Modelo de identificación y clasificación de ataques de intrusión basado el conjunto de datos de “detección de intrusión en IT” del repositorio KAGGLE mediante la implementación de un algoritmo evolutivo

Fecha

Autor corporativo

Título de la revista

ISSN de la revista

Título del volumen

Editor

Compartir

Altmetric

Resumen

This study develops a model for the identification and classification of intrusion attacks in IoT networks using the “Intrusion Detection in IT” dataset from the KAGGLE repository, by implementing an evolutionary algorithm. The main objective was to improve the accuracy of the intrusion detection model by optimizing a deep neural network using a genetic algorithm. The research was performed in a processing environment based on online code execution platforms, which provided advanced capabilities for handling large data volumes and complex models. The focus was on evaluating how data preprocessing, dimensionality reduction, and the application of an evolutionary algorithm influence the effectiveness of the deep neural network to classify intrusion attacks.

Descripción

Este estudio desarrolla un modelo para la identificación y clasificación de ataques de intrusión en redes IoT utilizando el conjunto de datos de “Detección de Intrusión en IT” del repositorio KAGGLE, mediante la implementación de un algoritmo evolutivo. El objetivo principal fue mejorar la precisión del modelo de detección de intrusiones optimizando una red neuronal profunda mediante un algoritmo genético. La investigación se realizó en un entorno de procesamiento basado en plataformas de ejecución de código en línea, que proporcionó capacidades avanzadas para el manejo de grandes volúmenes de datos y modelos complejos. Se enfocó en evaluar cómo el preprocesamiento de datos, la reducción de dimensionalidad y la aplicación de un algoritmo evolutivo influyen en la efectividad de la red neuronal profunda para clasificar ataques de intrusión.

Palabras clave

Algortimo genético, Red neuronal, Ataques de intrusión, Reduccion dimensionalidad

Materias

Ingeniería de Telecomunicaciones -- Tesis y disertaciones académicas , Redes de computadores --Médidas de seguridad , Internet , Inteligencia artificial

Citación