Análisis de la influencia de la adición de biosólidos calcinados en la resistencia a la compresión de un mortero
| dc.contributor.advisor | Pineda Jaimes, Jorge Arturo | |
| dc.contributor.author | Ramírez Muñoz, Martín Felipe | |
| dc.contributor.orcid | Pineda Jaimes, Jorge Arturo [0000-0002-0953-9745] | |
| dc.date.accessioned | 2025-09-04T20:57:07Z | |
| dc.date.available | 2025-09-04T20:57:07Z | |
| dc.date.created | 2025-08-20 | |
| dc.description | Se estudia la viabilidad de que los biosólidos, provenientes de una planta de tratamiento de aguas residuales (PTAR), sean utilizados como suplemento cementante y sean incinerados a 850 °C. Se prepararon dos tipos de cenizas, diferenciadas por su tiempo de calcinación: BC1 (biosólidos calcinados por sesenta minutos) y BC3 (biosólidos calcinados por ciento ochenta minutos). Ambas fueron incluidas en lugar del 5%, 10%, 15%, 20%, 25% y el 30% de la mezcla de cemento, generando series de probetas cúbicas con dimensiones de 50 mm que se curaron por un lapso de 28 días. Los resultados del ensayo de resistencia a la compresión muestran dos situaciones ideales: 1. BC3 al 5 %, que mejora la resistencia a la compresión hasta los 186 kg/cm² (+52 % en comparación con el control), y 2. BC1 al 30 %, alcanza una resistencia de 218 kg/cm² (+79 % en comparación con el control). El estudio multiescala SEM-EDS (200→2 µm) reveló que la ceniza de 3 horas, la cual es rica en óxidos reactivos de Ca-Si-Al, consume portlandita y produce geles C-S-H/C-A-S-H densos, los cuales tapan el área de transición entre la pasta y el árido. En cambio, la ceniza de 1 hora, con carbono residual, también funciona como agente de curado interno y como filler al llenar capilares a dosificaciones elevadas. Los espectros EDS confirmaron que las mezclas con mejor rendimiento tenían una relación Ca/Si de entre 1.2 y 1.5, así como la existencia de carbón-aluminatos y etringita que fortalecen la matriz. | |
| dc.description.abstract | The feasibility of using biosolids from a wastewater treatment plant (WWTP) as a cementitious supplement and incinerated at 850°C is being studied. Two types of ash were prepared, differentiated by their calcination time: BC1 (biosolids calcined for sixty minutes) and BC3 (biosolids calcined for one hundred and eighty minutes). Both were included in place of 5%, 10%, 15%, 20%, 25%, and 30% of the cement mix, generating series of 50 mm cubic specimens that were cured for a period of 28 days. The compressive strength test results show two ideal situations: 1. BC3 at 5%, which improves the compressive strength to 186 kg/cm² (+52% compared to the control), and 2. BC1 at 30%, reaching a strength of 218 kg/cm² (+79% compared to the control). The multiscale SEM-EDS study (200→2 µm) revealed that the 3-hour ash, which is rich in reactive Ca-Si-Al oxides, consumes portlandite and produces dense C-S-H/C-A-S-H gels, which obscure the transition area between the paste and the aggregate. In contrast, the 1-hour ash, with residual carbon, also functions as an internal curing agent and as a filler by filling capillaries at high dosages. EDS spectra confirmed that the best-performing mixtures had a Ca/Si ratio between 1.2 and 1.5, as well as the presence of carbon-aluminates and ettringite that strengthen the matrix. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/98812 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Abd Mutalib, M., Rahman, M., Othman, M. H., Ismail, A., & Jaafar, J. (2017). Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Spectroscopy. En Membrane Characterization (pp. 161-179). https://doi.org/10.1016/B978-0-444-63776-5.00009-7 | |
| dc.relation.references | Adesina, A. (2020). Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environmental Challenges, 1, 100004. https://doi.org/10.1016/j.envc.2020.100004 | |
| dc.relation.references | Ahmad, S. I., Ahmed, Z. B., & Ahmed, T. (2022). Feasibility of sludge generated in water-based paint industries as cement replacement material. Case Studies in Construction Materials, 16, e01119. https://doi.org/10.1016/j.cscm.2022.e01119 | |
| dc.relation.references | Altunci, Y. (2024). A STUDY ON THE UTILIZATION OF WASTEWATER TREATMENT SLUDGE IN THE CONSTRUCTION SECTOR. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, 8. https://doi.org/10.62301/usmtd.1592727 | |
| dc.relation.references | Ammari, T. G., Al-Hadidi, M., Al-Kharabsheh, N., Khater, D., & Abu-Romman, S. (2021). Dry Biosolids Reuse as Costless Biodegradable Adsorbent for Cadmium Removal from Water Systems. J. Ecol. Eng., 22(5), 1-12. https://doi.org/10.12911/22998993/135901 | |
| dc.relation.references | Andrade, J. J. de O., Possan, E., Wenzel, M. C., & Silva, S. R. da. (2019). Feasibility of Using Calcined Water Treatment Sludge in Rendering Mortars: A Technical and Sustainable Approach. Sustainability, 11(13). https://doi.org/10.3390/su11133576 | |
| dc.relation.references | Aocharoen, Y., & Chotickai, P. (2021). Compressive mechanical properties of cement mortar containing recycled high-density polyethylene aggregates: Stress–strain relationship. Case Studies in Construction Materials, 15, e00752. https://doi.org/10.1016/j.cscm.2021.e00752 | |
| dc.relation.references | Aodkeng, S., & Chaipanich, A. (2025). Compressive strength, characterizations and drying shrinkage mechanism of mortars using calcined clay from different sources. Case Studies in Construction Materials, 22, e04738. https://doi.org/10.1016/j.cscm.2025.e04738 | |
| dc.relation.references | Ararat Gómez, C. A. (2023). Metodología Para el uso de lodos provenientes de plantas de tratamiento de agua residual (PTAR) para la elaboración de bloques de concreto y su impacto en la economía circular. Casos de estudio. [Tesis de pregrado, Universidad Militar Nueva Granada]. https://repository.umng.edu.co/server/api/core/bitstreams/51e4ba7c-36ae-4e27-a165-93ee21ef0f59/content | |
| dc.relation.references | Argüello Toca, Y. M., & Neira Cabra, Y. S. (2018). Elaboración de mezclas de concreto con inclusión de biosólido procente del tratamiento de aguas residuales [Tesis de pregrado, Universidad Santo Tomas]. https://repository.usta.edu.co/items/3a9f5a8e-2ff0-434d-9836-0cacdb074883 | |
| dc.relation.references | ASTM C618-22. (2023). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. https://doi.org/10.1520/C0618-22 | |
| dc.relation.references | Avci, H., Ghorbanpoor, H., Topcu, I. B., & Nurbas, M. (2017). Investigation and recycling of paint sludge with cement and lime for producing lightweight construction mortar. Journal of Environmental Chemical Engineering, 5(1), 861-869. https://doi.org/10.1016/j.jece.2017.01.009 | |
| dc.relation.references | Baeza-Brotons, F., Garcés, P., Payá, J., & Saval, J. M. (2014). Portland cement systems with addition of sewage sludge ash. Application in concretes for the manufacture of blocks. Journal of Cleaner Production, 82, 112-124. https://doi.org/10.1016/j.jclepro.2014.06.072 | |
| dc.relation.references | Bamshad, O., Mahdikhani, M., Ramezanianpour, A. M., Maleki, Z., Majlesi, A., Habibi, A., & Delavar, M. A. (2023). Prediction and multi-objective optimization of workability and compressive strength of recycled self-consolidating mortar using Taguchi design method. Heliyon, 9(6), e16381. https://doi.org/10.1016/j.heliyon.2023.e16381 | |
| dc.relation.references | Barbhuiya, S., Kanavaris, F., Das, B. B., & Idrees, M. (2024). Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development. Journal of Building Engineering, 86, 108861. https://doi.org/10.1016/j.jobe.2024.108861 | |
| dc.relation.references | Basak, B., Arsh, K., Masum, M. H., Pal, S. K., Hoque, A., Hasan, M. M., Shahidullah, M., & Biswas, A. (2022). EVALUATING OPPORTUNITIES OF TRANSFORMING WASTE PAINT SLUDGE (PS) TO AN ASSET IN ALTERNATIVE USES BASED ON SEM AND EDX ANALYSES. | |
| dc.relation.references | Basto, P. de A., Junior, H. S., & Neto, A. A. de M. (2019). Characterization and pozzolanic properties of sewage sludge ashes (SSA) by electrical conductivity. Cement and Concrete Composites, 104, 103410. https://doi.org/10.1016/j.cemconcomp.2019.103410 | |
| dc.relation.references | Beaudoin, J., & Odler, I. (2019). 5—Hydration, Setting and Hardening of Portland Cement. En P. C. Hewlett & M. Liska (Eds.), Lea’s Chemistry of Cement and Concrete (Fifth Edition) (Fifth Edition, pp. 157-250). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-100773-0.00005-8 | |
| dc.relation.references | Bonilla, M. C. (2022, noviembre 23). El cemento también es responsable del cambio climático, ¿podremos sustituirlo? El Espectador. https://www.elespectador.com/ambiente/el-cemento-tambien-es-responsable-del-cambio-climatico-podremos-sustituirlo/ | |
| dc.relation.references | Bonney, P., Kearnes, M., & Rickards, L. (2025). Responsible biosolids reuse: A critical reassessment of public engagement in the wastewater sector. Journal of Environmental Management, 387, 125556. https://doi.org/10.1016/j.jenvman.2025.125556 | |
| dc.relation.references | Broyles, J. M., & Gevaudan, J. P. (2025). Disparities in low-carbon concrete GWP at the metropolitan level in the United States. npj Materials Sustainability, 3(1), 5. https://doi.org/10.1038/s44296-025-00051-1 | |
| dc.relation.references | Brusselaers, J., & Van Der Linden, A. (2020). Bio-waste in Europe—Turning challenges into opportunities. | |
| dc.relation.references | Cadix, A., & James, S. (2022). Chapter 5—Cementing additives. En Q. Wang (Ed.), Fluid Chemistry, Drilling and Completion (pp. 187-254). Gulf Professional Publishing. https://doi.org/10.1016/B978-0-12-822721-3.00008-3 | |
| dc.relation.references | Chakraborty, S., Jo, B. W., Jo, J. H., & Baloch, Z. (2017). Effectiveness of sewage sludge ash combined with waste pozzolanic minerals in developing sustainable construction material: An alternative approach for waste management. Journal of Cleaner Production, 153, 253-263. https://doi.org/10.1016/j.jclepro.2017.03.059 | |
| dc.relation.references | Chang, Z., Long, G., Zhou, J. L., & Ma, C. (2020). Valorization of sewage sludge in the fabrication of construction and building materials: A review. Resources, Conservation and Recycling, 154, 104606. https://doi.org/10.1016/j.resconrec.2019.104606 | |
| dc.relation.references | Charles, M., Tchadjie, L., & Sithole, T. (2023). The feasibility of utilizing sewage sludge as a source of aluminosilicate to synthesise geopolymer cement. Journal of Materials Research and Technology, 25. https://doi.org/10.1016/j.jmrt.2023.06.116 | |
| dc.relation.references | Chen, F., Bai, S., Liu, H., Gou, H., Zhang, J., & Guan, X. (2025). Comparative study on the effect of two air-entrainment methods on the microstructure of cement mortar. Construction and Building Materials, 475, 141200. https://doi.org/10.1016/j.conbuildmat.2025.141200 | |
| dc.relation.references | Chen, Z., Li, J. S., & Poon, C. S. (2018). Combined use of sewage sludge ash and recycled glass cullet for the production of concrete blocks. Journal of Cleaner Production, 171, 1447-1459. https://doi.org/10.1016/j.jclepro.2017.10.140 | |
| dc.relation.references | Chen, Z., & Poon, C. S. (2017a). Comparative studies on the effects of sewage sludge ash and fly ash on cement hydration and properties of cement mortars. Construction and Building Materials, 154, 791-803. https://doi.org/10.1016/j.conbuildmat.2017.08.003 | |
| dc.relation.references | Chen, Z., & Poon, C. S. (2017b). Comparing the use of sewage sludge ash and glass powder in cement mortars. Environmental Technology, 38(11), 1390-1398. https://doi.org/10.1080/09593330.2016.1230652 | |
| dc.relation.references | Cheng, D., Reiner, D. M., Yang, F., Cui, C., Meng, J., Shan, Y., Liu, Y., Tao, S., & Guan, D. (2023). Projecting future carbon emissions from cement production in developing countries. Nature Communications, 14(1), 8213. https://doi.org/10.1038/s41467-023-43660-x | |
| dc.relation.references | Chiang, K.-Y., Chou, P.-H., Hua, C.-R., Chien, K.-L., & Cheeseman, C. (2009). Lightweight bricks manufactured from water treatment sludge and rice husks. Journal of Hazardous Materials, 171(1), 76-82. https://doi.org/10.1016/j.jhazmat.2009.05.144 | |
| dc.relation.references | Chin, S. C., Shu Ing, D., Kusbiantoro, A., & Wan Ahmad, S. (2016). Characterization of sewage sludge ASH (SSA) in cement mortar. Journal of Engineering and Applied Sciences, 11, 2242-2247. | |
| dc.relation.references | Clastres, P., Cyr, M., & Coutand, M. (2006). Use of sewage sludge ash as mineral admixture in mortars. Proceedings of The Ice - Construction Materials, 159, 153-162. https://doi.org/10.1680/coma.2006.159.4.153 | |
| dc.relation.references | Correa, R. (2001). La tecnología de los morteros. Ciencia e Ingeniería Neogranadina, 11, 41-48. https://doi.org/10.18359/rcin.1353 | |
| dc.relation.references | Coutand, M., Cyr, M., & Clastres, P. (2006). Use of sewage sludge ash as mineral admixture in mortars. Proceedings of the Institution of Civil Engineers - Construction Materials, 159(4), 153-162. https://doi.org/10.1680/coma.2006.159.4.153 | |
| dc.relation.references | Cremades, L. V., Cusidó, J. A., & Arteaga, F. (2018). Recycling of sludge from drinking water treatment as ceramic material for the manufacture of tiles. Journal of Cleaner Production, 201, 1071-1080. https://doi.org/10.1016/j.jclepro.2018.08.094 | |
| dc.relation.references | Daza-Marquez, N., Guzmán, A., Avila, Y., & Abellan-Garcia, J. (2024). Exploring the potential of nitrophosphogypsum and calcined water-treatment plant sludges in mortar mixtures: A study on workability and strength. Construction and Building Materials, 432, 136646. https://doi.org/10.1016/j.conbuildmat.2024.136646 | |
| dc.relation.references | Decreto 1287, No. 1287 de 2014 (2014). https://www.suin-juriscol.gov.co/viewDocument.asp?id=1259502 | |
| dc.relation.references | Dhiman, D., & Anshul, A. (2025). Encapsulation techniques of sludge generated from wastewater treatment. Journal of Environmental Management, 387, 125788. https://doi.org/10.1016/j.jenvman.2025.125788 | |
| dc.relation.references | Ding, T., Shen, K., Cai, C., Xiao, J., Xiao, X., & Liang, W. (2024). 3D printed concrete with sewage sludge ash: Fresh and hardened properties. Cement and Concrete Composites, 148, 105475. https://doi.org/10.1016/j.cemconcomp.2024.105475 | |
| dc.relation.references | Endale, S. A., Yehualaw, M. D., Taffese, W. Z., & Vo, D.-H. (2025). Ecofriendly Mortar with Paint Sludge Ash. Materials, 18(9). https://doi.org/10.3390/ma18092080 | |
| dc.relation.references | EPA. (2025). 2540 SOLIDS. En Standard Methods For the Examination of Water and Wastewater. https://doi.org/10.2105/SMWW.2882.030 | |
| dc.relation.references | Ferrentino, R., Langone, M., Fiori, L., & Andreottola, G. (2023). Full-Scale Sewage Sludge Reduction Technologies: A Review with a Focus on Energy Consumption. Water, 15(4). https://doi.org/10.3390/w15040615 | |
| dc.relation.references | Fuentes Molina, N., Isenia León, S. A., & Ascencio Mendoza, J. G. (2017). Biosólidos de tratamiento de aguas residuales domésticas, como adiciones en la elaboración de ladrillos cerámicos. Producción + Limpia, 12(2), 92-102. https://doi.org/10.22507/pml.v12n2a8 | |
| dc.relation.references | Fuentes Molina, N., Isenia León, S. A., & Ascencio Mendoza, J. G. (2019). Adición de lodos residuales en la elaboración de matrices de cerámicas. Revista EIA, 16(32), 12-25. https://doi.org/doi.org/10.24050/reia.v16i32.1061 | |
| dc.relation.references | Gao, N., Kamran, K., Quan, C., & Williams, P. T. (2020). Thermochemical conversion of sewage sludge: A critical review. Progress in Energy and Combustion Science, 79, 100843. https://doi.org/10.1016/j.pecs.2020.100843 | |
| dc.relation.references | García Bello, N. E. (2021). Análisis y propuesta para el uso potencial de biosólidos de PTAR en la fabricación de ladrillos de arcilla [Tesis de maestría, Universidad Militar Nueva Granada]. https://repository.umng.edu.co/server/api/core/bitstreams/16aa39fa-8416-4e48-ab37-ac9765056303/content | |
| dc.relation.references | Georget, F., Wilson, W., & Scrivener, K. L. (2021). edxia: Microstructure characterisation from quantified SEM-EDS hypermaps. Cement and Concrete Research, 141, 106327. https://doi.org/10.1016/j.cemconres.2020.106327 | |
| dc.relation.references | Gherghel, A., Teodosiu, C., & Gisi, S. D. (2019). A review on wastewater sludge valorisation and its challenges in the context of circular economy. Journal of Cleaner Production, 228, 244-263. https://doi.org/10.1016/j.jclepro.2019.04.240 | |
| dc.relation.references | Godoy, L. G. G. de, Rohden, A. B., Garcez, M. R., Costa, E. B. da, Dalt, S. D., & Andrade, J. J. O. (2019). Valorization of water treatment sludge waste by application as supplementary cementitious material. Construction and Building Materials. https://api.semanticscholar.org/CorpusID:201293251 | |
| dc.relation.references | Godoy, L., Rohden, A., Garcez, M., Da Dalt, S., & Bonan Gomes, L. (2020). Production of supplementary cementitious material as a sustainable management strategy for water treatment sludge waste. Case Studies in Construction Materials, 12, e00329. https://doi.org/10.1016/j.cscm.2020.e00329 | |
| dc.relation.references | Gomes, S. D. C., Zhou, J. L., Li, W., & Long, G. (2019). Progress in manufacture and properties of construction materials incorporating water treatment sludge: A review. Resources, Conservation and Recycling, 145, 148-159. https://doi.org/10.1016/j.resconrec.2019.02.032 | |
| dc.relation.references | González, K. B., Pacheco, E., Guzmán, A., Pereira, Y. A., Cuadro, H. C., & Valencia, J. A. F. (2020). Use of sludge ash from drinking water treatment plant in hydraulic mortars. Materials Today Communications, 23, 100930. https://doi.org/10.1016/j.mtcomm.2020.100930 | |
| dc.relation.references | Goyal, S., Siddique, R., Jha, S., & Sharma, D. (2019). Utilization of textile sludge in cement mortar and paste. Construction and Building Materials, 214, 169-177. https://doi.org/10.1016/j.conbuildmat.2019.04.023 | |
| dc.relation.references | Gu, H., Meng, Z., Wang, Y., Gao, X., Wang, R., Wang, D., Sheng, J., & Wang, J. (2025). Investigations into Replacing Calcined Clay with Sewage Sludge Ash in Limestone Calcined Clay Cement (LC3). Materials, 18(4). https://doi.org/10.3390/ma18040782 | |
| dc.relation.references | Haach, V. G., Vasconcelos, G., & Lourenço, P. B. (2011). Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Construction and Building Materials, 25(6), 2980-2987. https://doi.org/10.1016/j.conbuildmat.2010.11.011 | |
| dc.relation.references | Hagemann, S. E., Gastaldini, A. L. G., Cocco, M., Jahn, S. L., & Terra, L. M. (2019). Synergic effects of the substitution of Portland cement for water treatment plant sludge ash and ground limestone: Technical and economic evaluation. Journal of Cleaner Production, 214, 916-926. https://doi.org/10.1016/j.jclepro.2018.12.324 | |
| dc.relation.references | Hakeem, I. G., Halder, P., Dike, C. C., Chiang, K., Sharma, A., Paz-Ferreiro, J., & Shah, K. (2022). Advances in biosolids pyrolysis: Roles of pre-treatments, catalysts, and co-feeding on products distribution and high-value chemical production. Journal of Analytical and Applied Pyrolysis, 166, 105608. https://doi.org/10.1016/j.jaap.2022.105608 | |
| dc.relation.references | Hanifa, M., Agarwal, R., Sharma, U., Thapliyal, P. C., & Singh, L. P. (2023). A review on CO2 capture and sequestration in the construction industry: Emerging approaches and commercialised technologies. Journal of CO2 Utilization, 67, 102292. https://doi.org/10.1016/j.jcou.2022.102292 | |
| dc.relation.references | Harutyunyan, V. S. (2022). XRD and combined SEM-EDS analysis of long-term hydration products of ye’elimite. Materials Chemistry and Physics, 276, 125373. https://doi.org/10.1016/j.matchemphys.2021.125373 | |
| dc.relation.references | Hassen, A., Zaafouri, K., Friaa, A., Abidi, S., Naoui, S., & Jamaaoui, F. (2021). Municipal sewage sludge energetic conversion as a tool for environmental sustainability: Production of innovative biofuels and biochar. Environmental Science and Pollution Research, 28, 1-15. https://doi.org/10.1007/s11356-020-11400-z | |
| dc.relation.references | Haustein, E., Kuryłowicz-Cudowska, A., Łuczkiewicz, A., Fudala-Książek, S., & Cieślik, B. M. (2022). Influence of Cement Replacement with Sewage Sludge Ash (SSA) on the Heat of Hydration of Cement Mortar. Materials, 15(4). https://doi.org/10.3390/ma15041547 | |
| dc.relation.references | He, Z., Wu, Z., Liu, J., Wang, Q., Zhuang, L., Wang, S., & Zhao, Q. (2024). Evaluating the Flexural Performance of Sintered Sludge Ash-Modified Cement Paste Using Surface Cracks and Fracture Toughness. Buildings, 14, 3070. https://doi.org/10.3390/buildings14103070 | |
| dc.relation.references | Hernandez-Garcia, J.-F., Sánchez-Perdomo, L.-J., & Silva-Vega, G.-S. (2021). Estudio del impacto de la adición de biosólidos secos, al cemento tipo Portland en el proceso de elaboración de morteros. Revista Facultad de Ingeniería, 30(56), e12661. https://doi.org/10.19053/01211129.v30.n56.2021.12661 | |
| dc.relation.references | Herrera, B., Amell, A., Chejne, F., Cacua, K., Manrique, R., Henao, W., & Vallejo, G. (2017). Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia. Energy, 140, 1047-1058. https://doi.org/10.1016/j.energy.2017.09.041 | |
| dc.relation.references | Huang, X., Yuhao, Haojie, W., Xiuqing, X., Chunbiao, Q., Fei, X., & Xiaorong, Z. (2025). Recycle sludge incineration ash for efficient preparation of foam concrete: Performance, microstructure, and mechanisms. Next Sustainability, 6, 100125. https://doi.org/10.1016/j.nxsust.2025.100125 | |
| dc.relation.references | Hwang, C.-L., Chiang, C.-H., Huynh, T.-P., Vo, D.-H., Jhang, B.-J., & Ngo, S.-H. (2017). Properties of alkali-activated controlled low-strength material produced with waste water treatment sludge, fly ash, and slag. Construction and Building Materials, 135, 459-471. https://doi.org/10.1016/j.conbuildmat.2017.01.014 | |
| dc.relation.references | Ige, O. E., Olanrewaju, O. A., Duffy, K. J., & Obiora, C. (2021). A review of the effectiveness of Life Cycle Assessment for gauging environmental impacts from cement production. Journal of Cleaner Production, 324, 129213. https://doi.org/10.1016/j.jclepro.2021.129213 | |
| dc.relation.references | Jadhav, S. V., Haramkar, S. S., Kamble, A. R., & Thorat, B. N. (2019). Insights into dewatering and characterization of the waste activated sludge. Journal of the Taiwan Institute of Chemical Engineers, 94, 81-87. https://doi.org/10.1016/j.jtice.2017.11.035 | |
| dc.relation.references | Jang, C., & Abebe, T. N. (2024). Utilizing Wheel Washing Machine Sludge as a Cement Substitute in Repair Mortar: An Experimental Investigation into Material Characteristics. Materials (Basel, Switzerland), 17(9). https://doi.org/10.3390/ma17092037 | |
| dc.relation.references | Jang, Y., Lee, B.-J., & Lee, J.-W. (2019). Strength and Water Purification Properties of Environment-Friendly Construction Material Produced with the (D)PAOs and Zeolite. Applied Sciences, 9, 972. https://doi.org/10.3390/app9050972 | |
| dc.relation.references | Joint Research Centre. (2020). Deep decarbonisation of industry: The cement sector. | |
| dc.relation.references | Juala, R., Ballim, Y., & Mulopo, J. (2022). Assessment of local sewage sludge ash as a supplementary cementitious material-effects of incineration temperature and cooling rate of the ash. Journal of the South African Institution of Civil Engineering, 64(1), 37-47. | |
| dc.relation.references | Judd, J., Fonseca, F., Day, B., Reynolds, M., & Moffett, T. (2023). Effect of size and water content on the compressive strength of mortar. Construction and Building Materials, 368, 130505. https://doi.org/10.1016/j.conbuildmat.2023.130505 | |
| dc.relation.references | K, L., L K, A., & Vijaya, S. (2024). Strength and Durability Studies on Concrete Utilizing Sewage Sludge Ash and Treated Sewage Water. International Research Journal on Advanced Engineering Hub (IRJAEH), 2, 2446-2455. https://doi.org/10.47392/IRJAEH.2024.0335 | |
| dc.relation.references | Kalak, T., Szypura, P., Cierpiszewski, R., & Ulewicz, M. (2023). Modification of Concrete Composition Doped by Sewage Sludge Fly Ash and Its Effect on Compressive Strength. Materials (Basel, Switzerland), 16(11). https://doi.org/10.3390/ma16114043 | |
| dc.relation.references | Kanteraki, A. E., Isari, E. A., Zafeiropoulos, I., Cangemi, S., Bountla, A., & Kalavrouziotis, I. K. (2024). Structural analysis and characterization of biosolids. A case study of biosolids from wastewater treatment plants in Western Greece. Science of The Total Environment, 908, 168425. https://doi.org/10.1016/j.scitotenv.2023.168425 | |
| dc.relation.references | Kizinievič, O., Žurauskienė, R., Kizinievič, V., & Žurauskas, R. (2013). Utilisation of sludge waste from water treatment for ceramic products. Construction and Building Materials, 41, 464-473. https://doi.org/10.1016/j.conbuildmat.2012.12.041 | |
| dc.relation.references | Kong, Y., Wang, P., Liu, S., Zhao, G., & Peng, Y. (2016). SEM Analysis of the Interfacial Transition Zone between Cement-Glass Powder Paste and Aggregate of Mortar under Microwave Curing. Materials, 9(9). https://doi.org/10.3390/ma9090733 | |
| dc.relation.references | Kusuma, R. T., Hiremath, R. B., Rajesh, P., Kumar, B., & Renukappa, S. (2022). Sustainable transition towards biomass-based cement industry: A review. Renewable and Sustainable Energy Reviews, 163, 112503. https://doi.org/10.1016/j.rser.2022.112503 | |
| dc.relation.references | Latosińska, J., & and, M. Ż. (2011). The application of sewage sludge as an expanding agent in the production of lightweight expanded clay aggregate mass. Environmental Technology, 32(13), 1471-1478. https://doi.org/10.1080/09593330.2010.540716 | |
| dc.relation.references | Le, T. H. M., Park, D.-W., & Seo, J.-W. (2019). Evaluation on the mechanical properties of cement asphalt mortar with quick hardening admixture for railway maintenance. Construction and Building Materials, 206, 375-384. https://doi.org/10.1016/j.conbuildmat.2019.02.104 | |
| dc.relation.references | Lee, J.-B. (2024). Incorporating Wastewater Sludge as a Cement Alternative in Repair Mortar: An Experimental Study of Material Properties. Materials, 17(22). https://doi.org/10.3390/ma17225625 | |
| dc.relation.references | Li, J.-S., Guo, M.-Z., Xue, Q., & Poon, C. S. (2017). Recycling of incinerated sewage sludge ash and cathode ray tube funnel glass in cement mortars. Journal of Cleaner Production, 152, 142-149. https://doi.org/10.1016/j.jclepro.2017.03.116 | |
| dc.relation.references | Li, R., & Zhai, C. (2025). Constructing sports facilities using environment-friendly materials. Frontiers in Materials, Volume 11-2024. https://doi.org/10.3389/fmats.2024.1524729 | |
| dc.relation.references | Li, Y., Yu, M., Li, W., & Bian, X. (2025). Relation between pore structure uniformity and compressive strength of iron tailings mortar. Cement and Concrete Composites, 157, 105964. https://doi.org/10.1016/j.cemconcomp.2025.105964 | |
| dc.relation.references | Liang, C., Le, X., Fang, W., Zhao, J., Fang, L., & Hou, S. (2022). The Utilization of Recycled Sewage Sludge Ash as a Supplementary Cementitious Material in Mortar: A Review. Sustainability, 14, 4432. https://doi.org/10.3390/su14084432 | |
| dc.relation.references | Lin, W. Y., Ng, W. C., Wong, B. S. E., Teo, S. L.-M., Sivananthan, G. d/o, Baeg, G. H., Ok, Y. S., & Wang, C.-H. (2018). Evaluation of sewage sludge incineration ash as a potential land reclamation material. Journal of Hazardous Materials, 357, 63-72. https://doi.org/10.1016/j.jhazmat.2018.05.047 | |
| dc.relation.references | Ling, Y. P., Tham, R.-H., Lim, S.-M., Fahim, M., Ooi, C.-H., Krishnan, P., Matsumoto, A., & Yeoh, F.-Y. (2017). Evaluation and reutilization of water sludge from fresh water processing plant as a green clay substituent. Applied Clay Science, 143, 300-306. https://doi.org/10.1016/j.clay.2017.04.007 | |
| dc.relation.references | Liu, J., Liu, G., Zhang, W., Li, Z., Xing, F., & Tang, L. (2022). Application potential analysis of biochar as a carbon capture material in cementitious composites: A review. Construction and Building Materials, 350, 128715. https://doi.org/10.1016/j.conbuildmat.2022.128715 | |
| dc.relation.references | Liu, Y., Zhuge, Y., Chow, C. W. K., Keegan, A., Pham, P. N., Li, D., Qian, G., & Wang, L. (2020). Recycling drinking water treatment sludge into eco-concrete blocks with CO2 curing: Durability and leachability. Science of The Total Environment, 746, 141182. https://doi.org/10.1016/j.scitotenv.2020.141182 | |
| dc.relation.references | Luo, H.-L., Chang, W.-C., & Lin, D.-F. (2009). The effects of different types of nano-silicon dioxide additives on the properties of sludge ash mortar. Journal of the Air & Waste Management Association (1995), 59(4), 440-446. https://doi.org/10.3155/1047-3289.59.4.440 | |
| dc.relation.references | Lv, T., Zhang, J., Hou, D., Long, W.-J., & Dong, B. (2024). Mechanical properties and microstructural characteristics of seawater-mixed sintered sludge cement paste. Construction and Building Materials, 414. https://doi.org/10.1016/j.conbuildmat.2024.134996 | |
| dc.relation.references | Lynn, C. J., Dhir, R. K., Ghataora, G. S., & West, R. P. (2015). Sewage sludge ash characteristics and potential for use in concrete. Construction and Building Materials, 98, 767-779. https://doi.org/10.1016/j.conbuildmat.2015.08.122 | |
| dc.relation.references | Machi, A. E., Mabroum, S., Taha, Y., Tagnit-Hamou, A., Benzaazoua, M., & Hakkou, R. (2021). Use of flint from phosphate mine waste rocks as an alternative aggregates for concrete. Construction and Building Materials, 271, 121886. https://doi.org/10.1016/j.conbuildmat.2020.121886 | |
| dc.relation.references | Manali, A., Pothoulaki, A., & Gikas, P. (2024). The state of the art in biosolids gasification. Journal of Environmental Management, 364, 121385. https://doi.org/10.1016/j.jenvman.2024.121385 | |
| dc.relation.references | Maragh, J. M., Palkovic, S. D., Shukla, A., Büyüköztürk, O., & Masic, A. (2021). SEM-EDS and microindentation-driven large-area high-resolution chemomechanical mapping and computational homogenization of cementitious materials. Materials Today Communications, 28, 102698. https://doi.org/10.1016/j.mtcomm.2021.102698 | |
| dc.relation.references | Marzbali, M. H., Hakeem, I. G., Ngo, T., Balu, R., Jena, M. K., Vuppaladadiyam, A., Sharma, A., Choudhury, N. R., Batstone, D. J., & Shah, K. (2024). A critical review on emerging industrial applications of chars from thermal treatment of biosolids. Journal of Environmental Management, 369, 122341. https://doi.org/10.1016/j.jenvman.2024.122341 | |
| dc.relation.references | Mejdi, M., Saillio, M., Chaussadent, T., Divet, L., & Tagnit-Hamou, A. (2020). Hydration mechanisms of sewage sludge ashes used as cement replacement. Cement and Concrete Research, 135, 106115. https://doi.org/10.1016/j.cemconres.2020.106115 | |
| dc.relation.references | Mohajerani, A., Ukwatta, A., Jeffrey-Bailey, T., Swaney, M., Ahmed, M., Rodwell, G., Bartolo, S., Eshtiaghi, N., & Setunge, S. (2019). A Proposal for Recycling the World’s Unused Stockpiles of Treated Wastewater Sludge (Biosolids) in Fired-Clay Bricks. Buildings, 9(1). https://doi.org/10.3390/buildings9010014 | |
| dc.relation.references | Mojapelo, K., Kupolati, W., Burger, E., Ndambuki, J., Snyman, J., Achi, C., & Quadri, A. (2025). Durability and Environmental Impact of Wastewater Sludge Ash as a Cement Replacement in Concrete: Challenges and Future Directions. Materials Circular Economy, 7. https://doi.org/10.1007/s42824-025-00172-x | |
| dc.relation.references | Monzó, J., Payá, J., Borrachero, M. V., & Girbés, I. (2003). Reuse of sewage sludge ashes (SSA) in cement mixtures: The effect of SSA on the workability of cement mortars. Waste Management (New York, N.Y.), 23(4), 373-381. https://doi.org/10.1016/S0956-053X(03)00034-5 | |
| dc.relation.references | Monzó, J., Payá, J., Borrachero, M. V., & Peris-Mora, E. (1999). Mechanical behavior of mortars containing sewage sludge ash (SSA) and Portland cements with different tricalcium aluminate content. Cement and Concrete Research, 29(1), 87-94. https://doi.org/10.1016/S0008-8846(98)00177-X | |
| dc.relation.references | Mosaberpanah, M., Olabimtan, S., Balkis, A., Rabiu, B., Oluwole, B., & Ajuonuma, C. (2024). Effect of Biochar and Sewage Sludge Ash as Partial Replacement for Cement in Cementitious Composites: Mechanical, and Durability Properties. Sustainability, 16, 1522. https://doi.org/10.3390/su16041522 | |
| dc.relation.references | Naamane, S., Rais, Z., & Taleb, M. (2016). The effectiveness of the incineration of sewage sludge on the evolution of physicochemical and mechanical properties of Portland cement. Construction and Building Materials, 112, 783-789. https://doi.org/10.1016/j.conbuildmat.2016.02.121 | |
| dc.relation.references | Ng, Y. L., Aldahdooh, M. A. A., Alazaiza, M. Y. D., Bashir, M. J., Chok, V. S., & Ng, C. A. (2022). Influence of alum sludge ash and ground granulated blast furnace slag on properties of cement mortar. Cleaner Engineering and Technology, 6, 100376. https://doi.org/10.1016/j.clet.2021.100376 | |
| dc.relation.references | Nicolas, R. S., Cyr, M., & Escadeillas, G. (2013). Characteristics and applications of flash metakaolins. Applied Clay Science, 83-84, 253-262. https://doi.org/10.1016/j.clay.2013.08.036 | |
| dc.relation.references | Nilimaa, J. (2023). Smart materials and technologies for sustainable concrete construction. Developments in the Built Environment, 15, 100177. https://doi.org/10.1016/j.dibe.2023.100177 | |
| dc.relation.references | NSR-10. (2010). Reglamento colombiano de construcción sismo resistente. https://www.unisdr.org/campaign/resilientcities/uploads/city/attachments/3871-10684.pdf | |
| dc.relation.references | NTC 77. (2018). Concretos. Método de ensayo para el análisis por tamizado de los agregados finos y gruesos. (Versión Cuarta). https://tienda.icontec.org/gp-concretos-metodo-de-ensayo-para-el-analisis-por-tamizado-de-los-agregados-finos-y-gruesos-ntc77-2018.html | |
| dc.relation.references | NTC 107. (2019). Cementos. Método de ensayo para determinar la expansión en autoclave del cemento hidráulico (Versión Sexta). https://tienda.icontec.org/gp-cementos-metodo-de-ensayo-para-determinar-la-expansion-en-autoclave-del-cemento-hidraulico-ntc107-2019.html | |
| dc.relation.references | NTC 118. (2022). Cementos. Método de ensayo para determinar el tiempo de fraguado del cemento hidráulico mediante aguja de vicat (Versión Decima). https://tienda.icontec.org/gp-ntc-cementos-metodo-de-ensayo-para-determinar-el-tiempo-de-fraguado-del-cemento-hidraulico-mediante-aguja-de-vicat-ntc118-2022.html | |
| dc.relation.references | NTC 121. (2021). Especificación de desempeño para cemento hidráulico (Versión Quinta). https://tienda.icontec.org/gp-especificacion-de-desempeno-para-cemento-hidraulico-ntc121-2021.html | |
| dc.relation.references | NTC 220. (2022). Cementos. Determinación de la resistencia de morteros de cemento hidráulico a la compresión, usando cubos de 50 mm o 2 pulgadas de lado. (Versión Novena). https://tienda.icontec.org/gp-ntc-cementos-determinacion-de-la-resistencia-de-morteros-de-cemento-hidraulico-a-la-compresion-usando-cubos-de-50-mm-o-2-pulgadas-de-lado-ntc220-2022.html | |
| dc.relation.references | NTC 221. (2019). Cementos. Método de ensayo para determinar la densidad del cemento hidráulico. (Versión Sexta). https://tienda.icontec.org/gp-cementos-metodo-de-ensayo-para-determinar-la-densidad-del-cemento-hidraulico-ntc221-2019.html | |
| dc.relation.references | NTC 224. (2020). Cementos. Método de ensayo para determinar el contenido de aire en morteros de cemento hidráulico (Versión Quinta). https://tienda.icontec.org/gp-cementos-metodo-de-ensayo-para-determinar-el-contenido-de-aire-en-morteros-de-cemento-hidraulico-ntc224-2020.html | |
| dc.relation.references | NTC 1032. (2013). Ingeniería civil y arquitectura. Método de ensayo para la determinación del contenido de aire en el concreto fresco. Método de presión. (Versión Tercera). https://tienda.icontec.org/gp-ingenieria-civil-y-arquitectura-metodo-de-ensayo-para-la-determinacion-del-contenido-de-aire-en-el-concreto-fresco-metodo-de-presion-ntc1032-2013.html | |
| dc.relation.references | NTC 1776. (2019). Método de ensayo para determinar el contenido total de humedad evaporable por secado de los agregados (No. Tercera). https://tienda.icontec.org/gp-metodo-de-ensayo-para-determinar-el-contenido-total-de-humedad-evaporable-por-secado-de-los-agregados-ntc1776-2019.html | |
| dc.relation.references | NTC 2240. (2020). Agregado para mortero de mampostería. (Versión Quinta). https://tienda.icontec.org/gp-agregado-para-mortero-de-mamposteria-ntc2240-2020.html | |
| dc.relation.references | NTC 3356. (2000). Concretos. Mortero premezclado para mamposteria. (Versión Tercera). https://tienda.icontec.org/gp-concretos-mortero-premezclado-para-mamposteria-ntc3356-2000.html | |
| dc.relation.references | NTC 3546. (2021). Métodos de ensayo para la evaluación previa y durante la construcción, de morteros para unidades de mampostería simple y reforzada. (Versión Tercera). https://tienda.icontec.org/gp-metodos-de-ensayo-para-la-evaluacion-previa-y-durante-la-construccion-de-morteros-para-unidades-de-mamposteria-simple-y-reforzada-ntc3546-2021.html | |
| dc.relation.references | NTC 4050. (2023). Cemento para mampostería (Versión Cuarta). https://tienda.icontec.org/gp-ntc-cemento-para-mamposteria-ntc4050-2023.html | |
| dc.relation.references | Otero, M., Sanchez, M. E., Gómez, X., & Morán, A. (2010). Thermogravimetric analysis of biowastes during combustion. Waste Management, 30(7), 1183-1187. https://doi.org/10.1016/j.wasman.2009.12.010 | |
| dc.relation.references | Othman, R., Putra Jaya, R., Duraisamy, Y., Sulaiman, M. A., Chong, B. W., & Ghamari, A. (2023). Efficiency of Waste as Cement Replacement in Foamed Concrete—A Review. Sustainability, 15(6). https://doi.org/10.3390/su15065163 | |
| dc.relation.references | Owaid, H. M., Hamid, R., & Taha, M. R. (2019). Durability properties of multiple-blended binder concretes incorporating thermally activated alum sludge ash. Construction and Building Materials, 200, 591-603. https://doi.org/10.1016/j.conbuildmat.2018.12.149 | |
| dc.relation.references | Oyan, V., Özvan, A., & Tapan, M. (2013, febrero). Effectiveness of Pumice And Scoria Aggregates in Controlling Alkali Silica Reaction. | |
| dc.relation.references | Page, J., Khadraoui, F., Gomina, M., & Boutouil, M. (2019). Influence of different surface treatments on the water absorption capacity of flax fibres: Rheology of fresh reinforced-mortars and mechanical properties in the hardened state. Construction and Building Materials, 199, 424-434. https://doi.org/10.1016/j.conbuildmat.2018.12.042 | |
| dc.relation.references | Patel, S., Kundu, S., Halder, P., Rathnayake, N., Hedayati Marzbali, M., Aktar, S., Selezneva, E., Paz-Ferreiro, J., Surapaneni, A., Figueiredo, C., Sharma, A., Mallavarapu, M., & Shah, K. (2020). A critical literature review on biosolids to biochar: An alternative biosolids management option. Reviews in Environmental Science and Bio/Technology, 19, 807-841. https://doi.org/10.1007/s11157-020-09553-x | |
| dc.relation.references | Patel, S., Kundu, S., Halder, P., Rickards, L., Paz-Ferreiro, J., Surapaneni, A., Madapusi, S., & Shah, K. (2019). Thermogravimetric Analysis of biosolids pyrolysis in the presence of mineral oxides. Renewable Energy, 141, 707-716. https://doi.org/10.1016/j.renene.2019.04.047 | |
| dc.relation.references | Pavlík, Z., Fořt, J., Záleská, M., Pavlíková, M., Trník, A., Medved, I., Keppert, M., Koutsoukos, P. G., & Černý, R. (2016). Energy-efficient thermal treatment of sewage sludge for its application in blended cements. Journal of Cleaner Production, 112, 409-419. https://doi.org/10.1016/j.jclepro.2015.09.072 | |
| dc.relation.references | Pei, J. S. F., Choo, C. S., Khaerudini, D. S., Ng, S. M., Ong, D. E. L., Tan, M., & Sunarso, J. (2024). Workability, compressive strength, and efflorescence characteristics of one-part mix alkali-activated circulating fluidised bed combustion fly ash-based mortars. CEMENT, 18, 100123. https://doi.org/10.1016/j.cement.2024.100123 | |
| dc.relation.references | Peys, A., Hertel, T., & Snellings, R. (2022). Co-Calcination of Bauxite Residue With Kaolinite in Pursuit of a Robust and High-Quality Supplementary Cementitious Material. Frontiers in Materials, 9, 913151. https://doi.org/10.3389/fmats.2022.913151 | |
| dc.relation.references | Pinarli, V., & and, G. K. (1994a). An innovative sludge disposal option‐reuse of sludge ash by incorporation in construction materials. Environmental Technology, 15(9), 843-852. https://doi.org/10.1080/09593339409385491 | |
| dc.relation.references | Pinarli, V., & and, N. K. E. (1994b). Constructive sludge management ‐ reutilization of municipal sewage sludge in Portland cement mortars. Environmental Technology, 15(9), 833-841. https://doi.org/10.1080/09593339409385490 | |
| dc.relation.references | Pinarli, V., Karaca, G., Salihoglu, G., & And, N. K. S. (2005). Stabilization and Solidification of Waste Phosphate Sludge Using Portland Cement and Fly Ash as Cement Substitute. Journal of Environmental Science and Health, Part A, 40(9), 1763-1774. https://doi.org/10.1081/ESE-200068051 | |
| dc.relation.references | Prabhakar, A. K., Krishnan, P., Lee, S. S.-C., Lim, C. S., Dixit, A., Mohan, B. C., Teoh, J. H., Pang, S. D., Tsang, D. C. W., Teo, S. L.-M., & Wang, C.-H. (2022). Sewage sludge ash-based mortar as construction material: Mechanical studies, macrofouling, and marine toxicity. Science of The Total Environment, 824, 153768. https://doi.org/10.1016/j.scitotenv.2022.153768 | |
| dc.relation.references | Ragazzi, M., Rada, E. C., & Ferrentino, R. (2015). Analysis of real-scale experiences of novel sewage sludge treatments in an Italian pilot region. Desalination and Water Treatment, 55(3), 783-790. https://doi.org/10.1080/19443994.2014.932717 | |
| dc.relation.references | Raj, T., & Shanmugapriya, T. (2022). A comprehensive analysis on optimization of Sewage sludge ash as a binding material for a sustainable construction practice: A state of the art review. Materials Today: Proceedings, 64. https://doi.org/10.1016/j.matpr.2022.05.479 | |
| dc.relation.references | Raza, A., Saad, N., Elhadi, K., Azab, M., Deifalla, A., Elhag, A., & Ali, K. (2022). Mechanical, Durability, and Microstructural Evaluation of Coal Ash Incorporated Recycled Aggregate Concrete: An Application of Waste Effluents for Sustainable Construction. Buildings, 12. https://doi.org/10.3390/buildings12101715 | |
| dc.relation.references | Reddy, P. V. R. K., & Prasad, D. R. (2022). A study on workability, strength and microstructure characteristics of graphene oxide and fly ash based concrete. Materials Today: Proceedings, 62, 2919-2925. https://doi.org/10.1016/j.matpr.2022.02.495 | |
| dc.relation.references | Reis, J. B., Levandoski, W. M. K., Krogel, M., Ferrazzo, S. T., Pasquali, G. D. L., & and, E. P. K. (2024). Technological characterization and environment-friendly possibilities to reuse water treatment sludge in building materials. Journal of Environmental Science and Health, Part A, 59(5), 241-250. https://doi.org/10.1080/10934529.2024.2367353 | |
| dc.relation.references | Roychand, R., Patel, S., Halder, P., Kundu, S., Hampton, J., Bergmann, D., Surapaneni, A., Shah, K., & Pramanik, B. (2021). Recycling biosolids as cement composites in raw, pyrolyzed and ashed forms: A waste utilisation approach to support circular economy. Journal of Building Engineering, 38, 102199. https://doi.org/10.1016/j.jobe.2021.102199 | |
| dc.relation.references | Rumayor, M., Fernández-González, J., Domínguez-Ramos, A., & Irabien, A. (2022). Deep Decarbonization of the Cement Sector: A Prospective Environmental Assessment of CO2 Recycling to Methanol. ACS Sustainable Chemistry & Engineering, 10(1), 267-278. https://doi.org/10.1021/acssuschemeng.1c06118 | |
| dc.relation.references | Rutkowska, G., Wichowski, P., Franus, M., Mendryk, M., & Fronczyk, J. (2020). Modification of Ordinary Concrete Using Fly Ash from Combustion of Municipal Sewage Sludge. Materials, 13(2). https://doi.org/10.3390/ma13020487 | |
| dc.relation.references | Rutkowska, G., Żółtowski, M., Rusakov, K., Pawluk, K., Andrzejak, J., & Żółtowski, B. (2023). The Influence of Fly Ash from Sewage Sludge on the Concrete Carbonation Course. Buildings, 13, 1838. https://doi.org/10.3390/buildings13071838 | |
| dc.relation.references | Ruviaro, A. S., Silvestro, L., Scolaro, T. P., de Matos, P. R., & Pelisser, F. (2021). Use of calcined water treatment plant sludge for sustainable cementitious composites production. Journal of Cleaner Production, 327, 129484. https://doi.org/10.1016/j.jclepro.2021.129484 | |
| dc.relation.references | Sá, H. A. de, Oliveira, J. V. da C., Chagas, L. S. V. B., & Meira, F. F. D. de A. (2022). Applicability of calcined sewage sludge instead of Portland cement for coating mortars. Research, Society and Development, 11(15), e90111537057. https://doi.org/10.33448/rsd-v11i15.37057 | |
| dc.relation.references | Schneider, M. (2019). The cement industry on the way to a low-carbon future. Cement and Concrete Research, 124, 105792. https://doi.org/10.1016/j.cemconres.2019.105792 | |
| dc.relation.references | Shafii, M., Chia, E., & Shaffie, E. (2019). THE USE OF SEWAGE SLUDGE AND ITS ASH IN CONSTRUCTION AND AGRICULTURE INDUSTRY: A REVIEW. Jurnal Teknologi, 81. https://doi.org/10.11113/jt.v81.13486 | |
| dc.relation.references | Shehadeh, D., Govin, A., Grosseau, P., Krour, H., Laetitia, B., & Zeigler, G. (2023a). Characterizing Sewage Sludge Ashes in Dry and Wet States for Use as SCM (pp. 99-109). https://doi.org/10.1007/978-3-031-33187-9_10 | |
| dc.relation.references | Shehadeh, D., Govin, A., Grosseau, P., Krour, H., Laetitia, B., & Zeigler, G. (2023b). Characterizing Sewage Sludge Ashes in Dry and Wet States for Use as SCM (pp. 99-109). https://doi.org/10.1007/978-3-031-33187-9_10 | |
| dc.relation.references | Shehadeh, D., Govin, A., Grosseau, P., Krour, H., Laetitia, B., Ziegler, G., & Serclerat, A. (2024). Characterization of Ashes from Sewage Sludge-Limestone Incineration: Study of SSA Properties and Reactivity for SCM Use. Construction Materials, 4, 611-628. https://doi.org/10.3390/constrmater4030033 | |
| dc.relation.references | Shu Ing, D., Chin, S. C., Guan, T., & Suil, A. (2015). The use of sewage sludge ash (SSA) as partial replacement of cement in concrete. 11. | |
| dc.relation.references | Singh, S., Kumar, V., Dhanjal, D. S., Datta, S., Bhatia, D., Dhiman, J., Samuel, J., Prasad, R., & Singh, J. (2020). A sustainable paradigm of sewage sludge biochar: Valorization, opportunities, challenges and future prospects. Journal of Cleaner Production, 269, 122259. https://doi.org/10.1016/j.jclepro.2020.122259 | |
| dc.relation.references | Škondrić, M., Radević, A., Savić, A., Naunović, Z., Radovanović, Ž., Svetozarević, S., & Rajaković-Ognjanović, V. (2025). Sustainable Lightweight Concrete Designed with Modified Solidified Wastewater Sludge as Partial Replacement of Cement. Sustainability, 17(3). https://doi.org/10.3390/su17030945 | |
| dc.relation.references | Snachéz de Guzmán, D. (2001). Tecnologia del concreto y del mortero (Quinta). Bhandar Editores. https://biblioteca.ugc.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=240277 | |
| dc.relation.references | Sreeja, K., & Kumar, T. N. (2021). Effect of graphene oxide on fresh, hardened and mechanical properties of cement mortar. Materials Today: Proceedings, 46, 2235-2239. https://doi.org/10.1016/j.matpr.2021.03.574 | |
| dc.relation.references | Suchorab, Z., Barnat-Hunek, D., Franus, M., & Łagód, G. (2016). Mechanical and Physical Properties of Hydrophobized Lightweight Aggregate Concrete with Sewage Sludge. Materials, 9(5). https://doi.org/10.3390/ma9050317 | |
| dc.relation.references | Świerczek, L., Cieślik, B. M., & Konieczka, P. (2021). Challenges and opportunities related to the use of sewage sludge ash in cement-based building materials – A review. Journal of Cleaner Production, 287, 125054. https://doi.org/10.1016/j.jclepro.2020.125054 | |
| dc.relation.references | Taki, K., Gahlot, R., & Kumar, M. (2020). Utilization of fly ash amended sewage sludge as brick for sustainable building material with special emphasis on dimensional effect. Journal of Cleaner Production, 275, 123942. https://doi.org/10.1016/j.jclepro.2020.123942 | |
| dc.relation.references | Tantawy, M. A. (2015). Characterization and pozzolanic properties of calcined alum sludge. Materials Research Bulletin, 61, 415-421. https://doi.org/10.1016/j.materresbull.2014.10.042 | |
| dc.relation.references | Tayebani, B., Said, A., & Memari, A. (2023). Less carbon producing sustainable concrete from environmental and performance perspectives: A review. Construction and Building Materials, 404, 133234. https://doi.org/10.1016/j.conbuildmat.2023.133234 | |
| dc.relation.references | Tuncer, M., Başyiğit, C., & Davraz, M. (2024). INVESTIGATION OF THE EFFECT OF SEWAGE SLUDGE ASH ON THE MECHANICAL PROPERTIES OF MORTAR SPECIMENS. Mühendislik Bilimleri ve Tasarım Dergisi, 12, 616-626. https://doi.org/10.21923/jesd.1451465 | |
| dc.relation.references | Uratani, J. M., & Griffiths, S. (2023). A forward looking perspective on the cement and concrete industry: Implications of growth and development in the Global South. Energy Research & Social Science, 97, 102972. https://doi.org/10.1016/j.erss.2023.102972 | |
| dc.relation.references | Valenzuela, M., Tuninetti, V., Ciudad, G., Miranda, A., & Oñate, A. (2025). Designing sustainable cement free compositions with rice husk ash to improve mechanical performance in next generation ecoblocks. Scientific Reports, 15(1), 14920. https://doi.org/10.1038/s41598-025-97963-8 | |
| dc.relation.references | Varshney, H., Khan, R., & Khan, I. (2021). Sustainable use of different wastewater in concrete construction: A Review. Journal of Building Engineering, 41, 102411. https://doi.org/10.1016/j.jobe.2021.102411 | |
| dc.relation.references | Vaughn, S. F., Dinelli, F. D., Kenar, J. A., Jackson, M. A., Thomas, A. J., & Peterson, S. C. (2018). Physical and chemical properties of pyrolyzed biosolids for utilization in sand-based turfgrass rootzones. Waste Management, 76, 98-105. https://doi.org/10.1016/j.wasman.2018.04.009 | |
| dc.relation.references | Vouk, D., Nakic, D., Štirmer, N., & Cheeseman, C. R. (2018). Influence of combustion temperature on the performance of sewage sludge ash as a supplementary cementitious material. Journal of Material Cycles and Waste Management, 20. https://doi.org/10.1007/s10163-018-0707-8 | |
| dc.relation.references | Wang, H.-F., Hu, H., Wang, H.-J., Bai, Y.-N., Shen, X.-F., Zhang, W., & Zeng, R. J. (2020). Comprehensive investigation of the relationship between organic content and waste activated sludge dewaterability. Journal of Hazardous Materials, 394, 122547. https://doi.org/10.1016/j.jhazmat.2020.122547 | |
| dc.relation.references | Wang, S., Zhao, P., Tian, Y., & Liu, J. (2024). Effects of C-S-H Seed Prepared by Wet Grinding on the Properties of Cement Containing Large Amounts of Silica Fume. Polymers, 16(19). https://doi.org/10.3390/polym16192769 | |
| dc.relation.references | Wang, Y., Liu, Z., Takasu, K., & Suyama, H. (2025). A study on the workability of self-compacting mortar with blast furnace slag as sand replacement supplemented by fly ash. Construction and Building Materials, 465, 140252. https://doi.org/10.1016/j.conbuildmat.2025.140252 | |
| dc.relation.references | Wichowski, P., Kalenik, M., Rutkowska, G., Malarski, M., Czajkowska, J., & Franus, W. (2024). Characteristics of products made in the process solidification and stabilization of fly ash from combustion of sewage sludge. Cement Wapno Beton, 28, 389-408. https://doi.org/10.32047/CWB.2023.28.6.3 | |
| dc.relation.references | Wong, Ai Wei, Chew, Hoong Yuin, Bashir, Mohammed J. K., Aldahdooh, Majed A. A., & Ng, Choon Aun. (2025). Production of mortar with calcined alum sludge as partial cement replacement. E3S Web Conf., 603, 02008. https://doi.org/10.1051/e3sconf/202560302008 | |
| dc.relation.references | Wu, B., Dai, X., & Chai, X. (2020). Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations. Water Research, 180, 115912. https://doi.org/10.1016/j.watres.2020.115912 | |
| dc.relation.references | Xu, D., Fu, P., Ni, W., Wang, Q., & Li, K. (2021). Characterization and Hydration Mechanism of Ammonia Soda Residue and Portland Cement Composite Cementitious Material. Materials, 14, 4794. https://doi.org/10.3390/ma14174794 | |
| dc.relation.references | Yang, Y., Wu, Z., Hu, X., Zhang, J., Long, W., & Dong, B. (2024). Performance and microstructure of sintered sludge ash modified cement paste. Journal of Building Engineering, 91, 109503. https://doi.org/10.1016/j.jobe.2024.109503 | |
| dc.relation.references | Yusuf, R. O., Noor, Z. Z., Din, M. F. M., & Abba, A. H. (2012). Use of sewage sludge ash (SSA) in the production of cement and concrete – a review. International Journal of Global Environmental Issues, 12(2-4), 214-228. https://doi.org/10.1504/IJGENVI.2012.049382 | |
| dc.relation.references | Zari, R., Graich, A., Abdelouahdi, K., Monkade, M., Laghzizil, A., & Nunzi, J.-M. (2023). Mechanical, Structural, and Environmental Properties of Building Cements from Valorized Sewage Sludges. Smart Cities, 6(3), 1227-1238. https://doi.org/10.3390/smartcities6030059 | |
| dc.relation.references | Zhou, D., Wang, R., Tyrer, M., Wong, H., & Cheeseman, C. (2017). Sustainable infrastructure development through use of calcined excavated waste clay as a supplementary cementitious material. Journal of Cleaner Production, 168, 1180-1192. https://doi.org/10.1016/j.jclepro.2017.09.098 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Análisis microestructural SEM-EDS | |
| dc.subject | Biosólidos calcinados | |
| dc.subject | Material cementante suplementario | |
| dc.subject | Mortero sostenible | |
| dc.subject | Reactividad puzolánica | |
| dc.subject | Resistencia a la compresión | |
| dc.subject.keyword | SEM-EDS microstructural analysis | |
| dc.subject.keyword | Calcined biosolids | |
| dc.subject.keyword | Supplementary cementitious material | |
| dc.subject.keyword | Sustainable mortar | |
| dc.subject.keyword | Pozzolanic reactivity | |
| dc.subject.keyword | Compressive strength | |
| dc.subject.lemb | Maestría en Ingeniería Civil -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Materiales de construcción | |
| dc.subject.lemb | Cemento | |
| dc.subject.lemb | Resistencia de materiales | |
| dc.subject.lemb | Purificación de aguas residuales | |
| dc.title | Análisis de la influencia de la adición de biosólidos calcinados en la resistencia a la compresión de un mortero | |
| dc.title.titleenglish | Analysis of the influence of the addition of calcined biosolids on the compressive strength of a mortar | |
| dc.type | masterThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.degree | Investigación-Innovación | |
| dc.type.driver | info:eu-repo/semantics/masterThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
