referencesRutkowska, G., Żółtowski, M., Rusakov, K., Pawluk, K., Andrzejak, J., & Żółtowski, B. (2023). The Influence of Fly Ash from Sewage Sludge on the Concrete Carbonation Course. Buildings, 13, 1838. https://doi.org/10.3390/buildings13071838
dc.relation.referencesRuviaro, A. S., Silvestro, L., Scolaro, T. P., de Matos, P. R., & Pelisser, F. (2021). Use of calcined water treatment plant sludge for sustainable cementitious composites production. Journal of Cleaner Production, 327, 129484. https://doi.org/10.1016/j.jclepro.2021.129484
dc.relation.referencesSá, H. A. de, Oliveira, J. V. da C., Chagas, L. S. V. B., & Meira, F. F. D. de A. (2022). Applicability of calcined sewage sludge instead of Portland cement for coating mortars. Research, Society and Development, 11(15), e90111537057. https://doi.org/10.33448/rsd-v11i15.37057
dc.relation.referencesSchneider, M. (2019). The cement industry on the way to a low-carbon future. Cement and Concrete Research, 124, 105792. https://doi.org/10.1016/j.cemconres.2019.105792
dc.relation.referencesShafii, M., Chia, E., & Shaffie, E. (2019). THE USE OF SEWAGE SLUDGE AND ITS ASH IN CONSTRUCTION AND AGRICULTURE INDUSTRY: A REVIEW. Jurnal Teknologi, 81. https://doi.org/10.11113/jt.v81.13486
dc.relation.referencesShehadeh, D., Govin, A., Grosseau, P., Krour, H., Laetitia, B., & Zeigler, G. (2023a). Characterizing Sewage Sludge Ashes in Dry and Wet States for Use as SCM (pp. 99-109). https://doi.org/10.1007/978-3-031-33187-9_10
dc.relation.referencesShehadeh, D., Govin, A., Grosseau, P., Krour, H., Laetitia, B., & Zeigler, G. (2023b). Characterizing Sewage Sludge Ashes in Dry and Wet States for Use as SCM (pp. 99-109). https://doi.org/10.1007/978-3-031-33187-9_10
dc.relation.referencesShehadeh, D., Govin, A., Grosseau, P., Krour, H., Laetitia, B., Ziegler, G., & Serclerat, A. (2024). Characterization of Ashes from Sewage Sludge-Limestone Incineration: Study of SSA Properties and Reactivity for SCM Use. Construction Materials, 4, 611-628. https://doi.org/10.3390/constrmater4030033
dc.relation.referencesShu Ing, D., Chin, S. C., Guan, T., & Suil, A. (2015). The use of sewage sludge ash (SSA) as partial replacement of cement in concrete. 11.
dc.relation.referencesSingh, S., Kumar, V., Dhanjal, D. S., Datta, S., Bhatia, D., Dhiman, J., Samuel, J., Prasad, R., & Singh, J. (2020). A sustainable paradigm of sewage sludge biochar: Valorization, opportunities, challenges and future prospects. Journal of Cleaner Production, 269, 122259. https://doi.org/10.1016/j.jclepro.2020.122259
dc.relation.referencesŠkondrić, M., Radević, A., Savić, A., Naunović, Z., Radovanović, Ž., Svetozarević, S., & Rajaković-Ognjanović, V. (2025). Sustainable Lightweight Concrete Designed with Modified Solidified Wastewater Sludge as Partial Replacement of Cement. Sustainability, 17(3). https://doi.org/10.3390/su17030945
dc.relation.referencesSnachéz de Guzmán, D. (2001). Tecnologia del concreto y del mortero (Quinta). Bhandar Editores. https://biblioteca.ugc.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=240277
dc.relation.referencesSreeja, K., & Kumar, T. N. (2021). Effect of graphene oxide on fresh, hardened and mechanical properties of cement mortar. Materials Today: Proceedings, 46, 2235-2239. https://doi.org/10.1016/j.matpr.2021.03.574
dc.relation.referencesSuchorab, Z., Barnat-Hunek, D., Franus, M., & Łagód, G. (2016). Mechanical and Physical Properties of Hydrophobized Lightweight Aggregate Concrete with Sewage Sludge. Materials, 9(5). https://doi.org/10.3390/ma9050317
dc.relation.referencesŚwierczek, L., Cieślik, B. M., & Konieczka, P. (2021). Challenges and opportunities related to the use of sewage sludge ash in cement-based building materials – A review. Journal of Cleaner Production, 287, 125054. https://doi.org/10.1016/j.jclepro.2020.125054
dc.relation.referencesTaki, K., Gahlot, R., & Kumar, M. (2020). Utilization of fly ash amended sewage sludge as brick for sustainable building material with special emphasis on dimensional effect. Journal of Cleaner Production, 275, 123942. https://doi.org/10.1016/j.jclepro.2020.123942
dc.relation.referencesTantawy, M. A. (2015). Characterization and pozzolanic properties of calcined alum sludge. Materials Research Bulletin, 61, 415-421. https://doi.org/10.1016/j.materresbull.2014.10.042
dc.relation.referencesTayebani, B., Said, A., & Memari, A. (2023). Less carbon producing sustainable concrete from environmental and performance perspectives: A review. Construction and Building Materials, 404, 133234. https://doi.org/10.1016/j.conbuildmat.2023.133234
dc.relation.referencesTuncer, M., Başyiğit, C., & Davraz, M. (2024). INVESTIGATION OF THE EFFECT OF SEWAGE SLUDGE ASH ON THE MECHANICAL PROPERTIES OF MORTAR SPECIMENS. Mühendislik Bilimleri ve Tasarım Dergisi, 12, 616-626. https://doi.org/10.21923/jesd.1451465
dc.relation.referencesUratani, J. M., & Griffiths, S. (2023). A forward looking perspective on the cement and concrete industry: Implications of growth and development in the Global South. Energy Research & Social Science, 97, 102972. https://doi.org/10.1016/j.erss.2023.102972
dc.relation.referencesValenzuela, M., Tuninetti, V., Ciudad, G., Miranda, A., & Oñate, A. (2025). Designing sustainable cement free compositions with rice husk ash to improve mechanical performance in next generation ecoblocks. Scientific Reports, 15(1), 14920. https://doi.org/10.1038/s41598-025-97963-8
dc.relation.referencesVarshney, H., Khan, R., & Khan, I. (2021). Sustainable use of different wastewater in concrete construction: A Review. Journal of Building Engineering, 41, 102411. https://doi.org/10.1016/j.jobe.2021.102411
dc.relation.referencesVaughn, S. F., Dinelli, F. D., Kenar, J. A., Jackson, M. A., Thomas, A. J., & Peterson, S. C. (2018). Physical and chemical properties of pyrolyzed biosolids for utilization in sand-based turfgrass rootzones. Waste Management, 76, 98-105. https://doi.org/10.1016/j.wasman.2018.04.009
dc.relation.referencesVouk, D., Nakic, D., Štirmer, N., & Cheeseman, C. R. (2018). Influence of combustion temperature on the performance of sewage sludge ash as a supplementary cementitious material. Journal of Material Cycles and Waste Management, 20. https://doi.org/10.1007/s10163-018-0707-8
dc.relation.referencesWang, H.-F., Hu, H., Wang, H.-J., Bai, Y.-N., Shen, X.-F., Zhang, W., & Zeng, R. J. (2020). Comprehensive investigation of the relationship between organic content and waste activated sludge dewaterability. Journal of Hazardous Materials, 394, 122547. https://doi.org/10.1016/j.jhazmat.2020.122547
dc.relation.referencesWang, S., Zhao, P., Tian, Y., & Liu, J. (2024). Effects of C-S-H Seed Prepared by Wet Grinding on the Properties of Cement Containing Large Amounts of Silica Fume. Polymers, 16(19). https://doi.org/10.3390/polym16192769
dc.relation.referencesWang, Y., Liu, Z., Takasu, K., & Suyama, H. (2025). A study on the workability of self-compacting mortar with blast furnace slag as sand replacement supplemented by fly ash. Construction and Building Materials, 465, 140252. https://doi.org/10.1016/j.conbuildmat.2025.140252
dc.relation.referencesWichowski, P., Kalenik, M., Rutkowska, G., Malarski, M., Czajkowska, J., & Franus, W. (2024). Characteristics of products made in the process solidification and stabilization of fly ash from combustion of sewage sludge. Cement Wapno Beton, 28, 389-408. https://doi.org/10.32047/CWB.2023.28.6.3
dc.relation.referencesWong, Ai Wei, Chew, Hoong Yuin, Bashir, Mohammed J. K., Aldahdooh, Majed A. A., & Ng, Choon Aun. (2025). Production of mortar with calcined alum sludge as partial cement replacement. E3S Web Conf., 603, 02008. https://doi.org/10.1051/e3sconf/202560302008
dc.relation.referencesWu, B., Dai, X., & Chai, X. (2020). Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations. Water Research, 180, 115912. https://doi.org/10.1016/j.watres.2020.115912
dc.relation.referencesXu, D., Fu, P., Ni, W., Wang, Q., & Li, K. (2021). Characterization and Hydration Mechanism of Ammonia Soda Residue and Portland Cement Composite Cementitious Material. Materials, 14, 4794. https://doi.org/10.3390/ma14174794
dc.relation.referencesYang, Y., Wu, Z., Hu, X., Zhang, J., Long, W., & Dong, B. (2024). Performance and microstructure of sintered sludge ash modified cement paste. Journal of Building Engineering, 91, 109503. https://doi.org/10.1016/j.jobe.2024.109503
dc.relation.referencesYusuf, R. O., Noor, Z. Z., Din, M. F. M., & Abba, A. H. (2012). Use of sewage sludge ash (SSA) in the production of cement and concrete – a review. International Journal of Global Environmental Issues, 12(2-4), 214-228. https://doi.org/10.1504/IJGENVI.2012.049382
dc.relation.referencesZari, R., Graich, A., Abdelouahdi, K., Monkade, M., Laghzizil, A., & Nunzi, J.-M. (2023). Mechanical, Structural, and Environmental Properties of Building Cements from Valorized Sewage Sludges. Smart Cities, 6(3), 1227-1238. https://doi.org/10.3390/smartcities6030059
dc.relation.referencesZhou, D., Wang, R., Tyrer, M., Wong, H., & Cheeseman, C. (2017). Sustainable infrastructure development through use of calcined excavated waste clay as a supplementary cementitious material. Journal of Cleaner Production, 168, 1180-1192. https://doi.org/10.1016/j.jclepro.2017.09.098
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectAnálisis microestructural SEM-EDS
dc.subjectBiosólidos calcinados
dc.subjectMaterial cementante suplementario
dc.subjectMortero sostenible
dc.subjectReactividad puzolánica
dc.subjectResistencia a la compresión
dc.subject.keywordSEM-EDS microstructural analysis
dc.subject.keywordCalcined biosolids
dc.subject.keywordSupplementary cementitious material
dc.subject.keywordSustainable mortar
dc.subject.keywordPozzolanic reactivity
dc.subject.keywordCompressive strength
dc.subject.lembMaestría en Ingeniería Civil -- Tesis y disertaciones académicas
dc.subject.lembMateriales de construcción
dc.subject.lembCemento
dc.subject.lembResistencia de materiales
dc.subject.lembPurificación de aguas residuales
dc.titleAnálisis de la influencia de la adición de biosólidos calcinados en la resistencia a la compresión de un mortero
dc.title.titleenglishAnalysis of the influence of the addition of calcined biosolids on the compressive strength of a mortar
dc.typemasterThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/masterThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
RamírezMuñozMartínFelipe2025.pdf
Tamaño:
8.54 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicacion.pdf
Tamaño:
303.55 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: