Resonancia de plasmones superficiales localizados en nanopartículas de oro y plata
Fecha
Autores
Autor corporativo
Título de la revista
ISSN de la revista
Título del volumen
Editor
Compartir
Director
Altmetric
Resumen
In this work a systematic theoretical-computational study of the localized surface plasmon resonances in gold and silver metal nanoparticles is developed, analyzing the geometric and compositional influence on the optical response of the following nanoparticle configurations: nanospheres, nanocylinders, hybrid systems of the Metal core type surrounded by dielectric material (or core-shell systems) and dimers formed by two nanospheres. For this study, different simulations are carried out using the finite element method implemented in the commercial package COMSOL Multiphysics. For the description of the scattering cross section SCS of the nanosystems of interest, a variation of geometric parameters is performed for each system to observed the changes in the magnitude and spectral position of plasmonic resonances. The results related to the influence that shape, size and dielectric environment have on the excitation of LSP in metallic nanoparticles, serve as a conceptual basis for the improvement of the control of the optical response of these materials and pave the way for the analysis of more complex realistic geometries.