Descomposición de madera muerta por termitas xilófagas en bosques de galería de la Orinoquía colombiana
| dc.contributor.advisor | Pinzón Florián, Olga Patricia | |
| dc.contributor.advisor | Ramírez, Beatriz H. | |
| dc.contributor.author | Romero Rico, Geimmy Alejandra | |
| dc.contributor.orcid | Romero Rico, Geimmy Alejandra [0009-0002-3174-9682] | |
| dc.contributor.orcid | Pinzón Florián, Olga Patricia [0000-0002-5858-4083] | |
| dc.date.accessioned | 2025-04-22T01:41:31Z | |
| dc.date.available | 2025-04-22T01:41:31Z | |
| dc.date.created | 2024-12-16 | |
| dc.description | Las termitas contribuyen decisivamente a la descomposición de la madera y al ciclo del carbono en los ecosistemas tropicales. El proceso de descomposición está influenciado por las propiedades de la madera, el clima global y local, y los organismos descomponedores, principalmente termitas y microbios. En este estudio, exploramos el impacto de la densidad de la madera, la estacionalidad y la diversidad de termitas en las tasas de descomposición en los bosques de galería de la Orinoquía. Investigamos cómo estos factores influyen en la actividad de las termitas y su papel en la pérdida de biomasa. Los resultados indican que la densidad de la madera explica parcialmente la pérdida de masa de cebo debida a las termitas, siendo la madera más densa atacada con mayor frecuencia durante la estación húmeda. Sin embargo, no se observaron diferencias significativas en las tasas de descomposición entre la madera blanda y la madera densa. Aunque la densidad de la madera es un rasgo importante en la resistencia a la descomposición, la relación entre densidad y tasa de descomposición no siempre es lineal, lo que sugiere que otros factores, como la química y la anatomía de la madera, también desempeñan un papel significativo. La especie de termita más abundante Heterotermes tenuis, fue la responsable de la mayor pérdida de masa, lo que subraya su importancia en los procesos de descomposición. Estos resultados resaltan la complejidad de la descomposición provocada por las termitas y destacan la necesidad de tener en cuenta múltiples factores, como las propiedades de la madera y las condiciones ambientales, a la hora de evaluar su papel en la dinámica del carbono. Nuestro estudio contribuye a entender cómo la actividad de las termitas afecta a las funciones del ecosistema y destaca la importancia de conservar la madera muerta para mantener la diversidad de termitas y la salud de los bosques de galería. | |
| dc.description.abstract | Termites are key contributors to wood decomposition and carbon cycling in tropical ecosystems. The decomposition process is influenced by wood properties, global and local climate, and decomposer organisms principally termites and microbes. In this study, we explore the impact of wood density, seasonality, and termite diversity on decomposition rates in the gallery forests of the Orinoquía. This research investigates how these factors influence termite activity and their role in biomass loss. The results indicate that wood density partially explains the mass loss of bait due to termites, with denser wood being more frequently attacked during the wet season. However, no significant differences in decomposition rates between softwood and dense wood were observed. Although wood density is an important trait in decay resistance, the relationship between density and decomposition rate is not always linear, suggesting that other factors, such as wood chemistry and anatomy, also play a significant role. The most abundant termite species, Heterotermes tenuis, was responsible for the highest mass loss, emphasizing its importance in decomposition processes. These findings underscore the complexity of termite-driven decomposition and highlight the need to consider multiple factors, such as wood properties and environmental conditions, when evaluating their role in carbon dynamics. Our study contributes to understanding how termite activity impacts ecosystem functions and stresses the importance of conserving dead wood in maintaining termite diversity and gallery forest health. | |
| dc.description.sponsorship | Frontera Energy Corp. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/94956 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Ashton, L. A., Griffiths, H. M., Parr, C. L., Evans, T. A., Didham, R. K., Hasan, F., Teh, Y. A., Tin, H. S., Vairappan, C. S., & Eggleton, P. (2019). Termites mitigate the effects of drought in tropical rainforest. Science, 363(6423), 174–177. https://doi.org/10.1126/science.aau9565 | |
| dc.relation.references | Ayres, E., Steltzer, H., Simmons, B. L., Simpson, R. T., Steinweg, J. M., Wallenstein, M. D., Mellor, N., Parton, W. J., Moore, J. C., & Wall, D. H. (2009). Home-field advantage accelerates leaf litter decomposition in forests. Soil Biology and Biochemistry, 41(3), 606-610.https://doi.org/10.1016/j.soilbio.2008.12.022 | |
| dc.relation.references | Beltrán-Díaz, M. A., & Pinzón-Florián, O. P. (2018). Termitofauna (Isoptera: Termitidae, Rhinotermitidae) en plantaciones de Pinus caribaea en sabanas de la Orinoquía Colombiana. Revista Colombiana de Entomología, 44(1), 61-71. https://doi.org/10.25100/socolen.v44i1.6544 | |
| dc.relation.references | Bignell, D. E. (2006). Termites as soil engineers and soil processors. In Intestinal microorganisms of termites and other invertebrates (pp. 183-220). Berlin, Heidelberg: Springer Berlin Heidelberg. | |
| dc.relation.references | Bradford, M. A., Maynard, D. S., Crowther, T. W., Frankson, P. T., Mohan, J. E., Steinrueck, C., Veen, G. F. C., King, J. R., & Warren, R. J. (2021). Belowground community turnover accelerates the decomposition of standing dead wood. Ecology, 102(11), e03484. https://doi.org/10.1002/ecy.3484 | |
| dc.relation.references | Bradford, M. A., Warren, R. J., Baldrian, P., Crowther, T. W., Maynard, D. S., Oldfield, E. E., Wieder, W. R., Wood, S. A., & King, J. R. (2014). Climate fails to predict wood decomposition at regional scales. Nature Climate Change, 4(7), 625–630. https://doi.org/10.1038/nclimate2251 | |
| dc.relation.references | Bunnell, F. L., & Houde, I. (2010). Down wood and biodiversity - Implications to forest practices. Environmental Reviews, 18(1), 397–421. https://doi.org/10.1139/A10-019 | |
| dc.relation.references | Cancello, E. Brandao, D.,Amarante S. T. P. (1996). Two new Angularitermes species (Isoptera, Termitidae, Nasutitermitinae) from Brazil with a discussion of the cephalic microsculpture of the soldier. Sociobiology 27 (3): 277-287 | |
| dc.relation.references | Cárdenas-Torres, M. A. (2014). Estudio comparativo de la composición florística, estructura y diversidad de fustales en dos ecosistemas del campo de producción 50k cpo-09, Llanos del Orinoco Colombiano. Colombia forestal, 17(2), 203-229. https://doi.org/10.14483/udistrital.jour.colomb.for.2014.2.a06 | |
| dc.relation.references | Carrijo, T. F., Castro, D., Wang, M., Constantini, J. P., Bourguignon, T., Cancello, E. M., Roisin, Y., & Scheffrahn, R. H. (2023). Diminishing the taxonomic gap in the neotropical soldierless termites: descriptions of four new genera and a new Anoplotermes species (Isoptera, Termitidae, Apicotermitinae). ZooKeys, 1167, 317–352. https://doi.org/10.3897/zookeys.1167.100001 | |
| dc.relation.references | Carrijo, T. F., Pontes‐Nogueira, M., Santos, R. G., Morales, A. C., Cancello, E. M., & Scheffrahn, R. H. (2020). New World Heterotermes (Isoptera, Rhinotermitidae): molecular phylogeny, biogeography and description of a new species. Systematic Entomology, 45(3), 527-539. https://doi.org/10.1111/syen.12412 | |
| dc.relation.references | Castillo-Figueroa, D. (2021). Carbon cycle in tropical upland ecosystems: a global review. Web Ecology, 21, 109–136. https://doi.org/10.5194/we-21-109-2021. | |
| dc.relation.references | Cheesman, A. W., Cernusak, L. A., & Zanne, A. E. (2018). Relative roles of termites and saprotrophic microbes as drivers of wood decay: A wood block test. Austral Ecology, 43(3), 257–267. https://doi.org/10.1111/aec.12561 | |
| dc.relation.references | Clement, R. A., Flores-Moreno, H., Cernusak, L. A., Cheesman, A. W., Yatsko, A. R., Allison, S. D., Eggleton, P., & Zanne, A. E. (2021). Assessing the Australian termite diversity anomaly: how habitat and rainfall affect termite assemblages. Frontiers in Ecology and Evolution, 9, 657444. https://doi.org/10.3389/fevo.2021.657444 | |
| dc.relation.references | Constantino, R. (1995). Revision of Neotropical termite genus Syntermes Holmgren (Isoptera: Termitidae). The University of Kansas. Science Bulletin 55: 455-518 | |
| dc.relation.references | Constantino, R. (1999). Chave ilustrada para identificacáo dos géneros de cupins (Insecta: Isoptera) que ocorrem no Brasil. Papeis Avulsos de Zoología 40 (25): 387-448 | |
| dc.relation.references | Constantino, R. (2001). Key to soldiers of South American Heterotermes with a new species from Brazil (Isoptera: Rhinotermitidae). Insect Systematics y Evolution 31 (4): 463-472. https://doi.org/10.1163/187631200x00499 | |
| dc.relation.references | Constantino, R. (2002a). An illustrated key to Neotropical termite genera (Insecta: Isoptera) based primarily on soldiers. Zootaxa 67: 1-40. https://doi.org/10.11646/zootaxa.67.1.1 | |
| dc.relation.references | Constantino, R. (2002b). The pest termites of South America: taxonomy, distribution and status. Journal of Applied Entomology, 126(7-8), 355-365. https://doi.org/10.1046/j.1439-0418.2002.00670.x | |
| dc.relation.references | D'Angioli, A. M., Zanne, A. E., Constantino, R., Verona, L. S., & Oliveira, R. S. (2024). Termites are key drivers of short‐term deadwood decay in Neotropical Cerrado across vegetation types. Austral Ecology, 49(2), . https://doi.org/10.1111/aec.13486 | |
| dc.relation.references | Davies, R. G., Eggleton, P., Dibog, L., Lawton, J. H., Bignell, D. E., Brauman, A., Hartmann, C., Nunes, L., Holt, J., & Rouland, C.. (1999). Successional response of a tropical forest termite assemblage to experimental habitat perturbation. Journal of Applied Ecology, 36(6), 946-962. https://doi.org/10.1046/j.1365-2664.1999.00450.x | |
| dc.relation.references | Davies, R. G., Eggleton, P., Jones, D. T., Gathorne‐Hardy, F. J., & Hernández, L. M. (2003). Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. Journal of biogeography, 30(6), 847-877. https://doi.org/10.1046/j.1365-2699.2003.00883.x | |
| dc.relation.references | De Souza, O.F.F. & Brown, V.K. (1994). Effects of habitat fragmentation on Amazonian termite communities, Journal of Tropical Ecology, 10: 197-206. https://doi.org/10.1017/s0266467400007847 | |
| dc.relation.references | De Sousa Silva, A. K., Duarte, M. C. B., Gonçalves, I. D. V., De Souza, T. M., Tomazello, M., De Abreu, J. L. L., Da Silva, M. G., Mendes, L., De Oliveira Neto, C. F., Bufalino, L., De Paula Protásio, T., & Ferreira, G. C. (2024). The wide variation of amazonian stocked hardwoods affecting natural resistance to arboreal termites over time. Maderas Ciencia y Tecnología, 26. https://doi.org/10.22320/s0718221x/2024.48 | |
| dc.relation.references | Donovan, S., Eggleton, P. & Bignell, D. (2001). Gut content analysis and a new feeding group classification of termites. Ecological Entomology, 26: 356-366. https://doi.org/10.1046/j.1365-2311.2001.00342.x | |
| dc.relation.references | Dossa, G. G., Paudel, E., Schaefer, D., Zhang, J. L., Cao, K. F., Xu, J. C., & Harrison, R. D. (2020). Quantifying the factors affecting wood decomposition across a tropical forest disturbance gradient. Forest Ecology and Management, 468, 118166. https://doi.org/10.1016/j.foreco.2020.118166 | |
| dc.relation.references | Douglas Bates, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01. | |
| dc.relation.references | Fernández, F., Martínez, Y. K., & Sarmiento, M. B. (2012). Biodiversidad vegetal asociada a plantaciones forestales de Pinus caribaea Morelet y Eucalyptus pellita F. Muell. establecidas en Villanueva, Casanare, Colombia. Revista de la Facultad Nacional de Agronomía, 65: 6749-6764. | |
| dc.relation.references | Fontes, L. R. (1982). Novos táxons e novas combinações nos cupins nasutos geófagos da região Neotropical (Isoptera, Termitidae, Nasutitermitinae). Revista Brasilera de Entomología 26 (1): 99-108. | |
| dc.relation.references | Fontes, L. R. (1986). Two new genera of soldierless Apicotermitinae from the Neotropical region (Isoptera, Termitidae). Sociobiology 12: 285-297 | |
| dc.relation.references | Fox, J. (2015). Applied regression analysis and generalized linear models. Sage publications. | |
| dc.relation.references | Giardina, C. P. (2019). Advancing our understanding of woody debris in tropical forests. Ecosystems, 22(6), 1173–1175. https://doi.org/10.1007/s10021-019-00381-x | |
| dc.relation.references | Govorushko, S. (2019). Economic and ecological importance of termites: A global review. Entomological Science, 22(1), 21–35. https://doi.org/10.1111/ens.12328 | |
| dc.relation.references | Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L., & Eggleton, P. (2019). Termites can decompose more than half of deadwood in tropical rainforest. Current Biology, 29(4), R118–R119. https://doi.org/10.1016/j.cub.2019.01.012 | |
| dc.relation.references | Guo, C., Tuo, B., Ci, H., Yan, E. R., & Cornelissen, J. H. (2021). Dynamic feedbacks among tree functional traits, termite populations, and deadwood turnover. Journal of Ecology, 109(4), 1578-1590. https://doi.org/10.1111/1365-2745.13604 | |
| dc.relation.references | Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., Anderson, N. H., Cline, S. P., Aumen, N. G., Sedell, J. R., Lienkaemper, G. W., Cromack, K., & Cummins, K. W. (1986). Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15(C), 133–302. https://doi.org/10.1016/S0065-2504(08)60121-X | |
| dc.relation.references | Harmon, M. E., Whigham, D. F., Sexton, J., Olmsted, I., Harmon, M. E., Sexton, J., & Olmsted, I. (1995). Decomposition and mass of woody detritus in the dry tropical forests of the Northeastern Yucatan Peninsula, Mexico. Biotropica, 27(3), 305–316. https://doi.org/10.2307/2388916 | |
| dc.relation.references | Hellemans, S., Rocha, M. M., Wang, M., Romero Arias, J., Aanen, D. K., Bagnères, A.-G., Buček, A., Carrijo, T. F., Chouvenc, T., Cuezzo, C., Constantini, J. P., Constantino, R., Dedeine, F., Deligne, J., Eggleton, P., Evans, T. A., Hanus, R., Harrison, M. C., Harry, M., … Bourguignon, T. (2024). Genomic data provide insights into the classification of extant termites. Nature Communications, 15(1), 6724. https://doi.org/10.1038/s41467-024-51028-y | |
| dc.relation.references | Hu, Z., Michaletz, S. T., Johnson, D. J., McDowell, N. G., Huang, Z., Zhou, X., & Xu, C. (2018). Traits drive global wood decomposition rates more than climate. Global Change Biology, 24(11), 5259-5269. https://doi.org/10.1111/gcb.14357 | |
| dc.relation.references | IDEAM (2024). Consulta y descarga de datos hidrometeorológicos. http://dhime.ideam.gov.co/atencionciudadano/ | |
| dc.relation.references | IPCC. (2006). Guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme. In N. T. y T. K. Eggleston H.S., Buendia L., Miwa K. (Ed.), Forest land (Vol. 4, pp. 1–93). IGES, Japón. | |
| dc.relation.references | Jiménez, J. J., Decaëns, T., & Lavelle, P. (2006). Nutrient spatial variability in biogenic structures of Nasutitermes (Termitinae; Isoptera) in a gallery forest of the Colombian “Llanos.” Soil Biology and Biochemistry, 38(5), 1132–1138. https://doi.org/10.1016/j.soilbio.2005.09.026 | |
| dc.relation.references | Joly, F.-X., Milcu, A., Scherer-Lorenzen, M., Jean, L.-K., Bussotti, F., Dawud, S. M., Müller, S., Pollastrini, M., Raulund-Rasmussen, K., Vesterdal, L., & Hättenschwiler, S. (2017). Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytologist, 214, 1281–1293. https://doi.org/10.1111/nph.14452 | |
| dc.relation.references | Jones, D. T., Verkerk, R. H., & Eggleton, P. (2005). Methods for sampling termites. Insect sampling in forest ecosystems, 221-253. | |
| dc.relation.references | Jouquet, P., Bottinelli, N., Shanbhag, R. R., Bourguignon, T., Traoré, S., & Abbasi, S. A. (2016). Termites: the neglected soil engineers of tropical soils. Soil Science, 181(3/4), 157-165. https://doi.org/10.1097/ss.0000000000000119 | |
| dc.relation.references | Jouquet, P., Traoré, S., Choosai, C., Hartmann, C., & Bignell, D. (2011). Influence of termites on ecosystem functioning. Ecosystem services provided by termites. European Journal of Soil Biology, 47(4), 215-222. https://doi.org/10.1016/j.ejsobi.2011.05.005 | |
| dc.relation.references | Jouquet, P., Harit, A., Hervé, V., Moger, H., Carrijo, T., Donoso, D. A., Eldridge, D., Da Cunha, H. F., Choosai, C., Janeau, J., Maeght, J., Thu, T. D., Briandon, A., Skali, M. D., Van Thuyne, J., Mainga, A., Florian, O. P. P., Issa, O. M., Podwojewski, P., . . . Bottinelli, N. (2022). The impact of termites on soil sheeting properties is better explained by environmental factors than by their feeding and building strategies. Geoderma,412, 115706. https://doi.org/10.1016/j.geoderma.2022.115706 | |
| dc.relation.references | Kipping, L., Maurer, F., Gossner, M. M., Muszynski, S., Kahl, T., Kellner, H., Weiser, W. W., Jehmlich, N., & Noll, M. (2022). Drivers of deadwood decay of 13 temperate tree species are similar between forest and grassland habitats. Frontiers in Forests and Global Change, 5, . https://doi.org/10.3389/ffgc.2022.1020737 | |
| dc.relation.references | Lavelle, P., Mathieu, J., Spain, A., Brown, G., Fragoso, C., Lapied, E., De Aquino, A., Barois, I., Barrios, E., Barros, M. E., Bedano, J. C., Blanchart, E., Caulfield, M., Chagueza, Y., Dai, J., Decaëns, T., Dominguez, A., Dominguez, Y., Feijoo, A., … Zhang, C. (2022). Soil macroinvertebrate communities: A world‐wide assessment. Global Ecology and Biogeography, 31(7), 1261-1276. https://doi.org/10.1111/geb.13492 | |
| dc.relation.references | Lavelle, P., Spain, A., Blouin, M., Brown, G., Decaëns, T., Grimaldi, M., Jiménez, J. J., McKey, D., Mathieu, J., Velasquez, E., & Zangerlé, A. (2016). Ecosystem engineers in a self-organized soil: a review of concepts and future research questions. Soil Science, 181(3/4), 91-109. https://doi.org/10.1097/ss.0000000000000155 | |
| dc.relation.references | Law, S. J., Allison, S. D., Davies, A. B., Flores-Moreno, H., Wijas, B. J., Yatsko, A. R., Zhou, Y., Zanne, A. E., & Eggleton, P. (2024). The challenge of estimating global termite methane emissions. Global Change Biology, 30(6), e17390. https://doi.org/10.1111/gcb.17390 | |
| dc.relation.references | Law, S., Eggleton, P., Griffiths, H., Ashton, L., & Parr, C. (2019). Suspended dead wood decomposes slowly in the tropics, with microbial decay greater than termite decay. Ecosystems, 22, 1176-1188. https://doi.org/10.1007/s10021-018-0331-4 | |
| dc.relation.references | Law, S., Flores‐Moreno, H., Cheesman, A. W., Clement, R., Rosenfield, M., Yatsko, A., Cernusak, L. A., Dalling, J. W., Canam, T., Iqsaysa, I. A., Duan, E. S., Allison, S. D., Eggleton, P., & Zanne, A. E. (2023). Wood traits explain microbial but not termite‐driven decay in Australian tropical rainforest and savanna. Journal of Ecology, , 1–12. https://doi.org/10.1111/1365-2745.14090 | |
| dc.relation.references | Lenth R (2024). _emmeans: Estimated Marginal Means, aka Least-Squares Means_. R package version 1.10.4,<https://CRAN.R-project.org/package=emmeans>. | |
| dc.relation.references | Li, H. F., Lan, Y. C., Fujisaki, I., Kanzaki, N., Lee, H. J., & Su, N. Y. (2015). Termite assemblage pattern and niche partitioning in a tropical forest ecosystem. Environmental entomology, 44(3), 546-556. https://doi.org/10.1093/ee/nvv038 | |
| dc.relation.references | Liu, G., Cornwell, W. K., Cao, K., Hu, Y., Van Logtestijn, R. S. P., Yang, S., Xie, X., Zhang, Y., Ye, D., Pan, X., Ye, X., Huang, Z., Dong, M., & Cornelissen, J. H. C. (2015). Termites amplify the effects of wood traits on decomposition rates among multiple bamboo and dicot woody species. Journal of Ecology, 103(5), 1214–1223. https://doi.org/10.1111/1365-2745.12427 | |
| dc.relation.references | Mackensen, J., Bauhus, J., & Webber, E. (2003). Decomposition rates of coarse woody debris - A review with particular emphasis on Australian tree species. Australian Journal of Botany, 51(1), 27–37. https://doi.org/10.1071/BT02014 | |
| dc.relation.references | Mahari, A., Eshete, G., Kolleh, D. M., Watson, A. T., & Watson, R. (2024). Evaluation of Naturally Grown Termite Resistant Tropical Wood Species. Asian Journal of Environment & Ecology, 23(2), 1-7. https://doi.org/10.9734/ajee/2024/v23i2523 | |
| dc.relation.references | Mathews, A. G. A. (1977). Studies on termites from the Mato Grosso State, Brazil. Academia Brasilera de Ciencias, Rio de Janeiro. 267 p. | |
| dc.relation.references | Merganičova, K., Merganič, J., Svoboda, M., Bače, R., & Šebeň, V. (2012). Deadwood in forest ecosystems: In forest ecosystems–more than just trees (ed. by JA Blanco) Intech Open. London, UK, 81-08. | |
| dc.relation.references | Nobre, T., Nunes, L., & Bignell, D. E. (2009). Survey of subterranean termites (Isoptera: Rhinotermitidae) in a managed silvicultural plantation in Portugal, using a line-intersection method (LIS). Bulletin of Entomological Research, 99(1), 11-21. https://doi.org/10.1017/S000748530800607X | |
| dc.relation.references | Oberle, B., Lee, M. R., Myers, J. A., Osazuwa-Peters, O. L., Spasojevic, M. J., Walton, M. L., Young, D. F., & Zanne, A. E. (2020). Accurate forest projections require long-term wood decay experiments because plant trait effects change through time. Global Change Biology, 26(2), 864–875. https://doi.org/10.1111/gcb.14873 | |
| dc.relation.references | Oberst, S., Lai, J. C., & Evans, T. A. (2018). Key physical wood properties in termite foraging decisions. Journal of the Royal Society Interface, 15(149), 20180505. https://doi.org/10.1098/rsif.2018.0505 | |
| dc.relation.references | Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O'Hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak C, Weedon J (2022). _vegan: Community Ecology Package_. R package version 2.6-4, <https://CRAN.R-project.org/package=vegan>. | |
| dc.relation.references | Pan, Y., Birdsey, R. A., Phillips, O. L., Houghton, R. A., Fang, J., Kauppi, P. E., Keith, H., Kurz, W. A., Ito, A., Lewis, S. L., Nabuurs, G., Shvidenko, A., Hashimoto, S., Lerink, B., Schepaschenko, D., Castanho, A., & Murdiyarso, D. (2024). The enduring world forest carbon sink. Nature, 631(8021), 563-569. https://doi.org/10.1038/s41586-024-07602-x | |
| dc.relation.references | Pietsch, K. A., Ogle, K., Cornelissen, J. H. C., Cornwell, W. K., Bönisch, G., Craine, J. M., Jackson, B. G., Kattge, J., Peltzer, D. A., Penuelas, J., Reich, P. B., Wardle, D. A., Weedon, J. T., Wright, I. J., Zanne, A. E., & Wirth, C. (2014). Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Global Ecology and Biogeography, 23(9), 1046-1057. https://doi.org/10.1111/geb.12172 | |
| dc.relation.references | Pinzón, O., Baquero, L., & Beltran, M. (2017). Termite (Isoptera) Diversity in a gallery forests relict in the Colombian eastern plains. Sociobiology, 64(1), 92-100. https://doi.org/10.13102/sociobiology.v64i1.1184 | |
| dc.relation.references | Pinzón, O., Hernández, A., & Malagón, H. (2012). Diversidad de termitas (Isoptera: Termitidae, Rhinotermitidae) en plantaciones de caucho en Puerto López (Meta, Colombia). Revista Colombiana de Entomología, 38 (2): 291-298. https://doi.org/10.25100/socolen.v38i2.9009 | |
| dc.relation.references | Plumptre, R.A. (1984). Pinus caribaea. Volume 2. Wood properties. Tropical Forestry Paper No. 17. Commonwealth Forestry Institute, University of Oxford, England. 148 pp | |
| dc.relation.references | Purahong, W., Kahl, T., Krüger, D., Buscot, F., & Hoppe, B. (2019). Home-field advantage in wood decomposition is mainly mediated by fungal community shifts at “home” versus “away”. Microbial ecology, 78, 725-736. https://doi.org/10.1007/s00248-019-01334-6 | |
| dc.relation.references | R Core Team (2023). _R: A Language and Environment for Statistical Computing_.R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>. | |
| dc.relation.references | Roh, Y., Lee, S., Li, G., Kim, S., Lee, J., Han, S. H., ... & Son, Y. (2018). Changes in the contribution of termites to mass loss of dead wood among three tree species during 23 months in a lowland tropical rainforest. Sociobiology, 65(1), 59-66. https://doi.org/10.13102/sociobiology.v65i1.1838 | |
| dc.relation.references | Rozo López, D., Carmona Bedoya, M., Vallejo Arévalo, H., Chala Rosado, D., Cárdenas Urrego, W., Hincapié Parra, D., Pachón Alfonso, P., & Hernández Cervantes, M. (2021). Deforestación Y Vulnerabilidad Climática De La Región Orinoquía. Ideam, Programa de Investigación de Política Exterior Colombiana (PIPEC), 56. | |
| dc.relation.references | Russell, M. B., Fraver, S., Aakala, T., Gove, J. H., Woodall, C. W., D’Amato, A. W., & Ducey, M. J. (2015). Quantifying carbon stores and decomposition in dead wood: A review. Forest Ecology and Management, 350, 107–128. https://doi.org/10.1016/j.foreco.2015.04.033 | |
| dc.relation.references | Sanabria, C., Dubs, F., Lavelle, P., Fonte, S. J., & Barot, S. (2016). Influence of regions, land uses and soil properties on termite and ant communities in agricultural landscapes of the Colombian Llanos. European Journal Of Soil Biology, 74, 81-92. https://doi.org/10.1016/j.ejsobi.2016.03.008 | |
| dc.relation.references | Seibold, S., Bässler, C., Brandl, R., Gossner, M. M., Thorn, S., Ulyshen, M. D., & Müller, J. (2015). Experimental studies of dead-wood biodiversity - A review identifying global gaps in knowledge. Biological Conservation, 191, 139–149. https://doi.org/10.1016/j.biocon.2015.06.006 | |
| dc.relation.references | Seibold, S., Rammer, W., Hothorn, T., Seidl, R., Ulyshen, M. D., Lorz, J., Cadotte, M. W., Lindenmayer, D. B., Adhikari, Y. P., Aragón, R., Bae, S., Baldrian, P., Barimani Varandi, H., Barlow, J., Bässler, C., Beauchêne, J., Berenguer, E., Bergamin, R. S., Birkemoe, T., … Müller, J. (2021). The contribution of insects to global forest deadwood decomposition. Nature, 597(7874), 77–81. https://doi.org/10.1038/s41586-021-03740-8 | |
| dc.relation.references | Serna Mosquera, Y. B., Borja de la Rosa, A., Fuentes Salinas, M., & Corona Ambriz, A. (2011). Propiedades tecnológicas de la madera de algarrobo (Hymenaea oblongifolia Huber), de Bagadó-Chocó, Colombia. Revista Chapingo. Serie ciencias forestales y del ambiente, 17(3), 411-422. https://doi.org/10.5154/r.rchscfa.2010.07.043 | |
| dc.relation.references | Stokland, J. N., Siitonen, J., & Jonsson, B. G. (2012). Biodiversity in dead wood. In Biodiversity in Dead Wood. Cambridge University Press. https://doi.org/10.1017/CBO9781139025843 | |
| dc.relation.references | Takamura, K. (2001). Effects of termite exclusion on decay of heavy and light hardwood in a tropical rain forest of Peninsular Malaysia. Journal of Tropical Ecology, 17(4), 541–548. https://doi.org/10.1017/S0266467401001407 | |
| dc.relation.references | Thorn, S., Seibold, S., Leverkus, A. B., Michler, T., Müller, J., Noss, R. F., Stork, N., Vogel, S., & Lindenmayer, D. B. (2020). The living dead: acknowledging life after tree death to stop forest degradation. Frontiers in Ecology and the Environment, 18(9), 505–512. https://doi.org/10.1002/fee.2252 | |
| dc.relation.references | Veen, G. F., Freschet, G. T., Ordonez, A., & Wardle, D. A. (2015). Litter quality and environmental controls of home‐field advantage effects on litter decomposition. Oikos, 124(2), 187-195. https://doi.org/10.1111/oik.01374 | |
| dc.relation.references | Veneklaas, E. J., Fajardo, A., Obregon, S., & Lozano, J. (2005). Gallery forest types and their environmental correlates in a Colombian savanna landscape. Ecography, 28(2), 236-252. https://doi.org/10.1111/j.0906-7590.2005.03934.x | |
| dc.relation.references | Wang, D., C. Yuan, X. Zhang, et al. 2024. “Precipitation Rather Than Temperature Primarily Drives Global Termite Effects on Litter Decomposition.” Catena 236: 107778. https://doi.org/10.1016/j.catena.2023.107778. | |
| dc.relation.references | Wickham H, François R, Henry L, Müller K, Vaughan D (2023). _dplyr: A Grammar of Data Manipulation_. R package version 1.1.3, <https://CRAN.R-project.org/package=dplyr>. | |
| dc.relation.references | Wickham, H. (2016). Data Analysis. In: ggplot2. Use R!. Springer, Cham. https://doi.org/10.1007/978-3-319-24277-4_9 | |
| dc.relation.references | Wijas, B. J., Flores-Moreno, H., Allison, S. D., Rodriguez, L. C., Cheesman, A. W., Cernusak, L. A., Clement, R., Cornwell, W. K., Duan, E. S., Eggleton, P., Rosenfield, M. V., Yatsko, A. R., & Zanne, A. E. (2024). Drivers of wood decay in tropical ecosystems: Termites versus microbes along spatial, temporal and experimental precipitation gradients. Functional Ecology, 38(3), 546-559.https://doi.org/10.1111/1365-2435.14494 | |
| dc.relation.references | Woon, J. S., Boyle, M. J. W., Ewers, R. M., Chung, A., & Eggleton, P. (2019). Termite environmental tolerances are more linked to desiccation than temperature in modified tropical forests. Insectes sociaux, 66, 57-64.https://doi.org/10.1007/s00040-018-0664-1 | |
| dc.relation.references | Zanne, A. E., Flores-Moreno, H., Powell, J. R., Cornwell, W. K., Dalling, J. W., Austin, A. T., Classen, A. T., Eggleton, P., Okada, K.-I., Parr, C. L., Adair, E. C., Adu-Bredu, S., Alam, M. A., Alvarez-Garzón, C., Apgaua, D., Aragón, R., Ardon, M., Arndt, S. K., Ashton, L. A., … Zalamea, P.-C. (2022). Termite sensitivity to temperature affects global wood decay rates. Science, 377(6613), 1440-1444. DOI: 10.1126/ciencia.abo3856 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Heterotermes tenuis | |
| dc.subject | Densidad de la madera | |
| dc.subject | Termitas | |
| dc.subject | Ciclo del carbono | |
| dc.subject.keyword | Heterotermes tenuis | |
| dc.subject.keyword | Wood density | |
| dc.subject.keyword | Termites | |
| dc.subject.keyword | Carbon cycle | |
| dc.subject.lemb | Maestría en Manejo, Uso y Conservación del Bosque -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Termitas xilófagas -- Orinoquia (Región, Colombia) | spa |
| dc.subject.lemb | Bosques de galería -- Orinoquia (Región, Colombia) | spa |
| dc.subject.lemb | Descomposición de la madera -- Orinoquia (Región, Colombia) | spa |
| dc.title | Descomposición de madera muerta por termitas xilófagas en bosques de galería de la Orinoquía colombiana | |
| dc.title.titleenglish | Decomposition of dead wood by xylophagous termites in gallery forests of the colombian Orinoquía | |
| dc.type | masterThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.degree | Investigación-Innovación | |
| dc.type.driver | info:eu-repo/semantics/masterThesis |
Archivos
Bloque original
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- RomeroRicoGeimmyAlejandra2025.pdf
- Tamaño:
- 648.14 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de Maestría
No hay miniatura disponible
- Nombre:
- RomeroRicoGeimmyAlejandra2025Anexos.zip
- Tamaño:
- 744.56 KB
- Formato:
- Descripción:
- Anexos
No hay miniatura disponible
- Nombre:
- Licencia de uso y publicación.pdf
- Tamaño:
- 595.75 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Licencia de uso y autorización
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
