Panorama de los transcriptomas de cannabis sativa por medio de métodos bioinformáticos
Fecha
Autores
Autor corporativo
Título de la revista
ISSN de la revista
Título del volumen
Editor
Compartir
Director
Altmetric
Resumen
Cannabis sativa has been used as a source of fiber, oil and is obtaining great medical importance for treatment of some diseases and symptoms such as nausea, anxiety, analgesic, anorexia, gastrointestinal disorders, seizures, Parkinson's, migraine etc. These compounds are found in cannabinoids like THC and CBD. The study of genomic data of cannabis has been hampered by US federal laws with the Marijuana Tax Act of 1937 criminalizing the possession or transfer of cannabis. In 1953 Francis Crick and James Watson made a breakthrough for molecular biology, The Discovery of the Double Helix of DNA. This generated studies on the characterization and function of genes in tissues and expression of proteins as well as in phylogenetic studies and evolutionary history of an organism. Cannabis sativa is one of the domestic plants with less studies and genomic developments compared to rice, wheat and soy. Because of the interest in their psychoactive properties. Selective cultivation of this plant has produced cannabis plants for specific uses, including marijuana strains and high potency cannabis crops for the production of seeds and fibers. The data of the reference genome of Cannabis sativa was loading ofthe NCBI public FTP databases for the cannabis reference genome. For cannabis genomes, such as Cannatonic, LA Confidential, Chemdawg 91, Purple Kush, Pineaple Banana Buba Kush, was used the NCBI SRA and for the Finola variety was used the Cannabis Genome Browser database of the Open Cannabis Project. We performed a quality control of the reference genome of Cannabis sativa and then it performed a filtering of the readings, to eliminate possible, adapters that are generated in the sequencing of the readings, the mapping that was performed of these genomes with the sequencing of reference, showed that the variety Chemdawg91 presents a higher percentage of mapping compared to the other genomes, defining our reference genome. The transcripts were assemble from each sample against the Chemdawg91 genome with cufflinks from which final transcriptomes will emerge in a merged.gff file, which were quantified to be able to calculate the expression of each constructed transcript. The coding RNAs and long codings RNAs (lncRNAs) were identified in the transcriptome, which showed a less dispersion of lncRNAs in which an emphasis can be made to carry out studies on them. We performed an identification of the co-expression of coding RNAs and lncRNAs showing a relationship with genes involved in the pathway of Cannabinoid Biosynthesis. This research work allows the study and functional analysis of the genome of Cannabis sativa and to be able to carry out further investigations in the therapeutic and medicinal area, since the relative expression, due to the different metabolic functions, the synthesis of the metabolic routes in the transcripts Of Cannabis sativa is different. Due to cell differentiation of tissues