Diseño de una herramienta Inteligente para el análisis del cumplimiento de los SLAs de los servicios de clientes
| dc.contributor.advisor | Flórez Cediel, Oscar David | |
| dc.contributor.author | Silva Fernández, Edwin Nicolas | |
| dc.contributor.orcid | Flórez Cediel, Oscar David [0000-0002-0653-0577] | |
| dc.date.accessioned | 2025-12-09T21:49:20Z | |
| dc.date.available | 2025-12-09T21:49:20Z | |
| dc.date.created | 2025-11-13 | |
| dc.description | Este trabajo presenta el diseño e implementación de una herramienta inteligente para la estimación del volumen de llamadas en el Centro de Experiencia Azteca (CEA), conhorizonte de 30 minutos por intervalo. La solución integra un flujo Aheeva → Python→ Excel → Power BI que automatiza la extracción de datos, el preprocesamiento, lageneración de variables y la visualización operativa. Se evaluaron enfoques de aprendizaje supervisado y se seleccionó un modelo basado en XGBoost por su buen equilibrio entre precisión y eficiencia. El conjunto de variables incluye señales exógenas (mes, día de la semana, intervalo y bandera horaria) y retardos t-1/t-2 de indicadores operativos (llamadas ofrecidas, ingresadas, ASA y AHT), permitiendo capturar dependencias temporales y efectos de condiciones atípicas mediante un indicador de fallos. En la validación temporal (20 % final), el modelo alcanza un desempeño de referencia de RMSE= 2.82, MAE = 1.59 y R2 = 0.672. La herramienta publica un archivo único de alimentación para Power BI y refresca automáticamente el panel, habilitando el uso de las predicciones en la planificación de turnos y el seguimiento del cumplimiento de los SLA. Los resultados evidencian que la combinación de variables retardadas con señales de calendario mejora la capacidad de anticipación frente a métodos reactivos y favorece la toma de decisiones operativas en tiempo real. | |
| dc.description.abstract | This work presents the design and implementation of an intelligent tool for estimating call volume at the Azteca Experience Center (CEA), with a 30-minute forecasting horizon. The solution integrates a workflow from Aheeva → Python → Excel → Power BI, automating data extraction, preprocessing, variable generation, and operational visualization. Several supervised learning approaches were evaluated, and an XGBoost-based model was selected due to its strong balance between accuracy and efficiency. The variable set includes exogenous signals (month, day of the week, time interval, and hourly flag) and t-1/t-2 lags of operational indicators (offered calls, incoming calls, ASA, and AHT), enabling the capture of temporal dependencies and atypical conditions through a failure indicator. In the temporal validation stage (final 20%), the model achieved reference performance metrics of RMSE = 2.82, MAE = 1.59, and R² = 0.672. The tool generates a single output file for Power BI and automatically refreshes the dashboard, allowing the predictions to support staff scheduling and SLA compliance monitoring. The results show that combining lagged variables with calendar features improves predictive capability compared to reactive methods and enhances real-time operational decision-making. | |
| dc.description.sponsorship | Azteca Comunicaciones Colombia | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/100084 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | [mlc, 2021] (2021). Machine Learning Applications in Civil Engineering. Elsevier | |
| dc.relation.references | [Abbasi et al., 2024] Abbasi, A., Marzband, M., Godina, R., and Siano, P. (2024). Investigating the impact of data normalization methods on the prediction of electricity consumption in buildings using four multilayer artificial neural networks. Sustainable Cities and Society, 106:105442 | |
| dc.relation.references | [Abbasi and Salehi, 2023] Abbasi, M. and Salehi, H. (2023). Improved generalization of narx neural networks for enhanced structural prediction. Engineering Applications of Artificial Intelligence, 120:105143 | |
| dc.relation.references | [Aria et al., 2021] Aria, M., Cuccurullo, C., and Gnasso, A. (2021). A comparison among interpretative proposals for random forests. Machine Learning with Applications, 6:100094 | |
| dc.relation.references | [Bronstein et al., 2017] Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017). Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42 | |
| dc.relation.references | [Chen and Guestrin, 2016] Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785–794 | |
| dc.relation.references | [Cutler et al., 2007] Cutler, D. R., Edwards Jr, T. C., Beard, K. H., and et al. (2007). Random forests for classification in ecology. Ecology, 88(11):2783–2792 | |
| dc.relation.references | [Dinov, 2023] Dinov, I. D. (2023). Data Science and Predictive Analytics: Biomedical and Health Applications Using R. Springer, 2 edition | |
| dc.relation.references | [Ellis, 2024] Ellis, C. M. (2024). The Orange Book of Machine Learning. Independently published | |
| dc.relation.references | [Ghahramani, 2015] Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553):452–459 | |
| dc.relation.references | [Gori et al., 2023] Gori, M., Betti, A., and Melacci, S. (2023). Machine Learning: A Constraint-Based Approach. Morgan Kaufmann, 2 edition | |
| dc.relation.references | [Islam et al., 2024] Islam, S. S., Wang, X., and Oo, A. M. T. (2024). A review on machine learning implementation for predicting and classifying power system stability status using pmu data. Heliyon, 10(5):e27123 | |
| dc.relation.references | [Li et al., 2021] Li, J., Zhang, X., and Hu, Y. (2021). Feature selection for predictive modeling in machine learning applications. Neurocomputing, 426:72–83 | |
| dc.relation.references | [Neuer, 2024] Neuer, M. J. (2024). Machine Learning for Engineers: Introduction to Physics-Informed, Explainable Learning Methods for AI in Engineering Applications. Springer | |
| dc.relation.references | [OpenStax, 2025] OpenStax (2025). Principles of Data Science. OpenStax CNX | |
| dc.relation.references | [Rostami-Tabar and Rendon-Sanchez, 2020] Rostami-Tabar, B. and Rendon-Sanchez, J. F. (2020). Forecasting covid-19 daily cases using phone call data. Applied Soft Computing | |
| dc.relation.references | [Schmiedel et al., 2024] Schmiedel, T., Fromm, H., and Enders, M. R. (2024). Insights into commonalities of a sample: A visualization framework to support case-based reasoning. Decision Support Systems, 173:114109 | |
| dc.relation.references | [Wu et al., 2021] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y. (2021). A comprehensive survey on graph neural networks. Computers & Education: Artificial Intelligence, 1:100005 | |
| dc.relation.references | [Yang et al., 2021] Yang, X., Wang, C., and Liu, Z. (2021). Covid-19 and data analytics: How call volumes reflect behavioral patterns. Information Processing & Management, 58(5):102664 | |
| dc.relation.references | [Yu et al., 2020] Yu, W., Liu, T., Valerdi, R., and Jiang, X. (2020). Deep learning for operational decision-making in telecommunication systems. Expert Systems with Applications, 160:113700 | |
| dc.relation.references | [Zhang and Zheng, 2019] Zhang, Y. and Zheng, Y. (2019). Data-driven analytics for call center management. Journal of Service Research, 22(3):291–307 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Pronóstico de series temporales | |
| dc.subject | Centros de contacto | |
| dc.subject | XGBoost | |
| dc.subject | Power BI | |
| dc.subject | Acuerdos de Nivel de Servicio (SLA) | |
| dc.subject.keyword | Time series forecasting | |
| dc.subject.keyword | Contact centers | |
| dc.subject.keyword | XGBoost | |
| dc.subject.keyword | Power BI | |
| dc.subject.keyword | Service Level Agreements (SLA) | |
| dc.subject.lemb | Ingeniería Electrónica -- Tesis y disertaciones académicas | |
| dc.title | Diseño de una herramienta Inteligente para el análisis del cumplimiento de los SLAs de los servicios de clientes | |
| dc.title.titleenglish | Design of an intelligent tool for the analysis of SLA compliance in customer service operations | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Pasantía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
