Evaluación de pili bacteriano para la generación de electricidad mediante efecto hidrovoltaico
| dc.contributor.advisor | Echeverry Prieto, Lena Carolina | |
| dc.contributor.author | Franco Aranda, Duvan Steven | |
| dc.contributor.orcid | Echeverry Prieto, Lena Carolina [0000-0002-6940-4383] | |
| dc.date.accessioned | 2025-09-26T18:23:40Z | |
| dc.date.available | 2025-09-26T18:23:40Z | |
| dc.date.created | 2025-08-27 | |
| dc.description | La existencia de tecnologías emergentes para la generación de electricidad han sido la base para mejorar la matriz energética de Colombia especialmente en las ZNI donde se implementan las llamadas FNCER, no obstante, investigadores han demostrado que existe un potencial superior a la energía fotovoltaica en la llamada energía hidrovoltaica basada en nano cables bacterianos, esta consiste en la generación de un potencial eléctrico debido a la interacción de moléculas de agua con una matriz nano estructura de pili bacteriano. En este documento se busca evaluar el potencial del pili de P.aeruginosa para la generación de electricidad mediante efecto hidrovoltaico para lo cual se realiza la purificación del pili mediante precipitación, centrifugación y diálisis, cuantificación por el método de Biuret, caracterización mediante SDS-PAGE y posterior diseño de celdas hidrovoltaicas para su posterior comparación frente a las características de un buen material hidrovoltaico, con lo cual se pudo evidenciar el cumplimiento de las cuatro características y la generación de electricidad; no obstante, esta se encuentra con un voltaje reducido que se asocia a la baja conductividad del pili, siendo este un problema para lo cual se plantean algunas soluciones y se plantea el potencial de las estructuras proteicas para generar electricidad mediante efecto hidrovoltaico. | |
| dc.description.abstract | The existence of emerging technologies for electricity generation has been the basis for improving Colombia's energy matrix, especially in the ZNI (Non-Interconnected Zones) where the so-called FNCER (Non-Interconnected Energy Networks) are implemented. However, researchers have shown that there is a potential superior to photovoltaic energy in so-called hydrovoltaic energy based on bacterial nanowires, which consists of the generation of an electrical potential due to the interaction of water molecules with a bacterial pili nanostructure matrix. This document seeks to evaluate the potential of P. aeruginosa pili for electricity generation through the hydrovoltaic effect. To this end, the pili are purified by precipitation, centrifugation, and dialysis, quantified by the Biuret method, characterized by SDS-PAGE, and subsequently used to design hydrovoltaic cells for comparison with the characteristics of a good hydrovoltaic material. This demonstrated compliance with the four characteristics and the generation of electricity; however, the voltage is reduced, which is associated with the low conductivity of the pili. This is a problem for which some solutions are proposed, and the potential of protein structures to generate electricity through the hydrovoltaic effect is discussed. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/99307 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Barragán-Escandón, E., Zalamea-León, E., Terrados-Cepeda, J., & Vanegas-Peralta, P. (2019). Factores que influyen en la selección de energías renovables en la ciudad. Eure. https://doi.org/10.4067/S0250-71612019000100259 | |
| dc.relation.references | Barrow, G. I., & Feltham, R. K. A. (1993). Cowan and Steel’s Manual for the Identification of Medical Bacteria. In I. Frontmatter (Ed.), Cowan and Steel’s Manual for the Identification of Medical Bacteria (3rd ed.). Cambridge University Press. https://doi.org/10.1017/cbo9780511527104 | |
| dc.relation.references | Bio-Rad. (n.d.). A Guide to Polyacrylamide Gel Electrophoresis and Detection BEGIN. | |
| dc.relation.references | Burrows, L. L. (2012). Pseudomonas aeruginosa twitching motility: Type IV pili in action. In Annual Review of Microbiology (Vol. 66, pp. 493–520). https://doi.org/10.1146/annurev-micro-092611-150055 | |
| dc.relation.references | Canavos, G. C. (1988). Probabilidad y estadística, aplicaciones y métodos. . McGrawHill/Interamericana de México, SA. México. | |
| dc.relation.references | Costa, F. F., Vasconcelos Paiva Brito, M. A., Moreira Furtado, M. A., Martins, M. F., Leal De Oliveira, M. A., Mendonça De Castro Barra, P., Amigo Garrido, L., & De Oliveira Dos Santos, A. S. (2014). Microfluidic chip electrophoresis investigation of major milk proteins: Study of buffer effects and quantitative approaching. Analytical Methods, 6, 1666–1673. https://doi.org/10.1039/c3ay41706a | |
| dc.relation.references | Craig, L., Forest, K. T., & Maier, B. (2019). Type IV pili: dynamics, biophysics and functional consequences. In Nature Reviews Microbiology (Vol. 17, pp. 429–440). Nature Publishing Group. https://doi.org/10.1038/s41579-019-0195-4 | |
| dc.relation.references | Cushion, E., Whiterman, A., & Dieterle, G. (2013). Desarrollo de la bioenergía efectos e impactos sobre la pobreza y la gestión de los recursos naturales. | |
| dc.relation.references | Deligianni, E., Pattison, S., Berrar, D., Ternan, N. G., Haylock, R. W., Moore, J. E., Elborn, S. J., & Dooley, J. S. G. (2010). Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiology, 10. https://doi.org/10.1186/1471-2180-10-38 | |
| dc.relation.references | Doran, P. M. (1995). Bioprocess engineering principles. Academic press limited . | |
| dc.relation.references | Duche Y., X., & Bahamonde S., R. (2021). Avances en el tratamiento de aguas residuales alimenticias para la producción de bioenergía en celdas de combustible microbianas: una revisión. InfoANALÍTICA. https://doi.org/10.26807/ia.vi.193 | |
| dc.relation.references | Frost, L. S., & Parachych, W. (1977). Composition and molecular weight of pili purified from Pseudomonas aeruginosa K. Journal of Bacteriology, 131, 259–269. https://doi.org/10.1128/jb.131.1.259-269.1977 | |
| dc.relation.references | Gonzalez Rivera, A. K., & Forest, K. T. (2017). Shearing and enrichment of extracellular type IV pili. In Methods in Molecular Biology. https://doi.org/10.1007/978-1-4939-7033-9_25 | |
| dc.relation.references | Grimnes, S., & Martinsen, Ø. G. (2015). History of Bioimpedance and Bioelectricity. In Bioimpedance and Bioelectricity Basics (pp. 495–504). Elsevier. https://doi.org/10.1016/B978-0-12-411470-8.00011-8 | |
| dc.relation.references | Gu, Y., Srikanth, V., Salazar-Morales, A. I., Jain, R., O’Brien, J. P., Yi, S. M., Soni, R. K., Samatey, F. A., Yalcin, S. E., & Malvankar, N. S. (2021). Structure of Geobacter pili reveals secretory rather than nanowire behaviour. Nature 2021 597:7876, 597(7876), 430–434. https://doi.org/10.1038/s41586-021-03857-w | |
| dc.relation.references | Holmes, D. E., Dang, Y., Walker, D. J. F., & Lovley, D. R. (2016). The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Microbial Genomics. https://doi.org/10.1099/mgen.0.000072 | |
| dc.relation.references | Ley 697 de 2001, Mediante La Cual Se Fomenta El Uso Racional y Eficiente de La Energía, Se Promueve La Utilización de Energías Alternativas y Se Dictan Otras Disposiciones, 3 de octubre (2001). | |
| dc.relation.references | Ley 855 de 2003, Por La Cual Se Definen Las Zonas No Interconectadas, Diciembre 18 (2003). | |
| dc.relation.references | Ley 1715 de 2014, Por Medio de La Cual Se Regula La Integración de Las Energías Renovables No Convencionales al Sistema Energético Nacional., 13 de mayo (2014). | |
| dc.relation.references | Ley 2099 de 2021 Por Medio de La Cual Se Dictan Disposiciones Para La Transformación Energética, La Dinamización Del Mercado Energético, La Reactivación Económica Del País y Se Dictan Otras Disposiciones., Pub. L. No. 2099 (2021). | |
| dc.relation.references | Liu, X., Gao, H., Ward, J. E., Liu, X., Yin, B., Fu, T., Chen, J., Lovley, D. R., & Yao, J. (2020). Power generation from ambient humidity using protein nanowires. Nature. https://doi.org/10.1038/s41586-020-2010-9 | |
| dc.relation.references | Liu, X., Tremblay, P. L., Malvankar, N. S., Nevin, K. P., Lovley, D. R., & Vargas, M. (2014). A Geobacter sulfurreducens strain expressing Pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.02938-13 | |
| dc.relation.references | Lovley, D. R., & Holmes, D. E. (2020). Protein nanowires: The electrification of the microbial world and maybe our own. Journal of Bacteriology, 202. https://doi.org/10.1128/JB.00331-20 | |
| dc.relation.references | Lovley, D. R., & Walker, D. J. F. (2019). Geobacter Protein Nanowires. In Frontiers in Microbiology (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2019.02078 | |
| dc.relation.references | Lü, J., Ren, G., Hu, Q., Rensing, C., & Zhou, S. (2023). Microbial biofilm-based hydrovoltaic technology. In Trends in Biotechnology (Vol. 41, pp. 1155–1167). Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2023.03.012 | |
| dc.relation.references | Medina, S., & Zapata, M. (2017). Evaluación de la producción de energía eléctrica y disminución de dqo en agua residual sintética mediante celdas de combustible microbianas a escala laboratorio. Fundación universidad de america. | |
| dc.relation.references | Michael T, M., John M, M., & Jack, P. (2004). Brock Biología de los microorganismos (10th ed.). | |
| dc.relation.references | Najafpour, G. D. (2015). Industrial Microbiology. In Biochemical Engineering and Biotechnology (pp. 1–18). Elsevier. https://doi.org/10.1016/B978-0-444-63357-6.00001-8 | |
| dc.relation.references | Okafor, N., & Okeke, B. C. (2017). Modern Industrial Microbiology and Biotechnology, Second Edition. CRC Press. https://doi.org/10.1201/b22421 | |
| dc.relation.references | Paz-Zarza, V. M., Mangwani-Mordani, S., Martínez-Maldonado, A., Álvarez-Hernández, D., Solano-Gálvez, S. G., & Vázquez-López, R. (2019). Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Revista Chilena de Infectología, 36(2), 180–189. https://doi.org/10.4067/S0716-10182019000200180 | |
| dc.relation.references | Reardon, P. N., & Mueller, K. T. (2013). Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of geobacter sulfurreducens. Journal of Biological Chemistry, 288, 29260–29266. https://doi.org/10.1074/jbc.M113.498527 | |
| dc.relation.references | Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., & Lovley, D. R. (2005). Extracellular electron transfer via microbial nanowires. Nature. https://doi.org/10.1038/nature03661 | |
| dc.relation.references | Reyes, M. (2017). Estudio de las pilinas menores bfpi, bfpj y bfpk del pili formador de mechones de escherichia coli enteropatógena. | |
| dc.relation.references | Sure, S., Ackland, M. L., Torriero, A. A. J., Adholeya, A., & Kochar, M. (2016). Microbial nanowires: An electrifying tale. In Microbiology (United Kingdom). https://doi.org/10.1099/mic.0.000382 | |
| dc.relation.references | Tan, Y., Adhikari, R. Y., Malvankar, N. S., Ward, J. E., Nevin, K. P., Woodard, T. L., Smith, J. A., Snoeyenbos-West, O. L., Franks, A. E., Tuominen, M. T., & Lovley, D. R. (2016). The low conductivity of Geobacter uraniireducens pili suggests a diversity of extracellular electron transfer mechanisms in the genus geobacter. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2016.00980 | |
| dc.relation.references | Telford, J. L., Barocchi, M. A., Margarit, I., Rappuoli, R., & Grandi, G. (2006). Pili in Gram-positive pathogens. In Nature Reviews Microbiology. https://doi.org/10.1038/nrmicro1443 | |
| dc.relation.references | Thongchol, J., Yu, Z., Harb, L., Lin, Y., Koch, M., Theodore, M., Narsaria, U., Shaevitz, J., Gitai, Z., Wu, Y., Zhang, J., & Zeng, L. (2024). Removal of Pseudomonas type IV pili by a small RNA virus. Science, 384. https://doi.org/10.1126/science.adl0635 | |
| dc.relation.references | Walker, D. J., Adhikari, R. Y., Holmes, D. E., Ward, J. E., Woodard, T. L., Nevin, K. P., & Lovley, D. R. (2018). Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms. ISME Journal, 12, 48–58. https://doi.org/10.1038/ismej.2017.141 | |
| dc.relation.references | Wang, Z. L. (2008). Self-powered nanotech. Scientific American. https://doi.org/10.1038/scientificamerican0108-82 | |
| dc.relation.references | Xie, J., Wang, L., Chen, X., Yang, P., Wu, F., & Huang, Y. (2020). The Emerging of Hydrovoltaic Materials as a Future Technology: A Case Study for China. In Green Energy and Environment. IntechOpen. https://doi.org/10.5772/intechopen.90377 | |
| dc.relation.references | Yin, J., Zhou, J., Fang, S., & Guo, W. (2020). Hydrovoltaic Energy on the Way. In Joule. https://doi.org/10.1016/j.joule.2020.07.015 | |
| dc.relation.references | Young, H. D., Freedman, R. A., & Lewis, F. (2009). Física universitaria con física moderna decimosegunda edición (12th ed., Vol. 2). Pearson Educación. | |
| dc.relation.references | Zhang, Z., Li, X., Yin, J., Xu, Y., Fei, W., Xue, M., Wang, Q., Zhou, J., & Guo, W. (2018). Emerging hydrovoltaic technology. In Nature Nanotechnology (Vol. 13, pp. 1109–1119). Nature Publishing Group. https://doi.org/10.1038/s41565-018-0228-6 | |
| dc.relation.references | Zi, Y., & Wang, Z. L. (2017). Nanogenerators: An emerging technology towards nanoenergy. APL Materials. https://doi.org/10.1063/1.4977208 | |
| dc.relation.references | Протасов, В. Н., & Суботялов, М. А. (2024). History of the development of microbial fuel cell technology. Человеческий Капитал, 3(183), 75–81. https://doi.org/10.25629/HC.2024.03.07 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Energía hidrovoltaica | |
| dc.subject | Pili tipo IV | |
| dc.subject | Nano cables microbianos | |
| dc.subject | P.aeruginosa | |
| dc.subject | G.sulfurreducens | |
| dc.subject | FNCER | |
| dc.subject.keyword | Hydrovoltaic energy | |
| dc.subject.keyword | Type IV pili | |
| dc.subject.keyword | Microbial nanowires | |
| dc.subject.keyword | P.aeruginosa | |
| dc.subject.keyword | G.sulfurreducens | |
| dc.subject.keyword | Emerging Renewable Energy Sources | |
| dc.subject.lemb | Ingeniería Ambiental -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Energía eléctrica -- Producción | |
| dc.subject.lemb | Bacterias | |
| dc.subject.lemb | Nanoestructuras | |
| dc.subject.lemb | Electrofisiología | |
| dc.subject.lemb | Recursos energéticos renovables | |
| dc.title | Evaluación de pili bacteriano para la generación de electricidad mediante efecto hidrovoltaico | |
| dc.title.titleenglish | Evaluation of bacterial pili for electricity generation through hydrovoltaic effect | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Investigación-Innovación | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
