Diseño y simulación de un sistema MPPT basado en algoritmos de machine learning para autogeneración a pequeña escala fotovoltaica mediante un sistema embebido Raspberry Pi.
| dc.contributor.advisor | Florez Cediel , Oscar David | |
| dc.contributor.author | Gómez Salgado, Diego Felipe | |
| dc.contributor.author | Peña Delgado, Paula Valentina | |
| dc.contributor.orcid | Florez Cediel, Oscar David [0000-0002-0653-0577] | |
| dc.date.accessioned | 2025-11-20T16:42:24Z | |
| dc.date.available | 2025-11-20T16:42:24Z | |
| dc.date.created | 2025-11-04 | |
| dc.description | Se presenta un sistema de emulación y control MPPT cuyo objetivo fue diseñar y simular, con Raspberry Pi y MATLAB/Simulink, un generador fotovoltaico emulado y una etapa de conversión conectable a una microrred, planteando como pregunta central cómo implementar seguimiento de punto máximo de potencia en un entorno embebido y de simulación. El problema abordado fue la variabilidad de la irradiancia y las limitaciones de cómputo y muestreo que dificultan el control en tiempo real y la identificación del MPP bajo condiciones dinámicas. Los objetivos fueron emular el comportamiento del generador PV en Raspberry Pi, modelar la etapa de conversión en MATLAB, seleccionar y entrenar un algoritmo de machine learning para MPPT y validar la integración Pi–MATLAB; estos se cumplieron mediante la implementación del modelo de diodo en Python sobre Raspberry Pi, la simulación de un convertidor DC–DC tipo buck, un inversor trifásico y un sistema de baterías en Simulink, y la comunicación serial entre la Pi y MATLAB para validación. Para el control se compararon diferentes métodos MPPT; El algoritmo seleccionado fue ANFIS+IC, el cual fue entrenado 1 millón de datos y mostró la mejor combinación de precisión y tiempo de convergencia, alcanzando una mediana de precisión reportada de 99.995%. Como conclusiones, el trabajo demuestra la viabilidad de usar Raspberry Pi como emulador/ejecutor de modelos y de integrar algoritmos avanzados de MPPT con MATLAB para aplicaciones a pequeña escala. | |
| dc.description.abstract | An MPPT emulation and control system is presented, the objective of which was to design and simulate, using Raspberry Pi and MATLAB/Simulink, an emulated photovoltaic generator and a conversion stage connectable to a microgrid, posing as a central question how to implement maximum power point tracking in an embedded and simulation environment. The problem addressed was the variability of irradiance and the computational and sampling limitations that hinder real-time control and MPP identification under dynamic conditions. The objectives were to emulate the behavior of the PV generator on Raspberry Pi, model the conversion stage in MATLAB, select and train a machine learning algorithm for MPPT, and validate the Pi–MATLAB integration. These were achieved by implementing the diode model in Python on Raspberry Pi, simulating a buck-type DC–DC converter, a three-phase inverter, and a battery system in Simulink, and serial communication between the Pi and MATLAB for validation. For control, different MPPT methods were compared; the selected algorithm was ANFIS+IC, which was trained on 1 million data points and showed the best combination of accuracy and convergence time, achieving a reported median accuracy of 99.995%. In conclusion, the work demonstrates the feasibility of using Raspberry Pi as a model emulator/executor and of integrating advanced MPPT algorithms with MATLAB for small-scale applications. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/99871 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | MathWorks, “Mppt algorithm – matlab & simulink,” https://www.mathworks.com/ discovery/mppt-algorithm.html, 2025, accessed: 26 Oct 2025. | |
| dc.relation.references | F. Abdallah, “Review on advancement in solar photovoltaic monitoring systems,” Design Engineering (Toronto), pp. 901–917, 2021, accessed: 19-10-2025. [Online]. Available: https://www.designengineering.org/article/view/abdallah2021 | |
| dc.relation.references | M. L. Alghaythi, A. Fathy, A. Allehyani, M. S. Alshammari, A. Ben Atitallah, H. Rezk, and T. S. Gaafar, “Highly efficient dc–dc boost converter achieved with improved mppt-based raspberry pi for enhancing photovoltaic system generation,” International Journal of Energy Research, vol. 2024, no. 1, 2024, copyright © 2024Mamdouh L. Alghaythi et al | |
| dc.relation.references | K. R. Assilevi, A. S. Ajavon, and K. H. Adjallah, “Design of an intelligent system for controlling and balancing renewable energy flows in an autonomous micro-grid,” TH Wildau Engineering and Natural Sciences Proceedings, vol. 1, Jun 2021. [Online]. Available: https://www.tib-op.org/ojs/index.php/th-wildau-ensp/article/view/27 | |
| dc.relation.references | D. Carrasco-González, R. Sarrias-Mena, P. Horrillo-Quintero, F. Llorens-Iborra, and L. M. Fernández-Ramírez, “Control of microgrid cluster using raspberry pi,” in 2023 IEEE International Conference on Energy Technologies for Future Grids (ETFG), 2023, pp. 1–6. | |
| dc.relation.references | “Design and raspberry pi-based implementation of an intelligent energy management system for a hybrid ac/dc microgrid with renewable energy, battery, ultracapacitor and hydrogen system,” Computers and Electrical Engineering, vol. 123, 2025. [Online]. Available: https://doi.org/10.1016/j.compeleceng.2025.110253 | |
| dc.relation.references | C. Lozada, D. Panchi,W. Sánchez, and A. Jacho, “Regresión lineal para la identificación del punto de máxima potencia enmicrorredes híbridas implementado en hypersim,” Revista Técnica Energía, vol. 20, no. 2, pp. 34–46, Ene 2024. [Online]. Available: https://revistaenergia.cenace.gob.ec/index.php/cenace/article/view/618 | |
| dc.relation.references | P. Casado, J. Blanes, C. Torres, C. Orts, D.Marroquí, and A. Garrigós, “Raspberry pi based photovoltaic i-v curve tracer,” HardwareX, vol. 11, p. e00262, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2468067222000074 | |
| dc.relation.references | A. Drumea and R. A. Dobre, “Modelling, simulation and testing of an autonomous embedded system supplied by a photovoltaic panel,” pp. 309–312, 2014. | |
| dc.relation.references | S. Danyali, M. Babaeifard, M. Shirkhani, A. Azizi, J. Tavoosi, and Z. Dadvand, “A new neuro-fuzzy controller based maximum power point tracking for a partially shaded grid-connected photovoltaic system,” Heliyon, vol. 10, no. 17, p. e36747, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405844024127788 | |
| dc.relation.references | A. Fathy, A. B. Atitallah, D. Yousri, H. Rezk, and M. Al-Dhaifallah, “A new implementation of themppt based raspberry pi embedded board for partially shaded photovoltaic system,” Energy Reports, vol. 8, pp. 5603–5619, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352484722007946 | |
| dc.relation.references | Y. Hakam, H. Ahessab, A. Gaga, and B. E. Hadadi, “Renewable energy in smart grid: Photovoltaic power monitoring system based on machine learning using an open-source iot platform,” pp. 241–251, 2023. | |
| dc.relation.references | N. Iksan, Purwanto, and H. Sutanto, “Smart micro grid architecture for realtime monitoring of solar photovoltaic based on internet of things,” IOP Conference Series: Earth and Environmental Science, vol. 1203, no. 1, p. 012042, jun 2023. [Online]. Available: https://doi.org/10.1088/1755-1315/1203/1/012042 | |
| dc.relation.references | G. M. Tina, C. Ventura, S. Ferlito, and S. De Vito, “A state-of-art-review on machinelearning based methods for pv,” Applied Sciences, vol. 11, no. 16, 2021. [Online]. Available: https://www.mdpi.com/2076-3417/11/16/7550 | |
| dc.relation.references | F. López,M.Mock, and A. Dávila, “Machine learning for predicting photovoltaic power generation: an application on a university campus,” pp. 1–10, 2023. [ | |
| dc.relation.references | A.Mellit, M. Benghanem, S. Kalogirou, and A.Massi Pavan, “An embedded system for remote monitoring and fault diagnosis of photovoltaic arrays usingmachine learning and the internet of things,” Renewable Energy, vol. 208, pp. 399–408, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S096014812300397X | |
| dc.relation.references | S. Mostafa, A. Zekry, A. Youssef, and W. R. Anis, “Raspberry pi design and hardware implementation of fuzzy-pi controller for three-phase grid-connected inverter,” Energies, vol. 15, no. 3, 2022. [Online]. Available: https://www.mdpi.com/1996-1073/15/3/843 | |
| dc.relation.references | A. Nascimento, L. A. de Souza Ribeiro, H. Oliveira, J. G. deMatos, and O. Da Silva Santos, “Development of communication to control photovoltaic systemin a microgrid by using programmable automation controller, raspberry-pi and open-source software,” pp. 6284–6288, 2023. | |
| dc.relation.references | F. Salaet Pereira, “Uso de la plataforma raspberry pi 3 como generador de valores de radiacion solar y temperatura de celula para la simulacion de algoritmosMPPT de generadores fotovoltaicos en Simulink—upcommons.upc.edu,” [Accessed 20-10-2025]. | |
| dc.relation.references | A. Patel, O. V. G. Swathika, U. Subramaniam, T. S. Babu, A. Tripathi, S. Nag, A. Karthick, and M. Muhibbullah, “A practical approach for predicting power in a small-scale off-grid photovoltaic system using machine learning algorithms,” Journal of Energy, vol. 2022, pp. 1–13, 2022, academic Editor: Laurentiu Fara. Special Issue:Modeling and Forecasting for Energy Production of Photovoltaic (PV) Systems. [Online]. Available: https://doi.org/10.1155/2022/9194537 | |
| dc.relation.references | R. I. Pereira, S. C. Jucá, and P. C. Carvalho, “Iot embedded systems network and sensors signal conditioning applied to decentralized photovoltaic plants,” Measurement, vol. 142, pp. 195–212, 2019. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S0263224119304117 | |
| dc.relation.references | J. M. Portalo, I. González, and A. J. Calderón, “Monitoring system for tracking a pv generator in an experimental smart microgrid: An open-source solution,” Sustainability, vol. 13, no. 15, 2021. [Online]. Available: https://www.mdpi.com/2071-1050/13/15/8182 | |
| dc.relation.references | N. Iksan, P. Purwanto, and H. Sutanto, “Real-timemonitoring of photovoltaic systems and control of electricity supply for smart micro grid-pv using iot,” International Journal of Information Communication Technology and Electrical Engineering, 2021. | |
| dc.relation.references | K. T. Saraswathi, P. Arumugam, G. V. Swaminathan, and S. Periasamy, “An artificial neural network-based comprehensive solar photovoltaic emulator,” Journal of Energy, vol. 2022, pp. 1–12, 2022, academic Editor: Kumarasamy Sudhakar. Special Issue: Recent Advances in Sustainable Solar Energy Technologies 2021. [Online]. Available: https://doi.org/10.1155/2022/4741428 | |
| dc.relation.references | A. R. S, D. K. A, H. S, H. S, and S. Saravanan, “Design of solar pv emulator using raspberry pi controller,” pp. 581–584, 2022. | |
| dc.relation.references | S. Danyali, M. Babaeifard, M. Shirkhani, A. Azizi, J. Tavoosi, and Z. Dadvand, “A new neuro-fuzzy controller based maximum power point tracking for a partially shaded grid-connected photovoltaic system,” Heliyon, vol. 10, no. 17, p. e36747, August 2024 | |
| dc.relation.references | M. K. V. and P. A. K., “Smart inverter using raspberry pi,” 2022. [Online]. Available: https://doi.org/10.1109/ICSSS54381.2022.9782258 | |
| dc.relation.references | Z. Yahyaoui,W. Saadaoui, M. Hajji, M.Mansouri,M. Nounou, and K. Bouzrara, “Raspberry pi-basedmonitoring system for grid-connected pv systems using deep learning technique*,” pp. 3002–3008, 2024. | |
| dc.relation.references | J. Yuan, Z. Zhao, Y. Liu, B. He, L.Wang, B. Xie, and Y. Gao, “Dmppt control of photovoltaic microgrid based on improved sparrow search algorithm,” IEEE Access, vol. 9, pp. 16 623– 16 629, 2021. | |
| dc.relation.references | S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, “Topologies and control schemes of bidirectional dc–dc power converters: An overview,” IEEE Access, vol. 7, pp. 117 997– 118 019, 2019 | |
| dc.relation.references | C. G. Villegas-Mier, J. Rodriguez-Resendiz, J. M. Álvarez Alvarado, H. Rodriguez-Resendiz, A. M. Herrera-Navarro, and O. Rodríguez-Abreo, “Artificial neural networks in mppt algorithms for optimization of photovoltaic power systems: A review,”Micromachines, vol. 12, no. 10, 2021. [Online]. Available: https://www.mdpi.com/2072-666X/12/10/1260 | |
| dc.relation.references | D. Chan, J. Phillips, and J. Phang, “A comparative study of extraction methods for solar cellmodel parameters,” Solid-State Electronics, vol. 29, no. 3, pp. 329–337, 1986. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0038110186902121 | |
| dc.relation.references | C. L. Trujillo Rodriguez, N. L. Diaz Aldana, and J. A. Hernandez Mora, “Control of an inverter for photovoltaic arrays, using an estimator of short circuit current for maximum power point tracking,” IEEE Latin America Transactions, vol. 13, no. 10, pp. 3294–3303, 2015. | |
| dc.relation.references | F. R. Septiawan, A. R. A. Tahtawi, and S. M. Ilman, “Control of bidirectional dc-dc converter with proportional integral derivative,” Journal of Fuzzy Systems and Control, vol. 2, no. 3, p. 164–169, Sep. 2024. [Online]. Available: https: //ejournal.ptti.web.id/index.php/jfsc/article/view/241 | |
| dc.relation.references | SolarAnywhere, “Solaranywhere data portal,” https://data.solaranywhere.com/, 2025, conjunto de datos de irradiancia solar y condiciones meteorológicas. Accedido el 19 de octubre de 2025. | |
| dc.relation.references | B. Stipak, “Boxplot explanation and examples,” https://web.pdx.edu/~stipakb/ download/PA551/boxplot.html, 2025, recurso educativo de la Universidad Estatal de Portland. Accedido el 26 de octubre de 2025. | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | MPPT | |
| dc.subject | Aprendizaje supervisado | |
| dc.subject | ANFIS | |
| dc.subject | Raspberry Pi | |
| dc.subject | Sistema fotovoltaico | |
| dc.subject | Microrred | |
| dc.subject.keyword | MPPT | |
| dc.subject.keyword | Machine Learning | |
| dc.subject.keyword | ANFIS | |
| dc.subject.keyword | Raspberry Pi | |
| dc.subject.keyword | Photovoltaic System | |
| dc.subject.keyword | Microgrid | |
| dc.subject.lemb | Ingeniería Electrónica -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Raspberry Pi (Ordenador) Programación | |
| dc.subject.lemb | Aprendizaje automático (Inteligencia artificial) | |
| dc.subject.lemb | Sistemas embebidos | |
| dc.subject.lemb | Generación de energía fotovoltaica | |
| dc.title | Diseño y simulación de un sistema MPPT basado en algoritmos de machine learning para autogeneración a pequeña escala fotovoltaica mediante un sistema embebido Raspberry Pi. | |
| dc.title.titleenglish | Design and simulation of an MPPT system based on machine learning algorithms for small-scale photovoltaic self-generation using a Raspberry Pi embedded system. | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Monografía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
