Análisis tecnoeconómico de un sistema de generación de energía con reactores nucleares tipo SMR en Colombia

dc.contributor.advisorRomero Ariza, Carlos Andrés
dc.contributor.authorEnciso Ramírez, Nicolás Esteban
dc.contributor.orcidRomero Ariza, Carlos Andrés [0000-0003-1254-6468]
dc.date.accessioned2025-06-06T17:10:14Z
dc.date.available2025-06-06T17:10:14Z
dc.date.created2025-05-07
dc.descriptionEn el presente trabajo se presenta un análisis tecnoeconómico del diseño de un sistema de generación de potencia basado en un reactor modular pequeño (SMR) de tipo HTGR (Reactor de Gas de Alta Temperatura) de 500 MWth, tomando como referencia el proyecto HTR-PM ubicado en Shidaowan, China. El sistema propuesto opera con un ciclo combinado Brayton-Rankine, utilizando una turbina de gas de helio, con la cual se alcanza una eficiencia térmica del 41 % y una eficiencia de segunda ley del 59 %, logrando una potencia neta de 206.8 MWe. Además del análisis técnico, se realizó un estudio económico basado en las estimaciones de costos del Laboratorio Nacional de Idaho (INL), permitiendo calcular el CAPEX, el OPEX y el Valor Presente Neto (VPN) para Colombia. Para ello, se aplicaron técnicas de actualización por inflación y factores de localización, obteniendo un LCOE (con inflación) de 278.687 USD/MW-h. Estos valores fueron comparados con el LCOE de otras tecnologías alternativas de generación en las Zonas No Interconectadas (ZNI), proporcionado por la UPME, demostrando una ventaja competitiva frente a algunas de estas debido a su capacidad y alto factor de planta del 92.75 %.
dc.description.abstractIn this study presents a techno-economic analysis of the design of a power generation system based on a 500 MWth High-Temperature Gas-cooled Reactor (HTGR) Small Modular Reactor (SMR), using the HTR-PM project in Shidaowan, China, as a reference. The proposed system operates with a Brayton-Rankine combined cycle, utilizing a helium gas turbine, achieving a thermal efficiency of 41 % and a second-law efficiency of 59 %, resulting in a net power output of 206.8 MWe. In addition to the technical analysis, an economic study was conducted based on cost estimates from the Idaho National Laboratory (INL), allowing the calculation of CAPEX, OPEX, and the Net Present Value (NPV) for Colombia. Inflation adjustment techniques and localization factors were applied, obtaining an inflation-adjusted Levelized Cost of Electricity (LCOE) of 278.687 (With inflation) USD/MW-h. These values were compared with the LCOE of alternative generation technologies in Non Interconnected Zones (ZNI), as reported by the UPME, demonstrating a competitive advantage over some of these technologies due to its capacity and high plant factor of 92.75 %.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/95961
dc.language.isospa
dc.publisherUniversidad Francisco Jose de Caldas
dc.relation.referencesAbou-Jaoude, A., et al. (2023). Literature Review of Advanced Reactor Cost Estimates. Idaho National Laboratory Technical Report.
dc.relation.referencesAbou-Jaoude, A., Larsen, L. M., Guaita, N., Trivedi, I., Joseck, F., Lohse, C., Hoffman, E., Stauff, N., Shirvan, K., & Stein, A. (2024). Meta-Analysis of Advanced Nuclear Reactor Cost Estimations Gateway for Accelerated Innovation in Nuclear (GAIN). http://gain.inl.gov
dc.relation.referencesAlonso, G., Bilbao, S., & del Valle, E. (2016). Economic competitiveness of small modular reactors versus coal and combined cycle plants. Energy, 116, 867-879.
dc.relation.referencesAsuega, A., Limb, J., & Quinn, C. (2023). Techno-economic analysis of advanced small modular nuclear reactors. Applied Energy.
dc.relation.referencesBarre, B., Anzieu, P., Lenain, R., & Thomas, J.-B. (2016). Nuclear Reactor Systems : a Technical, Historical and Dynamic Approach. EDP Sciences
dc.relation.referencesBayol, J., & González, A. (2022). Estudio de los reactores modulares pequeños.
dc.relation.referencesBergam, T., Incropera, F., Lavine, A., & Dewitt, D. (2011). Introduction to Heat Transfer (6.a ed.). JOHN WILEY SONS, INC.
dc.relation.referencesBudi, R. F. S., Ariyanto, S., Salimy, D. H., Nurmayady, D., Amitayani, E. S., Anzhar, K., Nurulhuda, E., et al. (2024). Scaling law method for cost estimation of Indonesia’s first HTGR (PeLUIt-40) and its implementation strategy. Nuclear Engineering and Design, 423, 113195.
dc.relation.referencesCarelli, M. D., & Ingersoll, D. T. (2015). Handbook of Small Modular Nuclear Reactors (Vol. 64). http://store.elsevier.com/
dc.relation.referencesChen, F., & Han, Z. (2021). Steady-state thermal fluids analysis for the HTR-PM equilibrium core. International Journal of Advanced Nuclear Reactor Design and Technology, 3, 11-17. https://doi.org/10.1016/j.jandt.2021.04.001
dc.relation.referencesChen, P., & Li, W. (2024). periodictable: A Python package for the periodic table of elements.
dc.relation.referencesCostData Online, I. (2008). INTERNATIONAL CONSTRUCTION FACTOR MANUAL. Richardson Products. www.CostDataOnLine.com
dc.relation.referencesDAFP. (2024, marzo). DECRETO NUMERO 0301 DE 2024. DEPARATMENTO ADMINISTRATIVO DE LA FUNCION PUBLICA.
dc.relation.referencesDong, Z., & Huang, X. (2014). Coordinated Control Design for the HTR-PM Plant: From Theoretic Analysis to Simulation Verification
dc.relation.referencesEcheverri, S. (2021). Reactores nucleares de generación IV
dc.relation.referencesGaleano, D. A. (2023). La Energía Nuclear en el Sector Eléctrico Colombiano: Una Alternativa Técnica y Sostenible. Revista ION, 36. https://doi.org/10.18273/ revion.v36n3-2023001
dc.relation.referencesGandrik, A. M. (2012). HTGR Cost Model Users’ Manual (inf. téc.). Idaho National Lab.(INL), Idaho Falls, ID (United States).
dc.relation.referencesGao, B., Kuznetsova, K., Ma, Z., & Miller, K. (2024). Nuclear Small Modular Reactors: Key Considerations for Deployment
dc.relation.referencesHan, J., He, W., Liu, Y., Zhao, C., & Bo, H. (2024). Thermal-hydraulic analysis of once-through steam generator with annular narrow slot tube. Applied Thermal Engineering, 124576.
dc.relation.referencesHee-Cheon, Kim, J.-H., & Kim, H.-M. (2007). A review of helium gas turbine technology for high-temperature gas-cooled reactors. Nuclear Engineering and Technology, 39 (1), 21-30.
dc.relation.referencesHetsroni, G. (2011). STEAM GENERATORS, NUCLEAR. Thermopedia. https : //doi.org/10.1615/AtoZ.s.steam_generators_nuclear
dc.relation.referencesIAEA, (2022). Advances in Small Modular Reactor Technology Developments (2022 Edition). http://aris.iaea.org
dc.relation.referencesINL. (2012). Technical Evaluation Study: Assessment of High Temperature GasCooled Reactor (HTGR) Capital and Operating Costs.
dc.relation.referencesInstituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas (IPSE). (2024, agosto). Informe Mensual de Telemetría Agosto de 2024 (inf. téc.). Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas (IPSE). Bogotá, Colombia. http://ipse.gov. co/documentos_cmn/documentos/informes_mensuales_de_telemetria/2024/ 08.INFORME_MENSUAL_DE_TELEMETRIA_AGOSTO_DE_2024.pdf
dc.relation.referencesKindra, V., Maksimov, I., Zlyvko, O., Rogalev, A., & Rogalev, N. (2024). Thermodynamic Analysis and Comparison of Power Cycles for Small Modular Reactors. Energies, 17 (7), 1650.
dc.relation.referencesKrall, L. M., Macfarlane, A. M., & Ewing, R. C. (2022). Nuclear waste from small modular reactors. Proceedings of the National Academy of Sciences of the United States of America, 119. https://doi.org/10.1073/pnas.2111833119
dc.relation.referencesNag, P. K. (2008). Power Plant Engineering (3.a ed.). McGraw-Hill.
dc.relation.referencesNEA, (2024). The NEA Small Modular Reactor (Second Edition).
dc.relation.referencesOECD. (2000). Reduction of capital costs of nuclear power plants (2000 Edition). http://aris.iaea.org
dc.relation.referencesPeters, M. S., Timmerhaus, K. D., et al. (2018). Plant design and economics for chemical engineers. McGraw-Hill International.
dc.relation.referencesPioro, I. (Ed.). (2023). Handbook of Generation IV Nuclear Reactors (2.a ed.). Woodhead Publishing Series in Energy
dc.relation.referencesRestrepo, A., & Gómez, N. (2023). Consideraciones para la ubicación de una central nuclear de potencia en Colombia. ENERLAC, 7.
dc.relation.referencesRowinski, M. K., White, T. J., & Zhao, J. (2015). Small and Medium sized Reactors (SMR): A review of technology. https://doi.org/10.1016/j.rser.2015.01.006
dc.relation.referencesSGC. (2023). El único reactor nuclear que hay en Colombia. Servicio Geológico Colombiano
dc.relation.referencesShobeiri, E., Genco, F., Hoornweg, D., & Tokuhiro, A. (2023). Small Modular Reactor Deployment and Obstacles to Be Overcome. Energies, 16. https://doi.org/10. 3390/en16083468
dc.relation.referencesSinergox. (2024). CEN por tipo fuente natural y despacho. Oferta y Generación. https://sinergox.xm.com.co/oferta/Paginas/Informes/CapacidadEfectiva.aspx
dc.relation.referencesSui, Z., Sun, J., Wei, C., & Ma, Y. (2014). The engineering simulation system for HTR-PM. Nuclear Engineering and Design, 271, 479-486. https://doi.org/10. 1016/j.nucengdes.2013.12.019
dc.relation.referencesTeam, C. D. (2024). CoolProp: Thermodynamic and transport property database for fluids
dc.relation.referencesTran, T. T., & Smith, A. D. (2018). Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies. Applied energy, 216, 157-171.
dc.relation.referencesUnidad de Planeación Minero Energética (UPME). (2025). Costos Nivelados de Generación de Electricidad en Colombia [Accedido: 16 de marzo de 2025]. https: //lcoev2.upme.gov.co/main
dc.relation.referencesUPME. (2023). Plan Energético Nacional (PEN) 2022-2052. Ministerio de Minas y Energía
dc.relation.referencesUPME. (2024). Proyección de la Demanda de Energía Eléctrica, Potencia Máxima y Gas Natural 2023-2037. Ministerio de Minas y Energía.
dc.relation.referencesUS, I. (2024). Consumer Price Index Data from 1913 to 2025 [Accedido: 09/01/2025]. https://www.usinflationcalculator.com/inflation/consumer - price - index - and - annual-percent-changes-from-1913-to-2008/
dc.relation.referencesVinoya, C. L., Ubando, A. T., Culaba, A. B., & Chen, W. H. (2023). State-of-theArt Review of Small Modular Reactors. Energies, 16. https://doi.org/10.3390/ en16073224
dc.relation.referencesWang, J., Talabi, S., & y Leon, S. B. (2024). NUCLEAR POWER REACTOR DESIGNS. ELSEVIER.
dc.relation.referencesW.N.A. (2024, febrero). Small Nuclear Power Reactors [Accedido:26/04/2024]. https: / / world - nuclear. org /information - library / nuclear - fuel - cycle / nuclear - power - reactors/small-nuclear-power-reactors
dc.relation.referencesWu, S., Li, Z., Wang, P., Su, G., & Wan, J. (2023). A three-region movable-boundary helical coil once-through steam generator model for dynamic simulation and controller design. Nuclear Engineering and Technology, 55 (2), 460-474.
dc.relation.referencesYan, X. L. (2021). HTGR Brayton Cycle Technology and Operations. HTGR Hydrogen y Heat Application Research Center - Japan Atomic Energy Agency (JAEA).
dc.relation.referencesZhang, Z., Dong, Y., Li, F., Zhang, Z., Wang, H., Huang, X., Li, H., Liu, B., Wu, X., Wang, H., Diao, X., Zhang, H., & Wang, J. (2016). The Shandong Shidao Bay 200 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTRPM) Demonstration Power Plant: An Engineering and Technological Innovation. Engineering, 2, 112-118. https://doi.org/10.1016/J.ENG.2016.01.020
dc.relation.referencesZhang, Z., Wu, Z., Sun, Y., & Li, F. (2006). Design aspects of the Chinese modular high-temperature gas-cooled reactor HTR-PM. Nuclear Engineering and Design, 236, 485-490. https://doi.org/10.1016/j.nucengdes.2005.11.024
dc.relation.referencesZhang, Z., Wu, Z., Wang, D., Xu, Y., Sun, Y., Li, F., & Dong, Y. (2009). Current status and technical description of Chinese 2 × 250 MWth HTR-PM demonstration plant. Nuclear Engineering and Design, 239, 1212-1219. https://doi.org/10. 1016/j.nucengdes.2009.02.023
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectSMR
dc.subjectHTGR
dc.subjectAnálisis Tecnoeconómico
dc.subjectAnálisis Exergético
dc.subjectLCOE
dc.subject.keywordSMR
dc.subject.keywordHTGR
dc.subject.keywordTechno-economic assessment
dc.subject.keywordExergy analisys
dc.subject.keywordLCOE
dc.subject.lembIngeniería Mecánica -- Tesis y disertaciones académicas
dc.subject.lembGeneración de energía
dc.subject.lembReactores nucleares
dc.titleAnálisis tecnoeconómico de un sistema de generación de energía con reactores nucleares tipo SMR en Colombia
dc.title.titleenglishTechno-Economic Analysis of an Energy Generation System with SMR-Type Nuclear Reactors in Colombia
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeMonografía
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
EncisoRamirezNicolasEsteban2025.pdf
Tamaño:
4.69 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicacion editable .pdf
Tamaño:
209.44 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: