Descomposición de madera muerta por termitas xilófagas en bosques de galería de la Orinoquía colombiana

dc.contributor.advisorPinzón Florián, Olga Patricia
dc.contributor.advisorRamírez, Beatriz H.
dc.contributor.authorRomero Rico, Geimmy Alejandra
dc.contributor.orcidRomero Rico, Geimmy Alejandra [0009-0002-3174-9682]
dc.contributor.orcidPinzón Florián, Olga Patricia [0000-0002-5858-4083]
dc.date.accessioned2025-04-22T01:41:31Z
dc.date.available2025-04-22T01:41:31Z
dc.date.created2024-12-16
dc.descriptionLas termitas contribuyen decisivamente a la descomposición de la madera y al ciclo del carbono en los ecosistemas tropicales. El proceso de descomposición está influenciado por las propiedades de la madera, el clima global y local, y los organismos descomponedores, principalmente termitas y microbios. En este estudio, exploramos el impacto de la densidad de la madera, la estacionalidad y la diversidad de termitas en las tasas de descomposición en los bosques de galería de la Orinoquía. Investigamos cómo estos factores influyen en la actividad de las termitas y su papel en la pérdida de biomasa. Los resultados indican que la densidad de la madera explica parcialmente la pérdida de masa de cebo debida a las termitas, siendo la madera más densa atacada con mayor frecuencia durante la estación húmeda. Sin embargo, no se observaron diferencias significativas en las tasas de descomposición entre la madera blanda y la madera densa. Aunque la densidad de la madera es un rasgo importante en la resistencia a la descomposición, la relación entre densidad y tasa de descomposición no siempre es lineal, lo que sugiere que otros factores, como la química y la anatomía de la madera, también desempeñan un papel significativo. La especie de termita más abundante Heterotermes tenuis, fue la responsable de la mayor pérdida de masa, lo que subraya su importancia en los procesos de descomposición. Estos resultados resaltan la complejidad de la descomposición provocada por las termitas y destacan la necesidad de tener en cuenta múltiples factores, como las propiedades de la madera y las condiciones ambientales, a la hora de evaluar su papel en la dinámica del carbono. Nuestro estudio contribuye a entender cómo la actividad de las termitas afecta a las funciones del ecosistema y destaca la importancia de conservar la madera muerta para mantener la diversidad de termitas y la salud de los bosques de galería.
dc.description.abstractTermites are key contributors to wood decomposition and carbon cycling in tropical ecosystems. The decomposition process is influenced by wood properties, global and local climate, and decomposer organisms principally termites and microbes. In this study, we explore the impact of wood density, seasonality, and termite diversity on decomposition rates in the gallery forests of the Orinoquía. This research investigates how these factors influence termite activity and their role in biomass loss. The results indicate that wood density partially explains the mass loss of bait due to termites, with denser wood being more frequently attacked during the wet season. However, no significant differences in decomposition rates between softwood and dense wood were observed. Although wood density is an important trait in decay resistance, the relationship between density and decomposition rate is not always linear, suggesting that other factors, such as wood chemistry and anatomy, also play a significant role. The most abundant termite species, Heterotermes tenuis, was responsible for the highest mass loss, emphasizing its importance in decomposition processes. These findings underscore the complexity of termite-driven decomposition and highlight the need to consider multiple factors, such as wood properties and environmental conditions, when evaluating their role in carbon dynamics. Our study contributes to understanding how termite activity impacts ecosystem functions and stresses the importance of conserving dead wood in maintaining termite diversity and gallery forest health.
dc.description.sponsorshipFrontera Energy Corp.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/94956
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAshton, L. A., Griffiths, H. M., Parr, C. L., Evans, T. A., Didham, R. K., Hasan, F., Teh, Y. A., Tin, H. S., Vairappan, C. S., & Eggleton, P. (2019). Termites mitigate the effects of drought in tropical rainforest. Science, 363(6423), 174–177. https://doi.org/10.1126/science.aau9565
dc.relation.referencesAyres, E., Steltzer, H., Simmons, B. L., Simpson, R. T., Steinweg, J. M., Wallenstein, M. D., Mellor, N., Parton, W. J., Moore, J. C., & Wall, D. H. (2009). Home-field advantage accelerates leaf litter decomposition in forests. Soil Biology and Biochemistry, 41(3), 606-610.https://doi.org/10.1016/j.soilbio.2008.12.022
dc.relation.referencesBeltrán-Díaz, M. A., & Pinzón-Florián, O. P. (2018). Termitofauna (Isoptera: Termitidae, Rhinotermitidae) en plantaciones de Pinus caribaea en sabanas de la Orinoquía Colombiana. Revista Colombiana de Entomología, 44(1), 61-71. https://doi.org/10.25100/socolen.v44i1.6544
dc.relation.referencesBignell, D. E. (2006). Termites as soil engineers and soil processors. In Intestinal microorganisms of termites and other invertebrates (pp. 183-220). Berlin, Heidelberg: Springer Berlin Heidelberg.
dc.relation.referencesBradford, M. A., Maynard, D. S., Crowther, T. W., Frankson, P. T., Mohan, J. E., Steinrueck, C., Veen, G. F. C., King, J. R., & Warren, R. J. (2021). Belowground community turnover accelerates the decomposition of standing dead wood. Ecology, 102(11), e03484. https://doi.org/10.1002/ecy.3484
dc.relation.referencesBradford, M. A., Warren, R. J., Baldrian, P., Crowther, T. W., Maynard, D. S., Oldfield, E. E., Wieder, W. R., Wood, S. A., & King, J. R. (2014). Climate fails to predict wood decomposition at regional scales. Nature Climate Change, 4(7), 625–630. https://doi.org/10.1038/nclimate2251
dc.relation.referencesBunnell, F. L., & Houde, I. (2010). Down wood and biodiversity - Implications to forest practices. Environmental Reviews, 18(1), 397–421. https://doi.org/10.1139/A10-019
dc.relation.referencesCancello, E. Brandao, D.,Amarante S. T. P. (1996). Two new Angularitermes species (Isoptera, Termitidae, Nasutitermitinae) from Brazil with a discussion of the cephalic microsculpture of the soldier. Sociobiology 27 (3): 277-287
dc.relation.referencesCárdenas-Torres, M. A. (2014). Estudio comparativo de la composición florística, estructura y diversidad de fustales en dos ecosistemas del campo de producción 50k cpo-09, Llanos del Orinoco Colombiano. Colombia forestal, 17(2), 203-229. https://doi.org/10.14483/udistrital.jour.colomb.for.2014.2.a06
dc.relation.referencesCarrijo, T. F., Castro, D., Wang, M., Constantini, J. P., Bourguignon, T., Cancello, E. M., Roisin, Y., & Scheffrahn, R. H. (2023). Diminishing the taxonomic gap in the neotropical soldierless termites: descriptions of four new genera and a new Anoplotermes species (Isoptera, Termitidae, Apicotermitinae). ZooKeys, 1167, 317–352. https://doi.org/10.3897/zookeys.1167.100001
dc.relation.referencesCarrijo, T. F., Pontes‐Nogueira, M., Santos, R. G., Morales, A. C., Cancello, E. M., & Scheffrahn, R. H. (2020). New World Heterotermes (Isoptera, Rhinotermitidae): molecular phylogeny, biogeography and description of a new species. Systematic Entomology, 45(3), 527-539. https://doi.org/10.1111/syen.12412
dc.relation.referencesCastillo-Figueroa, D. (2021). Carbon cycle in tropical upland ecosystems: a global review. Web Ecology, 21, 109–136. https://doi.org/10.5194/we-21-109-2021.
dc.relation.referencesCheesman, A. W., Cernusak, L. A., & Zanne, A. E. (2018). Relative roles of termites and saprotrophic microbes as drivers of wood decay: A wood block test. Austral Ecology, 43(3), 257–267. https://doi.org/10.1111/aec.12561
dc.relation.referencesClement, R. A., Flores-Moreno, H., Cernusak, L. A., Cheesman, A. W., Yatsko, A. R., Allison, S. D., Eggleton, P., & Zanne, A. E. (2021). Assessing the Australian termite diversity anomaly: how habitat and rainfall affect termite assemblages. Frontiers in Ecology and Evolution, 9, 657444. https://doi.org/10.3389/fevo.2021.657444
dc.relation.referencesConstantino, R. (1995). Revision of Neotropical termite genus Syntermes Holmgren (Isoptera: Termitidae). The University of Kansas. Science Bulletin 55: 455-518
dc.relation.referencesConstantino, R. (1999). Chave ilustrada para identificacáo dos géneros de cupins (Insecta: Isoptera) que ocorrem no Brasil. Papeis Avulsos de Zoología 40 (25): 387-448
dc.relation.referencesConstantino, R. (2001). Key to soldiers of South American Heterotermes with a new species from Brazil (Isoptera: Rhinotermitidae). Insect Systematics y Evolution 31 (4): 463-472. https://doi.org/10.1163/187631200x00499
dc.relation.referencesConstantino, R. (2002a). An illustrated key to Neotropical termite genera (Insecta: Isoptera) based primarily on soldiers. Zootaxa 67: 1-40. https://doi.org/10.11646/zootaxa.67.1.1
dc.relation.referencesConstantino, R. (2002b). The pest termites of South America: taxonomy, distribution and status. Journal of Applied Entomology, 126(7-8), 355-365. https://doi.org/10.1046/j.1439-0418.2002.00670.x
dc.relation.referencesD'Angioli, A. M., Zanne, A. E., Constantino, R., Verona, L. S., & Oliveira, R. S. (2024). Termites are key drivers of short‐term deadwood decay in Neotropical Cerrado across vegetation types. Austral Ecology, 49(2), . https://doi.org/10.1111/aec.13486
dc.relation.referencesDavies, R. G., Eggleton, P., Dibog, L., Lawton, J. H., Bignell, D. E., Brauman, A., Hartmann, C., Nunes, L., Holt, J., & Rouland, C.. (1999). Successional response of a tropical forest termite assemblage to experimental habitat perturbation. Journal of Applied Ecology, 36(6), 946-962. https://doi.org/10.1046/j.1365-2664.1999.00450.x
dc.relation.referencesDavies, R. G., Eggleton, P., Jones, D. T., Gathorne‐Hardy, F. J., & Hernández, L. M. (2003). Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. Journal of biogeography, 30(6), 847-877. https://doi.org/10.1046/j.1365-2699.2003.00883.x
dc.relation.referencesDe Souza, O.F.F. & Brown, V.K. (1994). Effects of habitat fragmentation on Amazonian termite communities, Journal of Tropical Ecology, 10: 197-206. https://doi.org/10.1017/s0266467400007847
dc.relation.referencesDe Sousa Silva, A. K., Duarte, M. C. B., Gonçalves, I. D. V., De Souza, T. M., Tomazello, M., De Abreu, J. L. L., Da Silva, M. G., Mendes, L., De Oliveira Neto, C. F., Bufalino, L., De Paula Protásio, T., & Ferreira, G. C. (2024). The wide variation of amazonian stocked hardwoods affecting natural resistance to arboreal termites over time. Maderas Ciencia y Tecnología, 26. https://doi.org/10.22320/s0718221x/2024.48
dc.relation.referencesDonovan, S., Eggleton, P. & Bignell, D. (2001). Gut content analysis and a new feeding group classification of termites. Ecological Entomology, 26: 356-366. https://doi.org/10.1046/j.1365-2311.2001.00342.x
dc.relation.referencesDossa, G. G., Paudel, E., Schaefer, D., Zhang, J. L., Cao, K. F., Xu, J. C., & Harrison, R. D. (2020). Quantifying the factors affecting wood decomposition across a tropical forest disturbance gradient. Forest Ecology and Management, 468, 118166. https://doi.org/10.1016/j.foreco.2020.118166
dc.relation.referencesDouglas Bates, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.
dc.relation.referencesFernández, F., Martínez, Y. K., & Sarmiento, M. B. (2012). Biodiversidad vegetal asociada a plantaciones forestales de Pinus caribaea Morelet y Eucalyptus pellita F. Muell. establecidas en Villanueva, Casanare, Colombia. Revista de la Facultad Nacional de Agronomía, 65: 6749-6764.
dc.relation.referencesFontes, L. R. (1982). Novos táxons e novas combinações nos cupins nasutos geófagos da região Neotropical (Isoptera, Termitidae, Nasutitermitinae). Revista Brasilera de Entomología 26 (1): 99-108.
dc.relation.referencesFontes, L. R. (1986). Two new genera of soldierless Apicotermitinae from the Neotropical region (Isoptera, Termitidae). Sociobiology 12: 285-297
dc.relation.referencesFox, J. (2015). Applied regression analysis and generalized linear models. Sage publications.
dc.relation.referencesGiardina, C. P. (2019). Advancing our understanding of woody debris in tropical forests. Ecosystems, 22(6), 1173–1175. https://doi.org/10.1007/s10021-019-00381-x
dc.relation.referencesGovorushko, S. (2019). Economic and ecological importance of termites: A global review. Entomological Science, 22(1), 21–35. https://doi.org/10.1111/ens.12328
dc.relation.referencesGriffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L., & Eggleton, P. (2019). Termites can decompose more than half of deadwood in tropical rainforest. Current Biology, 29(4), R118–R119. https://doi.org/10.1016/j.cub.2019.01.012
dc.relation.referencesGuo, C., Tuo, B., Ci, H., Yan, E. R., & Cornelissen, J. H. (2021). Dynamic feedbacks among tree functional traits, termite populations, and deadwood turnover. Journal of Ecology, 109(4), 1578-1590. https://doi.org/10.1111/1365-2745.13604
dc.relation.referencesHarmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., Anderson, N. H., Cline, S. P., Aumen, N. G., Sedell, J. R., Lienkaemper, G. W., Cromack, K., & Cummins, K. W. (1986). Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15(C), 133–302. https://doi.org/10.1016/S0065-2504(08)60121-X
dc.relation.referencesHarmon, M. E., Whigham, D. F., Sexton, J., Olmsted, I., Harmon, M. E., Sexton, J., & Olmsted, I. (1995). Decomposition and mass of woody detritus in the dry tropical forests of the Northeastern Yucatan Peninsula, Mexico. Biotropica, 27(3), 305–316. https://doi.org/10.2307/2388916
dc.relation.referencesHellemans, S., Rocha, M. M., Wang, M., Romero Arias, J., Aanen, D. K., Bagnères, A.-G., Buček, A., Carrijo, T. F., Chouvenc, T., Cuezzo, C., Constantini, J. P., Constantino, R., Dedeine, F., Deligne, J., Eggleton, P., Evans, T. A., Hanus, R., Harrison, M. C., Harry, M., … Bourguignon, T. (2024). Genomic data provide insights into the classification of extant termites. Nature Communications, 15(1), 6724. https://doi.org/10.1038/s41467-024-51028-y
dc.relation.referencesHu, Z., Michaletz, S. T., Johnson, D. J., McDowell, N. G., Huang, Z., Zhou, X., & Xu, C. (2018). Traits drive global wood decomposition rates more than climate. Global Change Biology, 24(11), 5259-5269. https://doi.org/10.1111/gcb.14357
dc.relation.referencesIDEAM (2024). Consulta y descarga de datos hidrometeorológicos. http://dhime.ideam.gov.co/atencionciudadano/
dc.relation.referencesIPCC. (2006). Guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme. In N. T. y T. K. Eggleston H.S., Buendia L., Miwa K. (Ed.), Forest land (Vol. 4, pp. 1–93). IGES, Japón.
dc.relation.referencesJiménez, J. J., Decaëns, T., & Lavelle, P. (2006). Nutrient spatial variability in biogenic structures of Nasutitermes (Termitinae; Isoptera) in a gallery forest of the Colombian “Llanos.” Soil Biology and Biochemistry, 38(5), 1132–1138. https://doi.org/10.1016/j.soilbio.2005.09.026
dc.relation.referencesJoly, F.-X., Milcu, A., Scherer-Lorenzen, M., Jean, L.-K., Bussotti, F., Dawud, S. M., Müller, S., Pollastrini, M., Raulund-Rasmussen, K., Vesterdal, L., & Hättenschwiler, S. (2017). Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytologist, 214, 1281–1293. https://doi.org/10.1111/nph.14452
dc.relation.referencesJones, D. T., Verkerk, R. H., & Eggleton, P. (2005). Methods for sampling termites. Insect sampling in forest ecosystems, 221-253.
dc.relation.referencesJouquet, P., Bottinelli, N., Shanbhag, R. R., Bourguignon, T., Traoré, S., & Abbasi, S. A. (2016). Termites: the neglected soil engineers of tropical soils. Soil Science, 181(3/4), 157-165. https://doi.org/10.1097/ss.0000000000000119
dc.relation.referencesJouquet, P., Traoré, S., Choosai, C., Hartmann, C., & Bignell, D. (2011). Influence of termites on ecosystem functioning. Ecosystem services provided by termites. European Journal of Soil Biology, 47(4), 215-222. https://doi.org/10.1016/j.ejsobi.2011.05.005
dc.relation.referencesJouquet, P., Harit, A., Hervé, V., Moger, H., Carrijo, T., Donoso, D. A., Eldridge, D., Da Cunha, H. F., Choosai, C., Janeau, J., Maeght, J., Thu, T. D., Briandon, A., Skali, M. D., Van Thuyne, J., Mainga, A., Florian, O. P. P., Issa, O. M., Podwojewski, P., . . . Bottinelli, N. (2022). The impact of termites on soil sheeting properties is better explained by environmental factors than by their feeding and building strategies. Geoderma,412, 115706. https://doi.org/10.1016/j.geoderma.2022.115706
dc.relation.referencesKipping, L., Maurer, F., Gossner, M. M., Muszynski, S., Kahl, T., Kellner, H., Weiser, W. W., Jehmlich, N., & Noll, M. (2022). Drivers of deadwood decay of 13 temperate tree species are similar between forest and grassland habitats. Frontiers in Forests and Global Change, 5, . https://doi.org/10.3389/ffgc.2022.1020737
dc.relation.referencesLavelle, P., Mathieu, J., Spain, A., Brown, G., Fragoso, C., Lapied, E., De Aquino, A., Barois, I., Barrios, E., Barros, M. E., Bedano, J. C., Blanchart, E., Caulfield, M., Chagueza, Y., Dai, J., Decaëns, T., Dominguez, A., Dominguez, Y., Feijoo, A., … Zhang, C. (2022). Soil macroinvertebrate communities: A world‐wide assessment. Global Ecology and Biogeography, 31(7), 1261-1276. https://doi.org/10.1111/geb.13492
dc.relation.referencesLavelle, P., Spain, A., Blouin, M., Brown, G., Decaëns, T., Grimaldi, M., Jiménez, J. J., McKey, D., Mathieu, J., Velasquez, E., & Zangerlé, A. (2016). Ecosystem engineers in a self-organized soil: a review of concepts and future research questions. Soil Science, 181(3/4), 91-109. https://doi.org/10.1097/ss.0000000000000155
dc.relation.referencesLaw, S. J., Allison, S. D., Davies, A. B., Flores-Moreno, H., Wijas, B. J., Yatsko, A. R., Zhou, Y., Zanne, A. E., & Eggleton, P. (2024). The challenge of estimating global termite methane emissions. Global Change Biology, 30(6), e17390. https://doi.org/10.1111/gcb.17390
dc.relation.referencesLaw, S., Eggleton, P., Griffiths, H., Ashton, L., & Parr, C. (2019). Suspended dead wood decomposes slowly in the tropics, with microbial decay greater than termite decay. Ecosystems, 22, 1176-1188. https://doi.org/10.1007/s10021-018-0331-4
dc.relation.referencesLaw, S., Flores‐Moreno, H., Cheesman, A. W., Clement, R., Rosenfield, M., Yatsko, A., Cernusak, L. A., Dalling, J. W., Canam, T., Iqsaysa, I. A., Duan, E. S., Allison, S. D., Eggleton, P., & Zanne, A. E. (2023). Wood traits explain microbial but not termite‐driven decay in Australian tropical rainforest and savanna. Journal of Ecology, , 1–12. https://doi.org/10.1111/1365-2745.14090
dc.relation.referencesLenth R (2024). _emmeans: Estimated Marginal Means, aka Least-Squares Means_. R package version 1.10.4,<https://CRAN.R-project.org/package=emmeans>.
dc.relation.referencesLi, H. F., Lan, Y. C., Fujisaki, I., Kanzaki, N., Lee, H. J., & Su, N. Y. (2015). Termite assemblage pattern and niche partitioning in a tropical forest ecosystem. Environmental entomology, 44(3), 546-556. https://doi.org/10.1093/ee/nvv038
dc.relation.referencesLiu, G., Cornwell, W. K., Cao, K., Hu, Y., Van Logtestijn, R. S. P., Yang, S., Xie, X., Zhang, Y., Ye, D., Pan, X., Ye, X., Huang, Z., Dong, M., & Cornelissen, J. H. C. (2015). Termites amplify the effects of wood traits on decomposition rates among multiple bamboo and dicot woody species. Journal of Ecology, 103(5), 1214–1223. https://doi.org/10.1111/1365-2745.12427
dc.relation.referencesMackensen, J., Bauhus, J., & Webber, E. (2003). Decomposition rates of coarse woody debris - A review with particular emphasis on Australian tree species. Australian Journal of Botany, 51(1), 27–37. https://doi.org/10.1071/BT02014
dc.relation.referencesMahari, A., Eshete, G., Kolleh, D. M., Watson, A. T., & Watson, R. (2024). Evaluation of Naturally Grown Termite Resistant Tropical Wood Species. Asian Journal of Environment & Ecology, 23(2), 1-7. https://doi.org/10.9734/ajee/2024/v23i2523
dc.relation.referencesMathews, A. G. A. (1977). Studies on termites from the Mato Grosso State, Brazil. Academia Brasilera de Ciencias, Rio de Janeiro. 267 p.
dc.relation.referencesMerganičova, K., Merganič, J., Svoboda, M., Bače, R., & Šebeň, V. (2012). Deadwood in forest ecosystems: In forest ecosystems–more than just trees (ed. by JA Blanco) Intech Open. London, UK, 81-08.
dc.relation.referencesNobre, T., Nunes, L., & Bignell, D. E. (2009). Survey of subterranean termites (Isoptera: Rhinotermitidae) in a managed silvicultural plantation in Portugal, using a line-intersection method (LIS). Bulletin of Entomological Research, 99(1), 11-21. https://doi.org/10.1017/S000748530800607X
dc.relation.referencesOberle, B., Lee, M. R., Myers, J. A., Osazuwa-Peters, O. L., Spasojevic, M. J., Walton, M. L., Young, D. F., & Zanne, A. E. (2020). Accurate forest projections require long-term wood decay experiments because plant trait effects change through time. Global Change Biology, 26(2), 864–875. https://doi.org/10.1111/gcb.14873
dc.relation.referencesOberst, S., Lai, J. C., & Evans, T. A. (2018). Key physical wood properties in termite foraging decisions. Journal of the Royal Society Interface, 15(149), 20180505. https://doi.org/10.1098/rsif.2018.0505
dc.relation.referencesOksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O'Hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak C, Weedon J (2022). _vegan: Community Ecology Package_. R package version 2.6-4, <https://CRAN.R-project.org/package=vegan>.
dc.relation.referencesPan, Y., Birdsey, R. A., Phillips, O. L., Houghton, R. A., Fang, J., Kauppi, P. E., Keith, H., Kurz, W. A., Ito, A., Lewis, S. L., Nabuurs, G., Shvidenko, A., Hashimoto, S., Lerink, B., Schepaschenko, D., Castanho, A., & Murdiyarso, D. (2024). The enduring world forest carbon sink. Nature, 631(8021), 563-569. https://doi.org/10.1038/s41586-024-07602-x
dc.relation.referencesPietsch, K. A., Ogle, K., Cornelissen, J. H. C., Cornwell, W. K., Bönisch, G., Craine, J. M., Jackson, B. G., Kattge, J., Peltzer, D. A., Penuelas, J., Reich, P. B., Wardle, D. A., Weedon, J. T., Wright, I. J., Zanne, A. E., & Wirth, C. (2014). Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Global Ecology and Biogeography, 23(9), 1046-1057. https://doi.org/10.1111/geb.12172
dc.relation.referencesPinzón, O., Baquero, L., & Beltran, M. (2017). Termite (Isoptera) Diversity in a gallery forests relict in the Colombian eastern plains. Sociobiology, 64(1), 92-100. https://doi.org/10.13102/sociobiology.v64i1.1184
dc.relation.referencesPinzón, O., Hernández, A., & Malagón, H. (2012). Diversidad de termitas (Isoptera: Termitidae, Rhinotermitidae) en plantaciones de caucho en Puerto López (Meta, Colombia). Revista Colombiana de Entomología, 38 (2): 291-298. https://doi.org/10.25100/socolen.v38i2.9009
dc.relation.referencesPlumptre, R.A. (1984). Pinus caribaea. Volume 2. Wood properties. Tropical Forestry Paper No. 17. Commonwealth Forestry Institute, University of Oxford, England. 148 pp
dc.relation.referencesPurahong, W., Kahl, T., Krüger, D., Buscot, F., & Hoppe, B. (2019). Home-field advantage in wood decomposition is mainly mediated by fungal community shifts at “home” versus “away”. Microbial ecology, 78, 725-736. https://doi.org/10.1007/s00248-019-01334-6
dc.relation.referencesR Core Team (2023). _R: A Language and Environment for Statistical Computing_.R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.
dc.relation.referencesRoh, Y., Lee, S., Li, G., Kim, S., Lee, J., Han, S. H., ... & Son, Y. (2018). Changes in the contribution of termites to mass loss of dead wood among three tree species during 23 months in a lowland tropical rainforest. Sociobiology, 65(1), 59-66. https://doi.org/10.13102/sociobiology.v65i1.1838
dc.relation.referencesRozo López, D., Carmona Bedoya, M., Vallejo Arévalo, H., Chala Rosado, D., Cárdenas Urrego, W., Hincapié Parra, D., Pachón Alfonso, P., & Hernández Cervantes, M. (2021). Deforestación Y Vulnerabilidad Climática De La Región Orinoquía. Ideam, Programa de Investigación de Política Exterior Colombiana (PIPEC), 56.
dc.relation.referencesRussell, M. B., Fraver, S., Aakala, T., Gove, J. H., Woodall, C. W., D’Amato, A. W., & Ducey, M. J. (2015). Quantifying carbon stores and decomposition in dead wood: A review. Forest Ecology and Management, 350, 107–128. https://doi.org/10.1016/j.foreco.2015.04.033
dc.relation.referencesSanabria, C., Dubs, F., Lavelle, P., Fonte, S. J., & Barot, S. (2016). Influence of regions, land uses and soil properties on termite and ant communities in agricultural landscapes of the Colombian Llanos. European Journal Of Soil Biology, 74, 81-92. https://doi.org/10.1016/j.ejsobi.2016.03.008
dc.relation.referencesSeibold, S., Bässler, C., Brandl, R., Gossner, M. M., Thorn, S., Ulyshen, M. D., & Müller, J. (2015). Experimental studies of dead-wood biodiversity - A review identifying global gaps in knowledge. Biological Conservation, 191, 139–149. https://doi.org/10.1016/j.biocon.2015.06.006
dc.relation.referencesSeibold, S., Rammer, W., Hothorn, T., Seidl, R., Ulyshen, M. D., Lorz, J., Cadotte, M. W., Lindenmayer, D. B., Adhikari, Y. P., Aragón, R., Bae, S., Baldrian, P., Barimani Varandi, H., Barlow, J., Bässler, C., Beauchêne, J., Berenguer, E., Bergamin, R. S., Birkemoe, T., … Müller, J. (2021). The contribution of insects to global forest deadwood decomposition. Nature, 597(7874), 77–81. https://doi.org/10.1038/s41586-021-03740-8
dc.relation.referencesSerna Mosquera, Y. B., Borja de la Rosa, A., Fuentes Salinas, M., & Corona Ambriz, A. (2011). Propiedades tecnológicas de la madera de algarrobo (Hymenaea oblongifolia Huber), de Bagadó-Chocó, Colombia. Revista Chapingo. Serie ciencias forestales y del ambiente, 17(3), 411-422. https://doi.org/10.5154/r.rchscfa.2010.07.043
dc.relation.referencesStokland, J. N., Siitonen, J., & Jonsson, B. G. (2012). Biodiversity in dead wood. In Biodiversity in Dead Wood. Cambridge University Press. https://doi.org/10.1017/CBO9781139025843
dc.relation.referencesTakamura, K. (2001). Effects of termite exclusion on decay of heavy and light hardwood in a tropical rain forest of Peninsular Malaysia. Journal of Tropical Ecology, 17(4), 541–548. https://doi.org/10.1017/S0266467401001407
dc.relation.referencesThorn, S., Seibold, S., Leverkus, A. B., Michler, T., Müller, J., Noss, R. F., Stork, N., Vogel, S., & Lindenmayer, D. B. (2020). The living dead: acknowledging life after tree death to stop forest degradation. Frontiers in Ecology and the Environment, 18(9), 505–512. https://doi.org/10.1002/fee.2252
dc.relation.referencesVeen, G. F., Freschet, G. T., Ordonez, A., & Wardle, D. A. (2015). Litter quality and environmental controls of home‐field advantage effects on litter decomposition. Oikos, 124(2), 187-195. https://doi.org/10.1111/oik.01374
dc.relation.referencesVeneklaas, E. J., Fajardo, A., Obregon, S., & Lozano, J. (2005). Gallery forest types and their environmental correlates in a Colombian savanna landscape. Ecography, 28(2), 236-252. https://doi.org/10.1111/j.0906-7590.2005.03934.x
dc.relation.referencesWang, D., C. Yuan, X. Zhang, et al. 2024. “Precipitation Rather Than Temperature Primarily Drives Global Termite Effects on Litter Decomposition.” Catena 236: 107778. https://doi.org/10.1016/j.catena.2023.107778.
dc.relation.referencesWickham H, François R, Henry L, Müller K, Vaughan D (2023). _dplyr: A Grammar of Data Manipulation_. R package version 1.1.3, <https://CRAN.R-project.org/package=dplyr>.
dc.relation.referencesWickham, H. (2016). Data Analysis. In: ggplot2. Use R!. Springer, Cham. https://doi.org/10.1007/978-3-319-24277-4_9
dc.relation.referencesWijas, B. J., Flores-Moreno, H., Allison, S. D., Rodriguez, L. C., Cheesman, A. W., Cernusak, L. A., Clement, R., Cornwell, W. K., Duan, E. S., Eggleton, P., Rosenfield, M. V., Yatsko, A. R., & Zanne, A. E. (2024). Drivers of wood decay in tropical ecosystems: Termites versus microbes along spatial, temporal and experimental precipitation gradients. Functional Ecology, 38(3), 546-559.https://doi.org/10.1111/1365-2435.14494
dc.relation.referencesWoon, J. S., Boyle, M. J. W., Ewers, R. M., Chung, A., & Eggleton, P. (2019). Termite environmental tolerances are more linked to desiccation than temperature in modified tropical forests. Insectes sociaux, 66, 57-64.https://doi.org/10.1007/s00040-018-0664-1
dc.relation.referencesZanne, A. E., Flores-Moreno, H., Powell, J. R., Cornwell, W. K., Dalling, J. W., Austin, A. T., Classen, A. T., Eggleton, P., Okada, K.-I., Parr, C. L., Adair, E. C., Adu-Bredu, S., Alam, M. A., Alvarez-Garzón, C., Apgaua, D., Aragón, R., Ardon, M., Arndt, S. K., Ashton, L. A., … Zalamea, P.-C. (2022). Termite sensitivity to temperature affects global wood decay rates. Science, 377(6613), 1440-1444. DOI: 10.1126/ciencia.abo3856
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectHeterotermes tenuis
dc.subjectDensidad de la madera
dc.subjectTermitas
dc.subjectCiclo del carbono
dc.subject.keywordHeterotermes tenuis
dc.subject.keywordWood density
dc.subject.keywordTermites
dc.subject.keywordCarbon cycle
dc.subject.lembMaestría en Manejo, Uso y Conservación del Bosque -- Tesis y disertaciones académicas
dc.subject.lembTermitas xilófagas -- Orinoquia (Región, Colombia)spa
dc.subject.lembBosques de galería -- Orinoquia (Región, Colombia)spa
dc.subject.lembDescomposición de la madera -- Orinoquia (Región, Colombia)spa
dc.titleDescomposición de madera muerta por termitas xilófagas en bosques de galería de la Orinoquía colombiana
dc.title.titleenglishDecomposition of dead wood by xylophagous termites in gallery forests of the colombian Orinoquía
dc.typemasterThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/masterThesis

Archivos

Bloque original

Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
RomeroRicoGeimmyAlejandra2025.pdf
Tamaño:
648.14 KB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de Maestría
No hay miniatura disponible
Nombre:
RomeroRicoGeimmyAlejandra2025Anexos.zip
Tamaño:
744.56 KB
Formato:
Descripción:
Anexos
No hay miniatura disponible
Nombre:
Licencia de uso y publicación.pdf
Tamaño:
595.75 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia de uso y autorización

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: