Sistema de corriente sq en el observatorio geomagnético de fúquene y su relación con el modelo difi-7
| dc.contributor.advisor | Cárdenas Contreras, Andrés | |
| dc.contributor.author | Cortés Rojas, Esteban | |
| dc.contributor.orcid | Cárdenas Contreras Andrés [0000-0002-6033-4331] | |
| dc.date.accessioned | 2025-09-12T16:48:28Z | |
| dc.date.available | 2025-09-12T16:48:28Z | |
| dc.date.created | 2025-08-20 | |
| dc.description | Esta monografía de pregrado con un enfoque en investigación científica se centra en el estudio de la variación solar en calma (Sq) del campo magnético ionosférico en el Observatorio Geomagnético de Fúquene (FUQ), así como su comparación con el modelo global DIFI-7. Inicialmente parte de una revisión teórica de las fuentes del campo geomagnético, tanto internas (núcleo y corteza terrestre), como externas (ionósfera y magnetósfera). Se describe los principales sistemas de corrientes ionosféricas, tales como el Electrochorro Ecuatorial (EEJ), el Electrochorro Auroral (AEJ) y el sistema Sq, analizando su generación, comportamiento y relevancia científica. Posteriormente, se describe el funcionamiento, la historia y la instrumentación del Observatorio Geomagnético de Fúquene, incluyendo la metodología empleada para la digitalización de magnetogramas históricos y la obtención de los datos. Se calcula el residuo del campo ionosférico observado a partir de la sustracción de las contribuciones internas y externas modeladas por CHAOS-8 y se compara con las predicciones del modelo DIFI-7 para distintos periodos geomagnéticos: uno en calma entre el 2 y el 9 de octubre de 2014 y otro perturbado entre el 8 y el 15 mayo de 2024. Los resultados obtenidos evidencian una buena correspondencia entre las señales modeladas y observadas bajo condiciones de baja actividad geomagnética, encontramos que las diferencias entre el residuo y el modelo alcanzan valores entre 0.14 y 33.4 nT en la componente radial, entre 0.13 y 26 nT en la componente polar y entre 0.05 y 25.56 nT en la componente azimutal. Mientras que durante condiciones de alta actividad geomagnética encontramos que las diferencias entre el residuo y el modelo alcanzan valores entre 0.3 y 91.85 nT en la componente radial, entre 0.18 y 224.18 nT en la componente polar y entre 0.06 y 87.97 nT en la componente azimutal, asociadas a la sensibilidad del modelo frente a grandes cambios generados por tormentas geomagnéticas. Este estudio demuestra la utilidad del modelo DIFI-7 para representar la corriente Sq en Colombia y valida la calidad de los datos obtenidos por el observatorio FUQ, lo cual abre nuevas posibilidades para el monitoreo y modelado del campo geomagnético en regiones ecuatoriales. | |
| dc.description.abstract | This undergraduate thesis, with a focus on scientific research, centers on the study of solar quiet variation (Sq) of the ionospheric magnetic field at the Fúquene Geomagnetic Observatory (FUQ), as well as its comparison with the global model DIFI-7. It begins with a theoretical review of the sources of the geomagnetic field, both internal (core and Earth's crust) and external (ionosphere and magnetosphere). The main ionospheric current systems are described, such as the Equatorial Electrojet (EEJ), the Auroral Electrojet (AEJ), and the Sq system, analyzing their generation, behavior, and scientific relevance. Subsequently, the operation, history, and instrumentation of the Fúquene Geomagnetic Observatory are described, including the methodology used for the digitization of historical magnetograms and data acquisition. The residual of the observed ionospheric field is calculated by subtracting the contributions of both internal and external components, modeled by CHAOS-8, and it is compared with the predictions from the DIFI-7 model for different geomagnetic periods: one quiet period between October 2 and 9, 2014, and one disturbed period between May 8 and 15, 2024. The results show a good correspondence between the modeled and observed signals under conditions of low geomagnetic activity. We found that the differences between the residual and the model range from 0.14 to 33.4 nT in the radial component, from 0.13 to 26 nT in the polar component, and from 0.05 to 25.56 nT in the azimuthal component. Meanwhile, under conditions of high geomagnetic activity, the differences between the residual and the model range from 0.3 to 91.85 nT in the radial component, from 0.18 to 224.18 nT in the polar component, and from 0.06 to 87.97 nT in the azimuthal component, which are associated with the model's sensitivity to large changes caused by geomagnetic storms. This study demonstrates the usefulness of the DIFI-7 model for representing the Sq current in Colombia and validates the quality of the data obtained by the FUQ observatory, thus opening new possibilities for the monitoring and modeling of the geomagnetic field in equatorial regions. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/98926 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | M. R. Alva Carmona, S. Vargas-Domínguez, J. Villafane, E. Cortés-Rojas, S. Pinzón-Cortes, N. Gómez-Pérez, E. Torres Moya, and C. A. Franco Prieto. The Fuquene National Geomagnetic Observatory: A journey through its past, present, and future. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 49(190):146–162, 2025. doi: 10.18257/raccefyn.3166. | |
| dc.relation.references | F. Benitez-Paez, V.d. Brum-Bastos, C.D. Beggan, and et al. Fusion of wildlife tracking and satellite geomagnetic data for the study of animal migration. Mov Ecol, 9:31, 2021. doi: 10.1186/s40462-021-00268-4. | |
| dc.relation.references | J. E. Borovsky and J. A. Valdivia. The Earth’s Magnetosphere: A Systems Science Overview and Assessment. Surveys in Geophysics, 39(5):817–859, 2018. doi: 10.1007/s10712-018-9487-x. | |
| dc.relation.references | British Geological Survey. Earth’s Magnetic Field. https://geomag.bgs.ac.uk/education/earthmag.html, 2024. | |
| dc.relation.references | British Geological Survey. Geomagnetic Coordinate Calculator. BGS Geomagnetism, 2025a. URL: https://geomag.bgs.ac.uk/data_service/models_compass/coord_calc.html | |
| dc.relation.references | British Geological Survey. World Data Centre for Geomagnetism, 2025b. URL: http://www.wdc.bgs.ac.uk/. | |
| dc.relation.references | M. Calcina. UN MODELO DINÁMICO PARA EL CAMPO GEOMAGNÉTICO. Revista Boliviana de Física, 15:44–62, 2009. ISSN 1562-3823. URL: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1562-38232009000100008&nrm=iso. | |
| dc.relation.references | A. Chulliat, P. Vigneron, and G. Hulot. First results from the Swarm Dedicated Ionospheric Field Inversion chain. Earth, Planets and Space, 68, 2016. doi: 10.1186/s40623-016-0481-6. | |
| dc.relation.references | C. Cid, A. Guerrero, E. Saiz, A. J. Halford, and A. C. Kellerman. Developing the LDi and LCi Geomagnetic Indices, an Example of Application of the AULs Framework. Space Weather, 18, 2019. doi: 10.1029/2019sw002171. | |
| dc.relation.references | V. Dehant, S. Campuzano, A. De Santis, and et al. Structure, Materials and Processes in the Earth’s Core and Mantle. Surveys in Geophysics, 43(1):263–302, 2022. doi: 10.1007/s10712-021-09684-y. | |
| dc.relation.references | N. Elmunim and M. Abdullah. Ionosphere. In Ionospheric Delay Investigation and Forecasting. Springer Singapore, 2021. doi: 10.1007/978-981-16-5045-13. | |
| dc.relation.references | ESA/DTU Space/ATG medialab. Vires for swarm: Earth’s magnetic field as observed by satellite, Apr 2025. URL: https://vires.services/. | |
| dc.relation.references | C. C. Finlay, C. Kloss, N. Olsen, M. D. Hammer, L. Tøffner-Clausen, A. Grayver, and A. Kuvshinov. The chaos-7 geomagnetic field model and observed changes in the South Atlantic Anomaly. Earth, Planets and Space, 72(1):156, 2020. doi: 10.1186/s40623-020-01252-9. | |
| dc.relation.references | N. Yu. Ganushkina, M. W. Liemohn, and S. Dubyagin. Current Systems in the Earth’s Magnetosphere. Reviews of Geophysics, 56(2):309–332, 2018. doi: 10.1002/2017RG000590. | |
| dc.relation.references | G. A. Good. Geophysical travellers: the magneticians of the Carnegie Institution of Washington. Geological Society, London, Special Publications, 287(1):395–408, 2007. doi: 10.1144/SP287.29. | |
| dc.relation.references | F. Herrmann and T. Vorbach. The geodynamo for non-geophysicists. European Journal of Physics, 41(4), 2020. doi: 10.1088/1361-6404/ab8780. | |
| dc.relation.references | Instituto Geográfico Agustín Codazzi. Geomagnetismo. 2020. URL: https://antiguo.igac.gov.co/es/contenido/areas-estrategicas/geomagnetismo. | |
| dc.relation.references | Instituto Geográfico Agustín Codazzi. Geomagnetismo. 2025. | |
| dc.relation.references | C. Kloss, C.C. Finlay, N. Olsen, L. Tøffner-Clausen, N. Gillet, and A. Grayver. The DTU geomagnetic field parent model and derived IGRF-14 candidate models. 2024. URL: https://www.spacecenter.dk/files/magnetic-models/CHAOS-8/_downloads/1327fd0859c41d20bd663446966758ed/IGRF14_DTU_Technical_Note.pdf. | |
| dc.relation.references | C. Kloss, Carlagru, and A. Smith. Chaosmagpy v0.15, Jul 2025. doi: 10.5281/zenodo.16091680. | |
| dc.relation.references | G. Le, J. A. Slavin, and R. J. Strangeway. Space technology 5 observations of the imbalance of regions 1 and 2 field-aligned currents and its implication to the cross-polar cap Pedersen currents. Journal of Geophysical Research: Space Physics, 115(A7), 2010. doi: 10.1029/2009JA014979. | |
| dc.relation.references | M. Lin and R. Ilie. A Review of Observations of Molecular Ions in the Earth’s Magnetosphere-Ionosphere System. Frontiers in Astronomy and Space Sciences, 8, 2022. doi: 10.3389/fspas.2021.745357. | |
| dc.relation.references | B. Lorenzen. Earth’s Magnetic Field—The Key to Global Warming. Journal of Geoscience and Environment Protection, 7:25–38, 2019. doi: 10.4236/gep.2019.77003. | |
| dc.relation.references | V. V. Malakhov, V. V. Alekseev, V. S. Golubkov, A. G. Mayorov, S. A. Rodenko, and R. F. Yulbarisov. Magnetic field in the inner near-earth space. Phys. Usp., 66(10):967–986, 2023. doi: 10.3367/UFNe.2022.12.039293. | |
| dc.relation.references | F. A. Medina. Antecedentes del estudio del campo magnético terrestre en Colombia. Scientia et Technica, 2(50):179–185, 2012. doi: 10.22517/23447214.1677. | |
| dc.relation.references | M. Murakami, A. Khan, P. A. Sossi, M. D. Ballmer, and P. Saha. The Composition of Earth’s Lower Mantle. Annual Review of Earth and Planetary Sciences, 52:605–638, 2024. doi: 10.1146/annurev-earth-031621-075657. | |
| dc.relation.references | National Centers for Environmental Information (NCEI). Modeling Earth’s Geomagnetic Fields. National Oceanic and Atmospheric Administration (NOAA), 2024. URL: https://www.ncei.noaa.gov/news/HDGM. | |
| dc.relation.references | National Oceanic and Atmospheric Administration (NOAA). JetStream Max: The Ionosphere, 2023. URL: https://www.noaa.gov/jetstream/ionosphere-max. | |
| dc.relation.references | N. Olsen, D. Ravat, C. Finlay, and L. Kother. LCS-1: A high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations. Geophysical Journal International, 211(3):1461–1477, 2017. doi: 10.1093/gji/ggx381. | |
| dc.relation.references | C. Owolabi, H. Ruan, Y. Yamazaki, J. Li, J. Zhong, A. V. Eyelade, S. Priyadarshi, and A. Yoshikawa. Empirical Modeling of Ionospheric Current Using Empirical Orthogonal Function Analysis and Artificial Neural Network. Space Weather, 19(10), 2021. doi: 10.1029/2021SW002831. | |
| dc.relation.references | C. Owolabi, H. Ruan, Y. Yamazaki, R. O. Kaka, O. O. Akinola, and A. Yoshikawa. Ionospheric Current Variations by Empirical Orthogonal Function Analysis: Solar Activity Dependence and Longitudinal Differences. Journal of Geophysical Research: Space Physics, 127(12), 2022. doi: 10.1029/2021JA029903. | |
| dc.relation.references | A. Peccerillo. Geomagnetism - The Space Shield of the Planet Earth. In Air, Water, Earth, Fire: How the System Earth Works. Springer International Publishing, Cham, 2021. doi: 10.1007/978-3-030-78013-54. | |
| dc.relation.references | S. Pinzon-Cortes, N. Gómez-Pérez, and S. Vargas Domínguez. Ring current local time dependence during geomagnetic storms using equatorial Dst-proxies. Acta Geodaetica et Geophysica, 2025. doi: 10.1007/s40328-024-00459-6. | |
| dc.relation.references | H. Podewski. The Earth’s geomagnetic field. GFZ Potsdam, 2008. URL: https://www-app3.gfz-potsdam.de/obs/niemegk/en/observatorium/magnetfeld/magnetfeld_e.html. | |
| dc.relation.references | C.G. Provatidis. On the magnetic field in Earth’s interior. Physica Scripta, 99(2):025006, 2024. doi: 10.1088/1402-4896/ad17fc. | |
| dc.relation.references | B. Qian, C. Xiong, F. Wang, Y. Yang, and K. Li. An indicator of local auroral electrojet peak intensity and latitude inferred from scalar magnetometer measurements made by the Swarm satellites. J. Space Weather Space Clim., 15:15, 2025. doi: 10.1051/swsc/2025011. | |
| dc.relation.references | B. Rabiu, S. Ogunjo, O. Dare-Idowu, and I. Fuwape. Longitudinal variability of complexities associated with equatorial electrojet and its coupling with solar quiet daily variation (Sq) field. Advances in Space Research, 75(1):864–875, 2025. doi: 10.1016/j.asr.2024.07.075. | |
| dc.relation.references | F. Rosales. El modelamiento del movimiento de las placas tectónicas: una propuesta para el aula. Master’s thesis, Universidad Nacional de Colombia, 2012. URL: https://repositorio.unal.edu.co/handle/unal/11422. | |
| dc.relation.references | E. Seran, M. Godefroy, E. Pili, N. Michielsen, and S. Bondiguel. What we can learn from measurements of air electric conductivity in 222Rn-rich atmosphere. Earth and Space Science, 4(2):91–106, 2017. doi: 10.1002/2016EA000241. | |
| dc.relation.references | K. Shiokawa. Introduction of Space Weather Research on Magnetosphere and Ionosphere of the Earth. Springer Nature Singapore, Singapore, 2023. ISBN 978-981-19-7765-7. doi: 10.1007/978-981-19-7765-74. | |
| dc.relation.references | L. Sirui and D. Jianghong. Compilation of fundamental parameters of Earth. Solid Earth Sciences, 9(4):100–202, 2024. doi: 10.1016/j.sesci.2024.100202. | |
| dc.relation.references | V. Spiridonov and M. Curic. Structure and Composition of the Atmosphere. In Fundamentals of Meteorology. Springer International Publishing, 2021. doi: 10.1007/978-3-030-52655-9_4. | |
| dc.relation.references | M. Tang. Composition of the Earth’s Crust. In David Alderton and Scott A. Elias, editors, Encyclopedia of Geology (Second Edition). Academic Press, Oxford, second edition, 2021. doi: 10.1016/B978-0-08-102908-4.00044-8. | |
| dc.relation.references | U.S. Geological Survey. Introduction to geomagnetism. U.S. Geological Survey website, 2008. URL: https://www.usgs.gov/programs/geomagnetism/introduction-geomagnetism. Reprinted from “Magnetic monitoring of earth and space” by Jeffrey Love, Physics Today 61(2):31 (2008). Figure 3 modified from original Physics Today version. | |
| dc.relation.references | K. A. Wienert. Notes on geomagnetic observatory and survey practice. Earth Sciences, 5(25), 1970. URL: https://unesdoc.unesco.org/notice?id=p::usmarcdef_0000014502. | |
| dc.relation.references | Y. Yamazaki and A. Maute. Sq and EEJ — A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents. Space Science Reviews, 206(1):299–405, 2017. doi: 10.1007/s11214-016-0282-z. | |
| dc.relation.references | Y. Zhong, H. Wang, K. Zhang, H. Xia, and C. Qian. Local Time Response of Auroral Electrojet During Magnetically Disturbed Periods: DMSP and CHAMP Coordinated Observations. Journal of Geophysical Research: Space Physics, 127(8), 2022. doi: 10.1029/2022JA030624. | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Campo Geomagnético | |
| dc.subject | Variación Solar en Calma | |
| dc.subject | Ionósfera | |
| dc.subject | DIFI-7 | |
| dc.subject | Observatorio Geomagnético de Fúquene | |
| dc.subject | CHAOS-8 | |
| dc.subject.keyword | Geomagnetic Field | |
| dc.subject.keyword | Solar Quiet | |
| dc.subject.keyword | Ionosphere | |
| dc.subject.keyword | DIFI-7 | |
| dc.subject.keyword | Fuquene Geomagnetic Observatory | |
| dc.subject.keyword | CHAOS-8 | |
| dc.subject.lemb | Ingeniería Catastral y Geodesia -- Tesis y disertaciones académicas | |
| dc.title | Sistema de corriente sq en el observatorio geomagnético de fúquene y su relación con el modelo difi-7 | |
| dc.title.titleenglish | Sq current system at the fuquene geomagnetic observatory and its relationship with the difi-7 model | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Monografía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
